I
T
"
—

Mechanical Engineering
Industrial Process and
Energy Systems Engineering

Rosmose

by
Michel Lopez

updated on 2022-09-08

Professor: Prof. Francois Maréchal

B School of Engineering

Contents

Rosmose 1

Rosmose engine 2

Introduction 3
Installation e 4
Basics e 5

Chunk manager L 5

Category 6

FUNCTIONALITY and ARGUMENTS 6

Categories functionalities and usage 7
Tags functionalities 8

Create Tags o 0 e 8

Display Tags 9

Save Tags e 9

Load Tags o e 9
Model functionalities 11

Create Model 11

Define Model inputs e 12

Define Model outputs L 12

Define Model interfaces 13

Reset Inputs e 14

Display Model inputs 14

Display Model outputs 15

Solve Model e 15
Osmose functionalities 17

Create an Energy Technology (ET) 17

Add Layersto ET e 17

Add units to ET L 17

Add parameters tounitsof ET 18

CONTENTS

Add Resource Streams to Unit 18
Add Heat Streamsto Unit 18
Display ET e 19
Solve optimization 20
Generate ET Lua filefromchunk 20
Generate frontend Lua file fromchunk 21
11l Bibliography search 22
Bibiliography Data Management 23
How to get the data in the bibliography in a Rmarkdown project 23

Rosmose

ROSMAOSE is a meta-language created to generate energetical optimization problems. This tool
is based on the RMarkdown ecosystem, and allows users to turn their work to a powerfull report
or presentation. The idea of this ecosystem is to execute computer code chunks embedded in
Markdown to latter render output format such as PDF, HTML, LaTeX and so on.

Rmarkdown is a report writing tool that has been developed to make science reproducible.

Compared with conventional reporting in which data are treated as characters and figures as
images, an Rmarkdown report includes in the same report document, the text, the raw data, the
data processing (calculation made with the data) and the plotting instructions to generate the
figures. The report, the figures and the calculation results are therefore generated on the basis of
the raw data considered for your investigation.

Rmarkdown projects can have different forms like :

= A short notice report
= A website like the one you are reading here
= A book compiled using the bookdown package that is built by assembling rmarkdown files

CONTENTS

= A scientific paper to be built using the rticles R package with pre-formated paper format
from various publishers
= A blog post website.

Any Rmarkdown report can be built by assembling collection of child documents (use the rchild
command). This allows to have in the same folder and in a collection of document the content
of the report and all the data needed to generate it.

Rosmose engine

Rosmose technology allows users to:

= define problems

= define energy technologies

= call external energetical software
= solve optimisation problems

The idea here was to create a meta-language also called engines to base the computer code
into energetic related jobs.

ROSMOSE is a package witten in python that can be found on https://gitlab.epfl.ch/
ipese/osmose/tools/pyxosmose and use with reticulate in the RMarkdown ecosystem.

NOTE : This documentation is valid for the rosmose (pyxosmose) library with the
version 1.12.7

PART

Introduction

Installation

To use the rosmose library, you can create a RMarkdown file and load

((({r}

source("https://ipese-internal.epfl.ch/osmose/rosmose-setup.R", local = knitr::knit_glob
ccte

That's it.

Basics

There is 3 main categories in rosmose.

1. MODEL that allows you to communicate with external software like (vali, aspen, ...)
2. OSMOSE that design the energy technology with layers, streams, units and solve the
optimization

3. TAGS that is the concept of energetics variables (every model input or output is a tag)

Before going in deep with those categories, let's try to understand how rosmose works
To call rosmose functionalities you will need to use special chunks name

“¢““{rosmose}
[

The first line will explain what you want to do to ROSMOSE. The first line looks like following:

¢ ¢ “{rosmose}
: MODEL INPUTS mymodel

cce

Here we can see 4 elements in the first line:

1. The CHUNK MANAGER, represented by the : sign

2. The CATEGORY, in this example, the MODEL category

3. The FUNCTIONALITY, here we tells rosmose to define INPUTS

4. ARGUMENTS, in this case mymodel that is the model name defined.

Chunk manager

The chunk manager tells the system what to do with the information in the chunk. It's define by
a special character

char Description

Execute the functionality and report the content
Execute the functionality without reporting it
Comment the entire chunk

Category

The category is defined in the second position of the first line and uppercase

Category Description

MODEL Tells rosmose to use external software functionalities
OSMOSE Tells rosmose to use osmose functionalities
TAGS Tells rosmose to use TAGS functionalities

FUNCTIONALITY and ARGUMENTS

The functionalities tells rosmose what to do with the information bellow the first line. As function-
alies can need arguments, we also have arguments starting from there but not mendatory. As the
functionalities depend on the category, everything will be detailed in the categories functionalities
section, with the possible arguments.

