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11.1. PHOTOVOLTAIC HISTORY

Albert Einstein, "Uber einen die Erzeugung und Verwandlung
des Lichtes betreffenden heuristischen Gesichtspunkt", Annalen
der Physik, Band 17, Seite 132-148.

Einstein Nobelprize for Physics 1921.
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11.1.1. FIRST PHOTOVOLTAIC PANEL
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AT&T Bell Laboratories, Murray Hill, NJ, USA, advertisement for first commercial photovoltaic cells (Look
magazine, 1956)

ChE 414 Thermodynamics of energy conversion



11.2. ELECTRONS IN SOLIDS
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11. Photovoltaics

11.2.1. CONDUCTIVITY
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11.2.2. SEMICONDUCTOR
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11.2.3. DEMBER EFFECT
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11.2.4. DOPING OF SEMICONDUCTORS
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v 11.2.6. ELECTRON DISPLACEMENT AT np-JUNCTION
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11.2.7. EQUILIBRATION OF THE FERMI ENERGY AT np-JUNCTION
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11.2.8. CURRENT-VOLTAGE CURVE ACROSS np-JUNCTION
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11. Photovoltaics

11.2.9. np-JUNCTION DIODE
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11.2.10. EXITATION np-INTERFACE

] non | C I ||

= REGmAAG=G -

I non ] o

=SA=CATARA=TA=TZ™

[RY'c S

l&l\.\a..lr\‘..ﬂq/l&l&l

=A=G

nn 0y no
@ ghg-o-
o ns o

FATRTATFTRmH=

s~ o0

SATRRATAR=A"H=

mwonowon |

= A= A=A A=A AT

LU || N

=A=ATA=TA=A=A"

" [ I I B |

=G TATATATA

[T S

A= REAEG=A=A=
/
o

__/._.__
=A=ATH AER=
[T ny

l&h&”&&"&"&"

-
nou~===n n

non nmon

=A== A=R=B=H=

p-type

n-type

Conduction band

Conduction band

Valence band

+ + + + +

Valence band

ChE 414 Thermodynamics of energy conversion



11.3. CONSTRUCTION OF A PHOTOVOLTAIC CELL
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11.3.2. SILICON PAY-BACK-TIME
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Energy Pay-Back Times of 1.7 - 2.7 y are found for South-European locations irradiation
(1700 kWh-m-2-a'1), while life-cycle CO, emission is in the 30-46 g/kWh range. Clear
perspectives exist for further improvements with roughly 40-50%.

Erik Alsema and Mariska J de Wild, "Environmental Impact of Crystalline Silicon Photovoltaic Module
Production"MRS Online Proceedings Library (OPL), Volume 895 (Symposium G — Life-Cycle Analysis Tools for
“Green” Materials and Process Selection) 2005 , 0895-G03-05 https://doi.org/10.1557/PROC-0895-G03-
05Published online: 26 February 2011




11.3.3. Si PHOTOVOLTAIC CELLS

crystalline polycrystalline amorphous
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11.4. PV EFFICIENCY visible
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Ref.: C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, Journal of
Applied Physics 51, 4494 (1980); doi: 10.1063/1.328272
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11.4.1. INTEGRATED ENERGY
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Ref.: C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, Journal of
Applied Physics 51, 4494 (1980); doi: 10.1063/1.328272
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11.4.2. NUMBER OF PHOTONS
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Ref.: C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, Journal of Applied
Physics 51, 4494 (1980); doi: 10.1063/1.328272
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11.4.3. EFFICIENCY IDEAL SINGLE GAP
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Ref.: C. H. Henry, “Limiting efficiencies of ideal single and multiple energy gap terrestrial solar cells”, Journal of
Applied Physics 51, 4494 (1980); doi: 10.1063/1.328272
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11.4.4. EFFICIENCY OF VARIOUS PHOTOVOLTAIK CELLS

Material Type Efficiency
[%]
Silicon surface structure 24
GaAs mono-crystalline cells 25
CdTe thin film cell 16
Culn-Se, thin film cell 17
Si/GaAs Tandem cell 31
GaAs/GaSb Tandem cell concentrated 33
Silicon concentrated 27
Silicon metal-insulator-cell 18

TiO,/dye Gratzel-cell 10
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71 11.4.5. DEVELOPMENT OF PHOTOVOLTAIC CELLS
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11. Photovoltaics
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11.5.1. GRATZEL CELL Michael GRATZEL (EPFL)
11. Mai 1944,

