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6. Turbines

1784 James Watt patented

Hero of Alexandria . . .
reaction and impulse turbines
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1890 Charles G. Curtis (1860 — 1953) 1905 Allgemeine Elektrizitats-Gesellschaft ~ 1922 Aurel Boleslav Stodola
USA AG (AEG) marine steam turbine, Germany  (1859-1942) ETHZ, CH
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6.2. NOZLE

6. Turbines

Single stage LAVAL-Steam turbine

Carl Gustaf Patrik de Laval
1845 - 1913
Schweden

Multi Stage CURTIS-turbine
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4 6.2.1. VENTURI EFFECT
=
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= | Bernoulli Equation Equation of continuity
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6.2.2. ADIABATIC EXPANSION
T |
a . . A’ b e —— e 4
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Bernoulieq. — p(p)v: + p = 0 — —p® % f_ —
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4 dt t
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6. Turbines

6.2.3. LAVAL EQUATION

Cp=Cv+R

2
K+ 1

k-1
massflow max. for P~ = ])o'( ) LAVAL pressure v = [g.—

Prof. Dr. Andreas ZUTTEL, e: andreas.zuettel@epfl.ch, m: +41 79 484 2553 EPFL: ChE 414 Thermodynamics of energy conversion 26. 3. 2024 7



6. Turbines

6.2.4. PRESSURE AND VELOCITY IN LAVAL NOZLE

/).1,.? — f(l)) = 2.l)o.p0.

(2) et

N 1 1
* I
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6. Turbines

6.3. TURBINE TYPES
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Impulse Turbine

Reaction Turbine

Rotor

Rotation
Pressure
Velocity Velocity
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6.3.1. IMPULSE TURBINE

vy and v, are the absolute velocities at the inlet and
outlet respectively.

ve and vy, are the flow velocities at the inlet and outlet
respectively.

vw1 + U and v, are the swirl velocities at the inlet and
outlet respectively.

v and v, are the relative velocities at the inlet and
outlet respectively.

u; and u, are the velocities of the blade at the inlet and
outlet respectively.

o is the guide vane angle and f is the blade angle.

cos(ay) = (U +vy,q)/v,

ChE 414 Thermodynamics of energy conversion
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6.3.2. EFFICIENCY IMPULSE TURBINE

Blade efficiency:

. V.,
Nulade = Work done on the blades / kinetic energy )
supplied to the fluid a, B
blade velocity A velocity y [ A/]L\ )T]
. b 2hur|cosa ——|(1+k-c) U V,,
2:u-Av, 12
Npiade = 5 =
_ 12 12
inlet velocity
Stage efficiency:
Nstage = Work done on the blades / energy supplied per
stage A velocity outlet velocity
blade veloci
ade velocity \ ‘ \ , Vrz
u- AVW V, Vi \V2
nstage =

A h = nblade ) nnozzle = 7/]blade' ) 2 ( hl _ h2)

\ A

Ah: difference in specific enthalpy J V2 U
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6.3.3. EFFICIENCY REACTION TURBINE

.

Blade efficiency:

V,
Viy .~ )
MNuiage = Work done on the blades / Y, Va Vi
kinetic energy supplied to the fluid
| B B, . a a |
- U e >
2-u-(2v,-cosa, —u) Ve
r’blade = 2 2 V..,
v, —u +2-v, ru-cosa,
) av, "
. N’
reaction: 2Cos’a,
~ 2. 0082 a, 1+Cos?a, Reaction Turbine
Mptage = 5
1+cos” o, )
Cos?a,
impulse:
> - Impulse Turbine
7/’blade = COS al
Cos a, Cosa, p=U_
2 V,
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6.3.4. T-S DIAGRAM FOR STEAM
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6.3.5. MODERN STEAM TURBINE

P=10kW-1.9 GW
p=10-250 bar
T =300°C - 600°C

ChE 414 Thermodynamics of energy conversion



6. Turbines

6.4. COAL FIRED POWER STATION
C+0,+5N, > CO,+5N, AH = 288 kJ-mol-’
pe f CO, rich emission AH — 67 kthg_1

&

<

3 GWy,

Water vapour

Furnace Steam turbine Cooling tower

Bl

600t/h C = 4 GWy,

Generator

Coal

1 GW,,
Power Imes

\V‘
m AV
>

Condenser

Condenser cooling water

® CO2CRC
Coal Furnace Turbine  Generator Cooling Tower

1 GW,, needs 600t Coal / h h
MMMM
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6.4.1. PHOTO OF COAL FIRED POWER STATION WITH COAL MINE

?}\‘m' . R

P

The Garzweiler coal mine and power plant near the city of Grevenbroich in western Germany. Plans to expand an
open-pit brown coal mine in the eastern German village of Pédelwitz have prompted protests.
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6.4.2. COAL FIRED POWER STATIONS IN 2020