PART

Categories functionalities and usage

Tags functionalities

TAGS is the variable concept of rosmose. As rosmose is a meta-language for generate energetic
systems, a variable is not a simple value but an object containing at least:

= a name
= avalue

= a physical unit
= a description

for example a energetic value can not be 10 but has to be

temperature_input 10 C with the description: temperature input for heat pump.

Create Tags

As TAGS is the main concept and calculation language in rosmose, you dont need to put any
special first line instruction to create TAGS.
You can create TAGS with the structure

tag_name = tag_value [tag_physical_unit] # tag_description

Let's create a tag

¢ “‘{rosmose}
my_variablel = 2503 [C] # that’s my third variable

[

Currently we need to create tags that are the result of a calculation.

“““{rosmose}
my_variable2 = (20 + 10) / (100 + 2)*2

(31

Those calculation can also be done with the value of another TAG. To do this, we can specify
the value of the TAGS by surround the TAG name between percentage signs like: %tag_name},.
That means that we can create more complex tags as following:

¢¢““{rosmose}
my_variable3 = (10 + %my_variablel), * Jmy_variable2} + 4 /2 *100) / 2000

cce

Display Tags

As explained earlier, ROSMOSE and RMarkdown ecosystem allows user to not only execute code
chunks, but also generate a report. That's why Tags also have a functionality to present TAGS
in your report.

To display tags, we call the category TAGS with the functionality DISPLAY_TAGS and give the
table value as argument. This argument is not mendatory and its written with the [nvuc] style.
That means display the tags in a table with the columns:

= n (name)

= v (value)

= u (physical unit)

= c or d (comment/description)

¢¢“{rosmose}
: TAGS DISPLAY_TAGS [nvD]

[

It's possible that you will have a lot of TAGS and you only want to display only a few of them.
You can do so by adding the names of the desired tags in the chunk content as following:

¢¢“{rosmose}
: TAGS DISPLAY_TAGS [nvD]

my_variablel

my_variable2
ccee

Save Tags

It's possible to persist tags in order to reload them without recreating them. To save tags, we call
the category TAGS with the functionality SAVE

¢¢“f{rosmose}
! TAGS SAVE

Load Tags

You can reload Tags that have been saved by calling the category TAGS with the functionality
LOAD as following

“¢““{rosmose}
! TAGS LOAD

[

10

Model functionalities

As explained earlier, MODEL is the category used to call external software. The usage of MODEL
works as following:

1. Define the model by giving a name, a software and a path to this model
2. Define inputs and outputs.
3. Solve the model

The model will be solved with the values of the inputs defined and the outputs that you want
to retrieve after the solve.

Every inputs and outputs are TAGS and can be reused as that.

Let's check how to create the model.

Create Model

For creating a model we dont need to add a special functionaly in the first line, only a model
name. It is follow by a markdown table containing a column software, a column location and a
column for comments. - The software column is needed to tell rosmose which software to use for
the model name. - The location column tells the software model path - The comment column
allows user to add comments.

It looks like this:

¢““{rosmose}
: MODEL myModelName

|Software|Location| Comment |

| ASPEN |[model/myNREL_DAP.bkp]| |

[N

In this example, we create a model with the name myModelName that will use ASPEN as external
software and use the model myNREL_DAP.bkp file that is stored in the model folder.
Available Software :

= ASPEN
= VALI

Define Model inputs

To define the model inputs, we call the category MODEL with the functionality INPUTS and give
the model name as argument.
The first line is followed by a markdown table containing:

= the tag name of the model (the model value that you want to update)
= the value of the tag name that will be updated

= the physical unit of the input

= a comment to explain what is this tag

In the case of a MODEL using ASPEN, we need to give a path that define where the tag is
placed in the model.