Dorfchemnitz, Germany
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11. Photovoltaics

11.5.2. BEST RESEARCH-CELL EFFICIENCY
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Ref.: Bjgrn Petter Jelle, “Building Integrated Photovoltaics: A Concise Description of the Current State of the Art
and Possible Research Pathways”, Energies 2016, 9(1), 21
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11.5.3. PEROVSKITE PHOTOVOLTAIC CELLS

Sensitized perovskite Thin-film perovskite
solar cell solar cell
a) cathode b) cathode
p-type contact p-type contact
n-type contact n-type contact
anode ‘ A anode
d)
Crystal structure of CH3NH;PbX,
perovskites (X=I, Br and/or CI). ESVESIEOIRC
The methylammonium cation
(CH3NH;*) is surrounded by PbXg hv T
octahedra. X
?\ h perovskite
-) €
n-type contact n-type contact

Schematic of a sensitized perovskite solar cell in which the active layer consist of a layer of mesoporous
TiO, which is coated with the perovskite absorber. The active layer is contacted with an n-type material
for electron extraction and a p-type material for hole extraction. b) Schematic of a thin-film perovskite
solar cell. ¢) Charge generation and extraction in the sensitized architecture. d) Charge generation and
extraction in the thin-film architecture. After light absorption both charge generation as well as charge
extraction occurs in the perovskite layer.
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11.5.4. PEROVSKITE PHOTOVOLTAIC CELL MATERIALS
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51 11.5.5. DEVELOPMENT OF PEROVSKITE PHOTOVOLTAIC CELLS
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¥ 11.6. POWER OUTPUT

(qe]

Ie

>

= ] RS i 1.4
é_? ---------- e e -t pupp— B e T
— o current (A) 1.2
H ....... ﬂ - ——————————- - —————— . —— -

—J- cell current (Amp)

1.5

08

R - _——— -

|
-
P ceil performance (Watt)

0.6

1.0

0.4

0.2

0.1 0.2

0.3 0.4 05

0.6 0.7

P cell voitage (Volt)

Prof. Dr. Andreas ZUTTEL, e: andreas.zuettel@epfl.ch, m: +41 79 484 2553

EPFL: ChE 414 Thermodynamics of energy conversion

6.5. 2025

34



11.6.1. POWER OUTPUT MODEL
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11. Photovoltaics

11.7.1. TYPICAL PV-STAND ALONE SYSTEM

Copyright © 2008 Aladdin Solar. Use by permission only.
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11.7.2. PV AND SOLAR THERMAL SYSTEM
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11.7.3. 1m? PHOTOVOLTAIC ENERGY PRODUCTION

03 s

P, =0.26 kW W =285 kWh/year
3 ous H
2 j o
Parameter Relationship Value
Average power <p> <P>=1kW
Annual energy per year W =<P>-8760h/y W =8.76 MWh/y
Annual solar irradiation 1050 <1< 1550 kWh-m=2yt |=1100 kWh-m-=2-y1
Efficiency N n=20%
PV surface area/capita A=W:-I1n1 A =40 m?
PV peak power/capita Pp=1kW-m2-An=1kW-m21<P>8760h/y Pp=8kW

Ratio P, /<P>=1kW-m=211.8766h/y P,/<P>=38
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11.7.4. ROOF AREA FOR PV PV

55% of the total Swiss roof
surface is available for the
installation of PV panels, yielding
an annual technical rooftop PV
potential of 24 = 9 TWh.

Annual PV potential (MWh)
Aggregated Epy per pixel (MWh)

0 200 400 600 800 0 5 10 15 20 25 30

15 —— Demand (2018)
— Epy

104 ‘ ‘ Epy £ Opy
: Q
0 1 T T T T T T /v\\
pr May Jun Jul Oct Nov Dec

Jan Feb Mar A
Comparison of the results presented in 6 studies of technical RPV potential in Switzerland. To obtain comparable results, the entries labelled with » are computed
from values quoted in the respective publications as explained in [67].