® Closing @ Operating ® New Under construction Planned

Operating: 1,790,642 ww

1,000,000 =

900,000

800,000

700,000

600,000

500,000

1042.9
2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 United States
Global Energy Monitor Rosamund

Pearce/Tom Prater Simon Evans Carbon Brief

Creative Commons

Total operating: 1’791 GW
China: 1’005 GW
Closing: 300 GW
Under construction: 300 GW
Planned: 298 GW

Ref.: https://www.carbonbrief.org/mapped-worlds-coal-power-plants
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6. Turbines

6.4.3. EFFICIENCY COAL FIRED POWER STATION

Energy flows in a typical 500 MW
subcritical pulverized coal-fired boiler
Feed heating 38%

Q

Electrical
output 39%
Heot input 100%

Boiler losses 5.5% |

Steam range and feed radiation loss 0.5%

State-of-the-art coal-fired power plants

l * I Canada ¥

bitumi
- Genessee 3 c(lmlmnous
Turbine-generator mechanical and electrical losses 1.5%

Condenser loss 52.5%

Works ouxiliories 1.0% Japan . bituminous
Isogo New Unit 1 coal

- Germany

Niederaussem K lgnie
= = Denmark international
Nordjyllandsvarket 3 steamcoals
o.$
+¥,  South Korea international

Younghung bituminous
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Genessee 3

supercritical once-through
Benson type, two-pass,
sliding pressure

Isogo New Unit 1
supercritical once-through, 42.0%
tower type, sliding pressure

41.4%

Niederaussem K

once-through supercritical ~ 43.7%
tower type

Nordjyllandsvearket 3

supercritical, Benson, tower 47.0%
type, tangential firing

Younghung
supercritical once-through, 43.3%
tower type, sliding pressure
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6. Turbines

Fuel
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-
W

Gas Turbine Generator

1Exhaust Heat

Heat Recovery Steam Turbine
Steam Generator

6.5. COMBINED CYCLE POWER STATION (Natural Gas)

Electricity

ma— -F — %

— Wl —

B— %

Generator Electricity

Gas turbine

AE- 324 (39
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6. Turbines
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6. Turbines

6.5.2. COMBINED CYCLE POWER STATION PLANT

Flexibility and availabilty for industrial applications
The TV i g o e R e e g g L i e | B e R e o O - _

SOHAR - 1000 MW Combined-Cycle Power Plant: ALSTOM

b
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6. Turbines

| |
95 EEIN . B L e

s . Power generation facility thermal efficiency
s oo Total Thermal Efficiency (Generation End)
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6.5.3. EFFICIENCY OF POWER STATION
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6. Turbines

55

50
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40

35

30

25

20

Thermal
efficiencies

%

Low speed diesel engine

Medium speed gas turbine
diesel engine

Gas turbine

6.5.4. EFFICIENCY OF ENGINES

LNG carrier

Combined cycle

Stea; turbine

10 50
Capacity (MW)

1
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6. Turbines

6.5.5. COAL GASIFICATION

SGasmer

Oeygen
Coal,
water - - S—_—

Coal vin

Cosatyne hots Project

Coal Pulp Pumps Lock Hopper

AH,,, = 6.6 Wh/kg C AHyy = 15.4 kWh/kg C

/)

C+2H,02CH, +CO,

/

AH =102 kJ-mol?
AH =2.36 kWh-kg1C

Fixed bed gasification Fluidised bed gasification | Entrained flow gasification
Coal
(3-30 mm) Gas
Y Gas
Sgd_ A

Steam
+O, » :
\J A\
Slag/ash Slag/ash Slag/ash  *
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6. Turbines
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6.5.6. GAS TURBINE (Methane)

Compressor Blade Vane

EPFL: ChE 414 Thermodynamics of energy conversion

Exhaust Assembly
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6.5.7. ECONOMICS OF ELECTRICITY GENERATION

Nuclear Power 1.05 0.68 0.668 2.398

Gas power plant 0.279 0.273 4.321 4.874

Coal power plant 0.404 0.399 2.773 3.576

Hydroelectric power plant 0.533 0.381 0 0.915
100

Cost of electricity
production in the

S USA in the year
§ 2010
S
=
2 10
5
@
- —e gaSs
o —e coal
S nuclear

1 hydro

0 20 40 60 80 100 g
Operation time [%] https://www.eia.gov/electricity/an

nual/html/epa_08_ 04.html



4 6.6. JET ENGINE
c

-~ Turbine

>

|_

O

Propulsion nozzle

\/

i
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6.6.1. JET ENGINE FILM

m
)
=
o)
L -
S
l_
©
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6.6.1. JET ENGINE FILM