¢““{rosmose}
: MODEL INPUTS myModelName

Value | Units |

) g | g | eemmeees g | gmmmemee I8
| Total_flow | /Data/Streams/516/Input/TOTFLOW/MIXED 36340 | kg/hr |
| Pressure | /Data/Streams/516/Input/PRES/MIXED |
|

| Temperature | /Data/Streams/516/Input/TEMP/MIXED

[

6.1 | atm
114 | C

In the case you are using another software you can just remove the path column

¢““{rosmose}
: MODEL INPUTS myNotAspenModel

Name	Value	Units	Comments
i==—————	-——————- 2 = [fi==—————e		
value_1	24846	kg/hr	
value 2	204	C	
value_3	1.4	C	
¢

¢

NOTE: Every time you will rerun a chunk that creates input for a model, it will update
the inputs with the same name and create new inputs for the none existing ones.

Define Model outputs

Outputs are the values that you want to retrieve after solving a MODEL. That works as the INPUTS
but without a value column as we don’t have this information.

For defining outputs, we call the category MODEL with the functionality OUTPUTS and give the
model name as argument.

12

¢ ¢ “{rosmose}
: MODEL OUTPUTS myModelName

| Name Path Units

I T e [T et e
dryfeed_in | /Data/Streams/105/0utput/RES_MASSFLOW kg/hr
acid_in /Data/Blocks/A200/Data/Streams/232S/0utput/MASSFLOW/MIXED/H2S04 kg/hr

| |
| |
| | |
| | |
| wi | /Data/Blocks/A200/Data/Streams/211/0utput/MASSFLOW/MIXED/H20 | kg/hr
w5	
¢

/Data/Blocks/A200/Data/Streams/274/0utput/MASSFLOW/MIXED/H20 kg/hr
w2 /Data/Blocks/A200/Data/Streams/516/0utput/MASSFLOW/MIXED/H20 kg/hr
w3 /Data/Blocks/A200/Data/Streams/215/0utput/MASSFLOW/MIXED/H20 kg/hr
wa /Data/Blocks/A200/Data/Streams/216/0utput/MASSFLOW/MIXED/H20 kg/hr

¢

If you use a model different to ASPEN, you can remove the column path

¢ “{rosmose}
: MODEL OUTPUTS myNotAspenModel

| value_5

| value_6
[N

|

:)3
| value_4 | kg/hr |
|
|

Define Model interfaces

The interfaces concept allows user to define inputs and outputs using a special language.

The inputs are define with the >> sign and outputs with the << sign. Interfaces are define as
following

Inputs interfaces are defined like this

tag_name >> 505 [C] # comment

and outputs like
tag_name << [C] # comment

In the case of a model that is using ASPEN, you need to define inputs and outputs interfaces
with the path as

tag_name >> /Data/Streams/516/Input/TOTFLOW/MIXED = 101 [kg/hr] # this is a comment
tag_output << /Data/Blocks/A200/Data/Streams/216/0utput/MASSFLOW/MIXED/H20 [kg/hr] #

13

that can be translated as put the tag_name variable in the path /Data/Streams/516/Input/TOTFLOW/MIX
with the value 101, with the physical unit kg/hr and a comment this is a comment.
Example :

‘¢ “{rosmose}
! MODEL INTERFACES myModelName

Total_flow >> /Data/Streams/516/Input/TOTFLOW/MIXED = 36340 [kg/hr] # that’s a comment
Pressure >> /Data/Streams/516/Input/PRES/MIXED = 6.1 [atm]
Temperature >> /Data/Streams/516/Input/TEMP/MIXED = 114 [C]

dryfeed_in << /Data/Streams/105/0utput/RES_MASSFLOW [kg/hr] #
acid_in << /Data/Blocks/A200/Data/Streams/232S/0Output/MASSFLOW/MIXED/H2S04 [kg/hr] #
wl << /Data/Blocks/A200/Data/Streams/211/0Output/MASSFLOW/MIXED/H20 [kg/hr]
w5 << /Data/Blocks/A200/Data/Streams/274/0Output/MASSFLOW/MIXED/H20 [kg/hr]
w2 << /Data/Blocks/A200/Data/Streams/516/0utput/MASSFLOW/MIXED/H20 [kg/hr]
w3 << /Data/Blocks/A200/Data/Streams/215/0utput/MASSFLOW/MIXED/H20 [kg/hr]
w4 << /Data/Blocks/A200/Data/Streams/216/0Output/MASSFLOW/MIXED/H20 [kg/hr]