Electric power (GW)

Af:g Sép

Table 12

Study Apv (km¥) Suitable roofs (%) G (kWh/m®) Tiys (96) Epy (TWh)
1EA [28) 251+ 55 1,088+ 10 15.04
Assouline et al. [26] 328 60.5¢ 662+ 13.6 17.86
Assouline et al. [27) 252 60.5+« 786+ 13.6 16.29
Sonnendach [22,64] 439+« 71.6+ 1243+ 13.6 53,09«
Buffat et al. [20] 485 70.1« 1176+ 10.3 41,20+
Present study 267 56.4 1186 13.8 24.58

Ref.: Alina Walcha, Roberto Castello, Nahid Mohajeri, Jean-Louis Scartezzini, “Big data mining for the estimation of hourly rooftop
photovoltaic potential and its uncertainty”, Applied Energy 262 (2020) 114404
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11.7.5. FLOATING PHOTOVOLTAICS

South Korea’s giant floating 3.65 km?

lar flowers offer hope for 1200 kWh-m*y*
>Olar TIOWETS OTTer NOpe T¢ Wy = 4380 GWh-y1-20% = 876 GWh-y?
unpopular large-scale projects Wyq = 2300 GWh-yL, <Py, o> = 263 MW

o _ , with PV +40% Electricity
Ref: https://colorsofindia.media/world/japan/south- i q
koreas-giant-floating-solar-flowers-offer-hope-for- area not use
unpopular-large-scale-projects/ Grid connection already exists

<Ppy> = 100 MW, P, = 800 MW

Ref.: Rafael M. Almeida, Rafael Schmitt, Steven M. Grodsky, Alexander S. Flecker, Carla P. Gomes, Lu Zhao, Haohui Liu,
Nathan Barros, Rafael Kelman & Peter B. Mcintyre, "Floating solar power: evaluate trade-offs", Nature Vol 606, 9
June 2022, pp. 246-249

ChE 414 Thermodynamics of energy conversion



11. Photovoltaics

11.7.6. Monthly Solar Irradiation

o
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;

200

Irradiation [W-m-2]
(WY
o
o
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11. Photovoltaics

11.7.7. ALPINE SOLAR POWER
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Ref.: Fabian Carigiet, Danilo Grunauer, Franz P. Baumgartner, “PERFORMANCE ANALYSIS OF PV MODULES INSTALLED
IN THE ALPINE REGION”, 38th European Photovoltaic Solar Energy Conference and Exhibition (38th EUPVSEC), online
Sept 2021
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11.7.8. GONDO SOLAR

Neuendorf~
.

oLs / \ 8
B \ \|
% -

N Zuchwil
N\

Ve
7 f -
Gondosolar o | . ‘0-
Total area: 100'000 m? ' \ : 4 o
Number of solar panels 4500 j (A

Energy production: 23.3 GWh-y!
Peakpower: 13 MW, Avg. power: 2.66 MW
Comissioning: 2030

Projected cost: 42 Mio. CHF

Cost: 3200 CHF/kW,

Operation time: 60 years

Battery (day/night): 52 MWh
Cost (PV): 0.06 CHF/kWh
Cost (PV+Battery): 0.17 CHF/kWh

400 x Gondosolar
20 GWh Battery =1x
(2 TWh saisonal Storage)
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11.7.9. SWISSOLAR: ANNUAL PV INSTALLATIONS IN SWITZERLAND

1’000
» Diverse
900 ,/
800 é Verkehr
700 — é
| é n Offentliche Dienste
600 é
S 500 - 7 = Dienstleistung
Statistik Sonnenenergie 2021 . %
400 : Z
? m Landwirtschaft
300 - = = Z
fa—
= = = é ® Industrie, Gewerbe
200 7
100 Z
- i é m Mehrfamilienhauser
0 ™ = /
8 2 - & 2T 2L 2228 3 8 » Einfamilienhauser
o o o o o o o - o o o o o o
N N N N N N N N N N N N N N

Jahrlich neu installierte Leistung von Photovoltaikanlagen in der Schweiz. Gut erkennbar ist das rasche
Wachstum nach 2010, ausgel6st durch die kostendeckende Einspeisevergiitung (KEV). 2016 und 2017 wurden
nur noch Kleinanlagen geférdert, wahrend ab 2018 die Energiestrategie 2050 wirksam wurde. Datenquelle:
Statistik Sonnenenergie 2021 sowie Schatzung Swissolar fir 2022. Die gesamte installierte Leistung lag zum
Jahresende bei 3655 MW,, die Jahresproduktion lag bei 2842 Gigawattstunden (GWh).