Frank Whittle
Hans von Ohain
and Jet Propulsion

ChE 414 Thermodynamics of energy conversion



6. Turbines

6.6.2. AIRPLANE JET ENGINE

Hans Joachim Pabst von Ohain
(* 14. Dezember 1911 in Dessau;
T 13. Marz 1998 in Melbourne, Florida)
INTAKE COMPRESSION COMBUSTION EXHAUST

- (: Iz

it

: i""

e

W

/ 'IEJ']: SHERERRER
Air Inlet Combustion Chambers Turbine
Cold Section Hot Section
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6. Turbines

\
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6.6.3. TURBOPROP ENGINE

Prop . Gearbox Compressor Turbine

Combustion
chamber

EPFL: ChE 414 Thermodynamics of energy conversion

Exhaust
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6. Turbines

Fan compressor

shaft

Low-pressure
compressor

High-pressure Higtl)w-pressure
tur

High-

Low-pressure
shaft |

6.6.4. HIGH BYPASS JET ENGINE (TURBO FAN)

ine
pressure

|

Combustion Low-pressure Nozzle
chamber turbine

Prof. Dr. Andreas ZUTTEL, e: andreas.zuettel@epfl.ch, m: +41 79 484 2553 EPFL: ChE 414 Thermodynamics of energy conversion 26. 3. 2024

32



6.6.5. POWER AND FORCE

The acceleration of an airplane is a function of the speed based on the energy contents
and the momentum of the fuel.

Energy content of Kerosene is y = 45 MJ/kg

d ds d
Power (Energy change): E(F s)= F- p = My, v, = 7 (mp-vp)
d d
Force (Momentum change): m,, - a,, = it (mp)-v = dt (mp) - V2 vp
because: d/dt (mF)"‘
1 2 jet
§-m v¢ = m-Yp

propeller

ChE 414 Thermodynamics of energy conversion



6.6.6. HIGH BYPASS JET ENGINE (TURBO FAN) FILM

ChE 414 Thermodynamics of energy conversion
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6.6.7. pand T IN THE JET ENGINES

LP System
1 Fan stage
5 Turbine stages
IP System >3,000 rpm
8 Compressor stages

1 Turbine stage
>7,500 rpm

1 Turbine stage

>10,000 rpm

Pressure
(atmospheres)

Temperature
(degrees C)

.
Trent 850

'
/" 1GESO

Tremt " < .

CFG‘GOC-ZAB CF6-80E1A4

CFB80C2A8 S Crmsssce /

Overall Pressure Ratio (OPR), Sea Level, T-O

1970 1980 1990 2000
Year of Certification
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6.6.8. JET ENGINE IDEAL EFFICIENCY
Brayton Cycle

Combustion
Fuel
#

Turbine

4

N out
1 o? q

Fresh Air Exhaust > >

asses . .
9 P-v Diagram v T-s Diagram S
Brayton Cycle (Gas Turbine) Efficiency Brayton Cycle (Gas Turbine) Specific Power
80 Output

S g 500
& g

=7
g 50 ~ : 400 /
Eﬂa‘ /—- (E % 4
5 / R / /
-2 -a
& 40 — 8 % 500 ~
8 P
: i =
] =0
i 20 S 200 =
H H
g g 7
E Efficiency: " 100

0 900 1,200 1,500
5 1o 15 20 25 1’11 P] (“y 1 ),"v"l Gas Turhine Inlet Temperature [K]
Pressure Ratin (P2/P1) [/] 7’ — 1 . ? - l . ( )
2 P, —
ressure Ratio (P2/P1)
. . . ‘Working Fluid: Air
Working Fluid: Ai —
oriang Hur i Y - Cp/cV Compressor Inlet Temperature: 298 [K]

Compressor Inlet Temperature: 298 [K] -- Gas Turbine Inlet Temperature: 1,500 [K]
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6.6.9. JET ENGINES TRUST & EFFICIENCY

Thrust:

FN =(mair +mfuel).ve _mair "V

m ., = the mass rate of air flow through the engine

mqe = the mass rate of fuel flow entering the engine

Ve = the velocity of the jet (the exhaust plume) and is assumed to be less than
sonic velocity

v = the velocity of the air intake = the true airspeed of the aircraft

(m 4y + Mge)Ve = the nozzle gross thrust (Fg)
m ., v = the ram drag of the intake air

for an air-breathing engine (not rocket engine, thrust is independent of the velocity)

Efficiency:
nNo=n, "My Ny

No = energy efficiency
1, = propulsive efficiency
N = cycle efficiency

nt = transfer, efficiency (=1) Ref.: Aero engine development for the future, Bennett, Proc Instn Mech
Engrs Vol 197A, IMechE July 1983, p.150

after Bennett



6.6.10. JET ENGINE PROPULSIVE EFFICIENCY
Efficiency:

Change of kinetic energy of the air entering the engine and the gas leaving the
engine:

e ailr

—1{(s ' viem  vil= .
AEkin_i[(mair-i-mfuel) Ve =M. "V ]_FN |4

The propulsive efficiency is the ratio of the power supplied to aircraft divided by
the energy of the jet:

V[(mair + mfuel). ve — mair . V]

1 ) ) ‘v _n .2
7[(mair+mfuel) Ve mair 14 ]

Np =

The mass flow of fuel is much smaller, as compared to the mass flow of air:

_mair.v.[ve_v__ 2.V
nP L. > 2-_V+V
2 mair Ve_v | e

Ref.: "Jet Propulsion” Nicholas Cumpsty ISBN 0 521 59674 2 p24



6.6.11. PROPULSION EFFICIENCY

PROPULSION EFFICIENCY
M Rocket M Jet engine
120
§~100
2 80
3
é 60
%
= 40
3
g 20
0 normfal copditiaps
0.0 0.5 1.0 15 2.0 25 100
speed/exhaust speed, (v/ve) —
Cycle efficiency (ny) is highest in g %
rocket engines (~60+%), as they can %
achieve extremely high combustion % 80
temperatures. Cycle efficiency in g
turbojet and similar is nearer to 40%, 7
due to much Ilower peak cycle <+— | nommal dperation rahge | . »
temperatures.
60
50/1 70 90 110 130
air/fuel ratio

Ref.: "Jet Propulsion" Nicholas Cumpsty ISBN 0 521 59674 2 p24
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6.6.12. JET ENGINE SPECIFICATIONS

Specific fuel consumption (SFC), specific impulse, and effective exhaust velocity numbers for various rocket
and jet engines.

SFCin SFCin Specific Effective exhaust

Engine type Scenario
Ib/(Ibf-h) g/(kN-s) impulse (s) velocity (m/s)

NK-33 rocket engine Vacuum 10.9 308 33171 3250

Space shuttle
SSME rocket engine P 7.95 225 453(72) 4440

vacuum
Ramijet{verification needed) Mach 1 4.5 130 800 7800

) SR-71 at Mach 3.2 23

J-58 turbojet 1.973] 54 1900 19000

(Wet)
Eurojet EJ200 Reheat 1.66-1.73  47-491741 ' 2080-2170  20400-21300
Rolls-Royce/Snecma Concorde Mach 2 75

, , 1.195751  33.8 3010 29500

Olympus 593 turbojet cruise (Dry)
Eurojet EJ200 Dry 0.74-0.81 | 21-2374] | 4400-4900 | 44000-48000

Boeing 747-400
CF6-80C2B1F turbofan cmiseg 0.6057% | 17.1 5950 58400

General Electric CF6
turbofan

Sea level 0.30717%1 8.7 11700 115000

Ref.: "Jet Propulsion" Nicholas Cumpsty ISBN 0 521 59674 2 p24
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6. Turbines

6.6.13. BOEING 777 JET ENGINES

Boeing 777, 350 t

Boeing 777

Engines: 2 * 489 kN General Electric 90-115B turbofans
2 * 519 kN for take off

145’000 kg Kerosene in 16 h Py, =90 MW thermal
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6. Turbines

6.6.14. F/A-18 HORNET JET ENGINES
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F/A-18 Hornet, 25 t
F/A-18 Hornet, McDonnell-Douglas

Engines: 2 * 79 kN General Electric F404-GE-402 turbofans
2 * 53 kN without after burner

5126 kg Kerosen in 105 min. wo after burner, 8 min w. ab

P, = 30 MW wo. after burner, 384 MW w. ab.
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6.6.15. FIRST PROPULSION ENGINES
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6. Turbines

6.6.16. PULSE PROPULSION ENGINES

ANIMATION OF A
PULSE JET ENGINE

EXHAUST

COMBUSTION
AIR INTAKE
AND FUEL CHAMBER

INJECTION
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6. Turbines

6.6.17. V1 ROCKET FILM

Youtube/Goldpriester
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FZG in Karlshagen, June 1944
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6.6.17. V1 ROCKET FILM
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FZG in Karlshagen, June 1944
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EXERCISE

III

1) Calculate the Carnot efficiency and “real” efficiency of the steam turbine if the dry
steam enters with 500° C and leaves the turbine with 120° C. How much coal does
a power station with 1 GW,, use per day?

2) Calculate the minimum adiabatic compression from 20° C and 1 bar in order to
reach the auto ignition temperature of Methane (632° C).

3) Calculate the temperature and volume increase due to the combustion in the gas
turbine.

4) Calculate the acceleration of an airplane at take off, when it reaches 280 km/h in
30 sec. What is the consumption of fuel (m =550 t) for take off.

5) Calculate the energy consumption of an airplane per passenger and 100 km. (A380,
10’000 km, 550 passenger, 130’000 kg kerosene)