[

H O O O X

Reset Inputs

As said in a NOTE before, everytime you rerun a chunk that creates input for a model, it will
update the inputs with the same name and create new inputs for the none existing ones. Sometimes
we want to reset the inputs in order to redefine all the inputs of our model. In this case, you can
use the RESET-INPUTS functionality for recreating new inputs after. This functionality is written
as following:

¢ ¢ “{rosmose}
! MODEL RESET-INPUTS myModelName

cce

NOTE: This functionality also exists for outputs with the RESET-0UTPUTS functionality
calls

Display Model inputs

There is a functionality that allows you to display the inputs of a specific model. This functionality
can be useful when you define inputs and outputs with the interfaces language as it is used as a
programming language.

To display model inputs, we call the category MODEL with the functionality DISPLAY_INPUTS
and give the model name as argument. You can give a second argument that define which value
you want to display.

14

‘¢ “{rosmose}
: MODEL DISPLAY_INPUTS myModelName [nvd]

cce

Display Model outputs

There is also a MODEL functionality that allows you to display all the model outputs. To do
this, we call the category MODEL with the functionality DISPLAY_INPUTS and give the model name
as argument. As for displaying MODEL INPUTS You can give a second argument that define
which value you want to display with the [nvuc] type.

“““{rosmose}
: MODEL DISPLAY_OUTPUTS myModelName [nvd]

[

As this will display the model outputs, and the values will only be calculated after solving the
model, this functionality is useful after the solve functionality. let's check that.

Solve Model

For solving the model, we call the category MODEL with the functionality SOLVE and give the model
name as argument.

¢¢““{rosmose}
! MODEL SOLVE myModelName

[

This functionality will call the external software with the model file, the inputs data and the
defined outputs data. This call will be done by calling external servers.

['] NOTES: those servers are in the epfl network and can only be called when you are
in this network (epfl network or vpn).

Solving models can take time and it's interesting to know that, as every inputs and outputs
of models are TAGS, you can use the TAGS SAVE and LOAD functionality to avoid having to
restart the calculation every time.

It is also possible to solve the MODEL locally, of course, if the software is installed on the
user computer. To use this functionality, you can use the SOLVE-LOCAL keyword instead of the
normal SOLVE one.

Solve vali model locally with an input file

In some cases, the input of vali can be given or shared as a .txt / .mea file. Rosmose can run vali
model with an input file by calling the functionality SOLVE-LOCAL with the following arguments:

= model name

15

= input file path
1. Create the model object

“““{rosmose}
: MODEL myValiModel

|Software|Location| Comment |

| VALI |model/model.bls]| |

¢

2. Define the outputs if you dont want all

‘¢ “{rosmose}
: MODEL OUTPUTS myValiModel

|
: : |
| value_4 | kg/hr |
| value_5 |
| |
(4

value_6
(X1

3. Solve the model with the input path as parameter

¢““{rosmose}
! MODEL SOLVE-LOCAL myValiModel model/my_inputs_file.txt

(4

You can now use the outputs tags for further calculation or usage.

['] NOTES: This functionality is at the moment only available for VALI with the
SOLVE-LOCAL functionality. Also consider that the inputs are not saved as TAGS.

16

Osmose functionalities

Create an Energy Technology (ET)

¢ ¢ “{rosmose}
: DSMOSE ET myET

| Property | value |

| i==————————————— [:==———- |
| capex_weight_factor | 0.4 |
| co2_tax | 0 |

cce

NOTES: you can put tags value in the value column with the %tag_name} percentage

style

Add Layers to ET

“““{rosmose}
: OSMOSE LAYERS myET

| Layer | Display name | shortname | Unit | Color |
|t = [i==mmmmmm - [=== | o ===== | s == I
| NATURAL_GAS | Natural Gaz | ng | XW | green |
| ELECTRICITY | Electricity | elec | kW | yellow |

[N

Add units to ET

¢¢““{rosmose}
: OSMOSE UNIT myET

| unit name [type |

| myProcessUnit |Process|
| myUtilityUnit |Utilityl

cce

Add parameters to units of ET

¢““{rosmose}
: OSMOSE UNIT_PARAM myProcessUnit

costl | cost2 | cinvl | cinv2 | impl | imp2 | fmin | fmax |

|
R R e Rt Kl EEE e EES s FE
|

0 | 0 | 0 | 0 | 0 | 0 | 1 | 1 I
4

¢

NOTES: you can put tags value every column with the %tag_name} percentage style
Add Resource Streams to Unit