Flache = 18.275 km? (bei n = 20%) prod. 2842 GWh-y"' d.h. 150 km?prod. 23.3 TWh:-y"

Ref.: https://www.swissolar.ch/services/medien/news/detail/n-n/der-schnelle-zubau-der-photovoltaik-setzt-sich-fort/

ChE 414 Thermodynamics of energy conversion



11.7.10. RENEWABLE ENERGY IN SWITZERLAND H

11. Photovoltaics

Schweizerische Statistik der erneuerbaren Energien. Ausgabe 2021 (PDF, 2.8 MB, 01.10.2022) ID
Erneuerbarer Strom (ohne Wasserkraft) Erneuerbare Warme (klimanormiert)
5'000 GWh 20'000
4'500 18'000
4'000 16'000
3'500 Sonne 14'000
3'000 Umweltwarme, 12'000
Geothermie
2'500 10'000
2 Wind
2'000 " 8'000
- -... Holz
- [
1500 6'000
= Biogas
1000 4'000
Biogas (ARA)
500 2'000
Rt T
0 0
S e 8¢ I ¢ 2 R 8 8 3 8 8 2 o ¥ e 2 g
8888883 ¢: ¢ § S § § 8§ 8§ 8 8 8 R 8 8

Ref.: https://www.bfe.admin.ch/bfe/de/home/versorgung/statistik-und-
geodaten/energiestatistiken/teilstatistiken.exturl.html/aHROcHM6LyOwdWIKYi5iZmUuYWRtaW4uY2gvZGUvcHVibGljYX
/Rpb24vZG93bmxvYWQVMTEXMTI=.html
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11.8.1. ANNUAL PRODUCTION OF PV PEAK POWER (GW,)

About 97.5* GWp PV module production in 2017

* *

11. Photovoltaics

2015

Thin film =
Mono-Si =
Multi-Si .

© Fraunhofer ISE

2005
*2017 production numbers reported by
different analysts vary to some extend.
We estimate that total PV module
production is realistically around 97.5
GWp for year 2017. 2000
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11.8.2. IEA PROJECTION OF CUMULATIVE INSTALLATALLED PV

Projected (labeled by year of IEA publication) versus actual (labeled as
“historical™). See supplementary materials for data sources and discussion.

400 //
300

100 —

/

2000 2005 2010 2015 2020

Cumulative PV Capacity
(GW)
N
o
o

@ Historical ® 2015 2012 ® 2010 @® 2002

Ref.: Nancy M. Haegel, Robert Margolis, Tonio Buonassisi, David Feldman, Armin Froitzheim, Raffi Garabedian, Martin
Green, Stefan Glunz, Hans-Martin Henning, Burkhard Holder, 1zumi Kaizuka, Benjamin Kroposki, Koji Matsubara, Shigeru
Niki, Keiichiro Sakurai, Roland A. Schindler, William Tumas, Eicke R. Weber, Gregory Wilson, Michael Woodhouse, Sarah
Kurtz, "Terawatt-scale photovoltaics: Trajectories and challenges Coordinating technology, policy, and business
innovations", SCIENCE 356 ISSUE 6334 (2017), pp. 141 - 143
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11. Photovoltaics

11.8.3. POWER CAPACITY
Global power capacity by source in the Stated Policies Scenario
Solar PV
3 000
=
O Gas
_ l Coal
2 000 : . - ' _ v Wind
1 000
2000 2010 2020 2030 2040
Ref.: IEA World Energy Outlook: Solar Capacity Surges Past Coal and Gas by 2040, 14. 11. 2019 | Sonal Patel
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11.8.4. COST OF ELECTRICITY

1€/ kWh, electricity costs

11. Photovoltaics

#

1999 2000 2010 2020 2030
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11. Photovoltaics

350

300

250

200

150

100

50
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11.8.5. GLOBAL ANUAL INSTALLATIONS PER REGIONS

] I ]

2010 2011 2012 2013 2014 2015
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11. Photovoltaics

11.8.6. DEVELOPMENT OF THE COST OF PV
Cumulative production GigaWp
01 1 10 100 1,Q00

|
$5.00 1, 1978 l

* Single crystal, evaporated contacts | 7% Global

Installed « Screen printed metal ! fGrg:frPa\t/non
Elostt Qf't * Wire saws :
ectricity * Textured mono '
$/ kWh * Aluminum BSF :
* Cast multi :
$0.50 * Point contac't mono :
* Passivating SN :
* |so-texture multi :
Retail Natural Gas Electricity TV H
:d Parit R, | |
Grid Parity «2015 i
Wholesale Coal Electricity s