¢ “{rosmose}
: OSMOSE RESOURCE_STREAMS myProcessUnit

|layer |direction|valuel
|g===—====== Eesaaaaas o=
NATURAL_GAS| in 2.5 |

[

NOTES: you can put tags value in the value column with the %tag_name, percentage

style

Add Heat Streams to Unit

¢““{rosmose}
: OSMOSE HEAT_STREAMS myProcessUnit

name | Tin |Tout| Hin | Hout | DT min/2 |alphal

cl | 10 | 1110 | 200 | 1 | 1 |
c2 |24 |43]0 |20 | 12 [1 |
c3 |25 11651 0 | 130 | 2 0.5 |

(34

NOTES: you can put tags value in Tin, Tout, Hin, Hout, DT min/2 and alpha column
with the %tag_name’, percentage style

18

Display ET

You can create a graphical representation of every units of the Energy Technology by calling
the functionality DISPLAY_ET of the category OSMOSE. This takes the name of the et as

arguments.

“¢““{rosmose}
: OSMOSE DISPLAY_ET myET

[

this function will create an svg file for displaying it in html output and pdf for displaying it in
pdf file. The output will looks like this:

Electricity_buy
Costs:
% 0 [Moty
Op2: 0.03
Inv 1: 0
Inv 2: 0
NGas_buy
Costs:
Op1: 0 _1[@_.-
Op2: 0.09
Inv1: 0
Inv 2: 0
HotUtllity
Heat:
35C 1kWw 350C
Costs:
Op1: 0
125 M\ﬂ v Op2: 0
Inv1: 0
Inv2: o

0.42 [kW] CoolingWater
\ Heat:

15C 21kW 20C

Costs:
Op1: 0
Op2: 0.0144
Inv1: 0
Inv2: 0
processi
Heat:
10C 200kW 11C

24C 20kW 43C

-M_. 25C 130kW 114C
Cosls:

Op1:
Op2:
Inv1:
Inv2:

oo oo

19

Solve optimization

For solving the optimization problem, we call the category OSMOSE with the functionality SOLVE
and give as arguments

= 2 project name
= an objective function
= a list of energy technologies

We also need to give a op_time value in a markdown table. the command we look's as
following.

¢““{rosmose}
! OSMOSE SOLVE test-project TotalCost [myET]

| name | default |

| 1 === | :=mmmm= I
| op_time | 5000 |

[

By solving the optimization problem, rosmose will generate osmose files and call an external
server to solve the problem. This server will return a json object and be loaded as a R data.frame
called data. That means that after the SOLVE you can use R chunks and get values from this
data.frame as following

(314 ({r}
capex <- data$results$KPIs$capex

[

The json return is stored in a result folder with a report.Rmd file that can be build to check
the execution report of the optimization.

It is also possible to solve the osmose problem locally, of course, if osmose is installed on the
user computer. To use this functionality, you can use the SOLVE-LOCAL keyword instead of the
normal SOLVE one.

Generate ET Lua file from chunk

For debug/development purpose, there is a functionality that allows you to create the ET lua files
without solving anything in order to control the result of the serialization. When you call the
SERIALIZE_ET functionality you can render ET objects to lua files.

““‘{r}‘rosmose ’’°¢
! DSMOSE SERIALIZE ET [etl, et2]

cce

This will create etl.lua and et2.lua files in the ./temp folder.

20

Generate frontend Lua file from chunk

It's also possible to check the frontend. lua file by calling the SERIALIZE_PROJECT functionality.

As it's necessary to create a full project object, you have to give the same arguments as you will
do when you solve a project.

“““{r}‘rosmose ’’°¢
! OSMOSE SERIALIZE_PROJECT test-project TotalCost [etl, et2]

| name | default |

| i == | :=mmmmm- I
| op_time | 5000 |

[

This will create a frontend.lua file and an operating__data.csv file in the . /temp folder

21

PART

Bibliography search

22

Bibiliography Data Management

Researchers typically collect information in literature. This proceeds by different steps :

1. use your prefered search engine (typically http://scholar.google.com) and define search
keywords.