$0.05 T ~4.2020
Source: Professor Emanuel Sachs, Massachusetts Insititute of Technology. ’
* Assumes annual production growth of 35% and an 18% learning curve. PV costs based on 18% capacity factor and 7% discount rate.
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11. Photovoltaics

100

80

60

40

20

Price of a solar panel per watt

1975 1980

$101.05 64,892 mw

Pacie

2 MEGAWATTS

1985 1990

*Estimate. Sources: Bloomberyg, Earth Policy Instizute, www.carth-policy.org

Down to $0.447 in August 2016

Ref.: http://cleantechnica.com/2016/08/17/10-solar-energy-facts-charts-everyone-know/
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11.8.7. GLOBAL INSTALLATION VS. COST PER WATT OF PV

Global solar panel installations

w
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11.8.8. Photovoltaic

Solar Choice Price Index ($ per Watt)

PV still working after 30 years.
The cost of installation increases the cost of photovoltaics to *1200 CHF/kW,

(offers <400 CHF/kW,, )

$2.00

-8.9%/year

$1.50
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Ref.: https://www.solarchoice.net.au/blog/solar-power-system-prices

SO

(0 | Cost: 750 CHF/kW,

1JoA010Yd 'TT
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11.8.9. WORLD LARGEST PHOTOVOLTAIC ENERGY PRODUCTION

o o

HOW TO READ

SOURCE :

Statista, as of June 2021

* = Mohammed Bin Rashid Al Maktoum Analytics & D.slgnf
Number of solar panels are rounded to the nearest 100 Pranav Gavali
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11.9. AVERAGE POWER OF RENEWABLE ENERGY

100000
Growth: +46 %/year 2034
@ Cost:  -12 %/year l
o 0.0 08000000 g oo e OO

10000

)
S
= 1000
2
]
Q.
>
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?
S 100
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a.
World energy demand in grey,
10 /./' Sum of renewable energy in black,
e biomass in green,
A - pe o hydropower in blue,
-~ solar thermal in red,
- o . .
P ~ ® wind power in brown and
- o photovoltaics in yellow.
1 - .
1990 1995 2000 2005 2010 2015 2020 2025 2030 2035

Ref.: https://ourworldindata.org/energy Year
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11.9. AVERAGE POWER OF RENEWABLE ENERGY
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Ref.: https://ourworldindata.org/energy
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11. Photovoltaics

11.9.1. SOLAR IRRADIATION

~

%
)7

SolarGIS ® 2013 GeoModel Solar

solargis

http://solargis.info
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WORLD: . ]

1100 km 700 km
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11. Photovoltaics

11.9.2. CAPEX OF RENEWABLE ENERGY CONVERTERS
Costs for different renewables
W ROE o B 2002 B 2030
6000 -
5000 -
4000 -
3000 -
2000 -
1000 - l
A
“\Sz“o @6\:& & & <~‘ > & Co\g:?\‘,
ooé(\ o(\éo OGO\Q @\ @ «\b& SOURCE: |IEA 2004
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11.9.3. COST MODEL OF RENEWABLE ENERGY

COST = OPEX + CAPEX

(CAPEX o Cback)'z o Cback)'z o Cback)'z""cback =0

Cy.ck: @annual pay back

. Z-(1+4+2)"
Z: annual interest Cioer = CAPEX ( )

e (I+2)"—1
n: lifetime in years

Ce: Cost of energy  Chpur+OPEX C,
Ey: annual energy Cp = E T E

C.: Cost of energy input ! !




111.9.4. COST OF RENEWABLE ENERGY
©

é 2014 USD/kWh

S o4

O

<

o

‘_i 0.3
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.

0.0

Range of today's fossil fuel electricity costs I | | I I

Wind onshore
Wind offshore
Solar PV-Grid
Biomass-AD

CSP PTC (no storage)
CSP PTC (6 h storage)
CSP ST (6-15 h storage)
Biomass-Stoker/BFB/CFB
Biomass-Gasification

Ref.: https://www.irena.org/costs/Charts/Power-Generation-Summary
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11.9.5. CO, EMISSION AND RENEWABLE ENERGY PRODUCTION
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EXERCISE

1) What measurement can you do to distinguish between a metal, semiconductor
and a insulator?

2) What energy corresponds to a visible photon?

3) Calculate the size of the PV in order to cover the electricity demand for a house
(2 KW).

4) Calculate the estimated growth rate per year for the installed peak power of PV.

5) Calculate the surface area of PV necessary to cover the world energy
consumption.