2. Once you have identified a paper of interest, you add it in your Zotero library. Zotero is a
bibliography management system that allows you to organise your citations

3. For your research you will then create a sub-collection with the list of papers you have
identified.

In IPESE, we have a zotero group that you can access if your are in EPFL/IPESE. In this case
the papers you read and comment are also shared with your colleagues.

How to get the data in the bibliography in a Rmarkdown project

Rosmose contains a tool that can be used in rmakdown but also in Jupyter to collect the useful
information in the bibliography you are generating.

Step 1 : create a sub collection and export it as a bib file

The first step is to make a bibliography search looking to get some values in the literature. In
the IPESE group Zotero, we create a sub-collection for your rmarkdown project. In Zotero, the
next step is to create an automatic export of the sub-collection in the folder where you write your
report. For the purpose of this post | have created a file BlogDemo.bib in the same folder as this
post.

Here is the procedure :

1. export the bib file :

™ BlogDemo
(] buildings
(] ccus

m CH4From co
(] CircularEcon
m CO2 emissio
G Energy chall
(] EnergyStorac

New Subcollection...

Rename Collection...
Delete Collection...
Delete Collection and Items...

Export Collection...
Create Bibliography from Collection...
Generate Report from Collection...

(2] food Download Better BibTeX export...
(] tanks Scan BibTeX AUX/Markdown file for references...
(] @hbutun Send Better BibTeX support log...

(] @jgranacher

2. make it automatic and export the notes and save it inthe folder of the post.

Format: Better BibLaTeX
Translator Options

Export Notes

Export Files

Include Annotations
Use Journal Abbreviation

Keep updated

24

Export

Save As: . BlogDemo.bib

Tags:

Yy Ee mmy £ 2022-07-01-svg-and-bi... A Q s
Name ~ | Date Modified
BlogDemo.bib Today at 10:13

.| BlogDemo2.bib Today at 10:13

Format: Better BibLaTeX
New Folder Cat

3. update in case you need fine tuning : go to preferences of zotero, go to export -> automatic
export -> tab with your bibfile.

25

@ Better BibTeX

o & & O @ &£

General Sync Search Export Cite Advanced ' Better BibTeX

Citation keys Export Automatic export = Import |

You can only review and remove exports here. To add an auto-export, pe¢
and check the 'Keep updated' option presented there.

Automatic export o, change <

‘- IPESE " IPESE : tanks ™ IPESE : buildings ™ IPESE : BlogDemc

Library: IPESE

Status: scheduled

Updated: FriJul 29 2022 10:11:32 GMT+0200 (CEST)
Format: Better BibTeX

Output file: /Users/marech/epfl/publications/bibtex/IPESE.bib

Export unicode as plain-text latex commands (recommended)

Disregard name prefixes when sorting
Add URLs to BibTeX export A6 80

When an item has both a DOI and a URL, export both <
Export notes

Use journal abbreviations

Export all child collections

Remove Export now Cached: 7%

26

4. declare the bibliography in the header of the post by adding the following lines in the yaml

title: My title

author: Me

bibliography: BlogDemo.bib
biblio-style: apalike

Now each time you add a reference in the sub-collection, the bib file in the folder of your
project will be updated. If you want to cite one of the paper in the bib file, just add the
following instruction [@li_carbon_2020] and a reference to the paper with citation key
li_carbon_2020 will be added in your report [@li_carbon_2020].

Step 2 : define the data you are going to look for in the bib file

When you perform a bibliography search, you are supposed to know what you are looking for.
Let us for example consider that we are looking for the information on an entity for which we are
looking for prroperties. We have therefore to describe what are are going to search by giving the
following information :

= a name to an entity with a short description of its meaning

= a list of properties that characterise the information (value) we are looking for the entity
name.

= Each of those values needs to be defined with the appropriate name, physical units, ranges
and description that is needs to defined before starting the search.

When using readbibdata, you will have access to a simplified markup language that will define
the data you are looking for. The language is described here below :

+- EntityName # Entity Name : This is the data entity I’m looking for which I’m looking
propertyl1=10.0 [m~3] # Property 1 : this is the description of property 1

property2=15. [kg] # Property 2 : this is the property2 of the entity Name with a defaul
+ -

It translates as I'm looking at propertyl and property2 of the entity that has the data name
EntityName, that is displayed with the short name Entity Name and has the meaning of This
is the data entity I'm looking for which I'm looking for. The property with name propertyl
has a default value of 10 and the values of propertyl will be displayed with a format of “xx.x" (one
digit) and has the physical unit m®. It will be displayed in table with the short name Property
1 and has the following meaning : this is the description of property 1 the property2 has a
default value of 15.0 kg and is defined as being this is the property2 of the entity Name with
a default value of 15 in kg that will be displayed with the short text Property 2.

You can consider that this is like having defined a header with a list of cololumns with names
Property 1, Property 2 to a table with a title EntityName, the text after the fist # is the
caption of the table, each column of the collumn corresponding to one property and each line
corresponding to an instance of the entity found in the literature search.

27

Step 3 : note the values of the data in the bibliography file

In Zotero, values of the properties will be found by reading the papers. In order to record the
value found you will add a note to the corresponding annotation of the paper in Zotero.

In order to create the instances, you are making a literature search. In each paper and for each
instance of the properties found for the corresponding entity, you are going to write the values
you found in the annotations of the bibliography item of your zotero data base. Just paste the
description above in the corresponding annotation and replace the value, perhaps the physical
units and the comments as they will be associated with the value.

This can be done either

@v /6 f' fv -

Title New Note

E Carbe’ Capture, Use and Sequestration module

Li et al_2020_Carbon Capture, Use and Seque

« by adding a note via the Zotero panel = » A Review of Post-combustion CO2 Capture Tech

= by edding note via the edition of the pdf in zotero. In this case it will be necessary to
update the notes of the pdf annotation before being able to use the annotations saved in
the bibliogrphy file.

To do so you will first copy and paste the following code in the note

+- EntityName # Entity Name : This is the data entity I’m looking for which I’m looking
property1=10.0 [m~3] # Property 1 : this is the description of property 1

property2=15. [kg] # Property 2 : this is the property2 of the entity Name with a defaul
+ -

and update the values and comments to the value found in the paper , ie. your note will look
like this :

+- EntityName # V1 : [referencel : This is the set found on page 5 corresponding to vers
propertyl1=12.0 [m~3] # Converted from the value reported in kg assuming a density of 0.8
property2=13. [kg] # This is an assumption

+_

Note the changes : V1 is the name of the instance of the entity as observed in the related
paper. the values in brakets identify the set of data the instance belongs to after the “:", we have
a textual description of the instance of the entity found. The value of propertyl has been updated
with the value “12.0"” found in the paper, the same for the value “13" of property2. For each
property what follows the “#" is used to comment the data collected.

In a paper you can have more then one instance of EntityName. If the nstance name is not

given it will be assigned a unique ID.

28

Step 4 : load the data from the bib datafile

Once you have collected data, the data are saved in the annotation of the papers in the bib file
of Zotero. The next step consist in reading the bib file and extracting the data that can later be
processed in the Rmarkdown file as a R dataframe.

The example below shows how to create a dataframe EntityName in R by parsing the bib file
defined in the bibliography statement.

c¢ ({r}

EntityName <- readbibdata(

+- EntityName # Entity Name : This is the data entity I’m looking for which I’m looking
propertyl1=10.0 [m~3] # Property 1 : this is the description of property 1

property2=15. [kg] # Property 2 : this is the property2 of the entity Name with a defaul
+_

II)

[

Note that the text of the readbibdata call is the description of the entity you are looking for.
Only this entityname will be searched for even if there are a lot of other entities in the bib file.
the dataframe obtained has the following content.

For each intance “x" of the EntityName we will obtain the following information :

= EntityName[x]propertylvalue : value of the property 1

= EntityName[x]propertylunit : physical unit of the property 1

= EntityName[x]propertylshortname : shortname of property 1

= EntityName[x]propertyldescription : description of property 1

= EntityName[x]propertylcomment : comments related to the specific value of property 1
= EntityName[x]propertylmin : minmum value expected for property 1

» EntityName[x]propertylmax : maximum value expected of the property 1
= EntityName[x]propertyldefault : physical unit of the property 1

= EntityName[x]propertylyear : year of the publication

= EntityName[x]propertylcitationkey : citation key of the paper

» EntityName[x]propertylAuthors : authors of the paper

» EntityName[x]propertyljournal : as from the bib fields

» EntityName[x]propertylset : name of the sets the value belongs to

Here is for example the results of the call from the demonstration BlogDemo.bib

29

