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Proc. Natl. Acad. Sci. USA
Vol. 78, No. 11, pp. 6840-6844, November 1981
Biochemistry

An amplified sensitivity arising from covalent modification in
biological systems

(protein modification/metabolic regulation/switch mechanism/enzyme cascades)

ALBERT GOLDBETER' AND DANIEL E. KOSHLAND, JR.

Molecular Cell, Vol. 9, 957-970, May, 2002, Copyright ©2002 by Cell Press

Mathematical Models of Protein Kinase
Signal Transduction

Reinhart Heinrich,! Benjamin G. Neel,? distinct ways to elicit either a :

and Tom A. Rapoport®* response, which can have dram
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Exploration of trade-offs between
steady-state and dynamic properties
in signaling cycles

A Radivojevic'2, B Chachuat?, D Bonvin? and V Hatzimanikatis'



Introduction

Metabolic pathways Signal transduction pathways

Transfer of mass Transfer of information

Determined by presence of enzymes Compounds of different types: highly
catalyzing the reactions organized complexes

Metabolites uM - mM 10-10* molecules per cell

Enzyme vs. substrate: lower amount of Enzyme vs. substrate: same order of
enzyme magnitude




Introduction

Signaling Paradigm

O

external stimulus

0

External stimuli:

hormones
pheromones
heat

cold

light

osmotic pressure
appearance

Change in concentration of
substances

(glucose, K+, Ca+, cCAMP)



Introduction

Signaling Paradigm

@D

/ external stimulus

receptor
activation _

- 4

Importing a signal:
= the stimulus may penetrate the cell

membrane and bind to a respective
receptor in the cell interior.

= Activation of the cytosolic domain

Receptor-ligand interactions:

= Many receptors are transmembrane
proteins; they receive the signal and
transmit it.

® |nthe active form they are able to
initiate a downstream process
within the cell

ligand —.

receptor, ——_

hinding site gxtracellular space
- membrane
receptar, intracellular spacs

cylosolic domain

inactive active
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Signaling Paradigm

@D
/ external stimulus
O | * The active receptor

stimulates an internal
signaling cascade

Q ‘ * This cascade often includes a
series of changes in protein
\9 phosphorylation states

MAPkinase
cascade

receptor
activation

10
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Signaling Paradigm

00O

)/ external stimulus

i O Cell membrane
receptor ‘ f
activation =
i ) receptor
Cytosol
O transcription factor
: Nucleus
Q‘p —P gene
ne
promoter & 7 :
expression
l change
MAPkinase mRNA
cascade

roen)e

“response”

metabolic or
physiological changes
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® Reconstruct signaling networks for specific pathways

SIGMA Method

of interest.
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SIGMA Method
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® Reconstruct signaling networks for specific pathways

SIGMA Method

of interest.

® Navigate the signaling network to study the

information flow.

- -

¥ reactome ® Identify the flow of information from receptors to

Signaling network < .. .
transcription factors or proteins.
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Reconstruct signaling networks for specific pathways

SIGMA Method

of interest.

Navigate the signaling network to study the

information flow.

N\
. 4

¥ reactome ® Identify the flow of information from receptors to

Signaling network < .. .
transcription factors or proteins.

Study deregulation in sighaling pathways in a

consistent manner.



Reconstruct sighaling networks

SIGMA Method Signaling model

______________

PIP3-AK

freoctome

I / [_]/
REACTOME ] \

I _______._'-_.'ZI:_‘-__|__l ‘ u
\ 'MAPK_ .. K\rf”
l “““““““““ ) ﬁ

Signaling network signaling - ) G

pathways -

Receptor



Reactome signaling network

Reactome
Pathways 2610
Species 23830
Connections 46834




From Reactome to selected pathways network

The need for reconstructing signaling networks around selected

pathways.

1) Allowing manual curation of the selected Reactome pathways.

2)Reducing the network size and complexity.
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The need for reconstructing signaling networks around selected pathways.
1) Allowing manual curation of the selected Reactome pathways.

2) Reducing the network size and complexity.

Signaling Network Reconstruction Workflow:

4 )

Define the set

of signaling
species of

interest

\_ J
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The need for reconstructing signaling networks around selected pathways.
1) Allowing manual curation of the selected Reactome pathways.

2) Reducing the network size and complexity.

Signaling Network Reconstruction Workflow:
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The need for reconstructing signaling networks around selected pathways.

1) Allowing manual curation of the selected Reactome pathways.

2) Reducing the network size and complexity.

Signaling Network Reconstruction Workflow:
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From Reactome to selected pathways network

The need for reconstructing signaling networks around selected pathways.

1) Allowing manual curation of the selected Reactome pathways.

2) Reducing the network size and complexity.

Signaling Network Reconstruction Workflow:

-

\_

Define the set
of signaling
species of

interest

~

4 )

Collect the
pathways
where the

selected species

J

exist

\_ J

4 )

Expand the list
of pathways

selection

\_ J

4 )

Curate
manually all the
pathways of
the final list

\_ J




BDNF signaling in cancer
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Brain-derived neurotrophic factor (BDNF)

@ proBDNF
'g

L] :

TrkB p75NTR  Sortilin

pro-domain @ mBDNF

...........................................

Survival

Cytoskeletal / ‘ Survival, plasticity and
remodeling ‘ ) neurite outgrowth
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MTOR signaling in cancer
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Mammalian target of rapamycin (mTOR)

Rapamycin,
dietary restriction
mTORC1
PRAS40 .
1

.  RAPTOR |

v

( HEATrepeats | FAT ( FRB [ Kinase [ FATC @

mTOR T

Coron

Kinase active site

FKBP12-
rapamycin
mTOR S

RAPTOR

Tran. :
Pre fanslational Sﬂesi‘\oo’
YCtion of aggre9d?
Prone proteins

Liu, Grace Y., and David M. Sabatini. “MTOR at the Nexus of Nutrition, Growth, Ageing
and Disease.” Nature Reviews Molecular Cell Biology, 2020



MTOR regulation through BDNF

TNFa
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Wilson, A. M., and A Di Polo, Gene Therapy, 2012



AMPK in Cancer
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AMP-activated protein kinase (AMPK)
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Signaling network reconstruction

1. Define the set of signaling species of interest
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Signaling network reconstruction

Define the set of signaling species of interest

-

\_

* Brain-derived neurotrophic factor (BDNF)




Signaling by
Neurotrophic
Receptor Tyrosine

Kinase 2 (NTRK2

BDNF signaling in Reactome
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Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022
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Signaling network reconstruction

Define the set of signaling species of interest

-

\_

* Brain-derived neurotrophic factor (BDNF)

* Mammalian target of rapamycin (mTOR)




MTOR signaling in Reactome

mTOR signaling

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022
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Signaling network reconstruction

Define the set of signaling species of interest

-

\_

* Brain-derived neurotrophic factor (BDNF)
* Mammalian target of rapamycin (mTOR)

* AMP-activated protein kinase (AMPK)




AMPK signaling in Reactome

STRAD

Energy dependent
regulation of mTOR —
by LKB1-AMPK

)—é—<
AMPK heterotrimer
p-AMPK heterotrimer AMPK heterotrimer TSC1:TSC2 ATP

:_)
High ATP concentration

AMP
TSC1:p-S1387-TSC2 ADF

\

mMTORC1 with p-5722,5792-

RPTOR:Ragulator:Rag: " 5 -
GNP:RHEB:GTP g reag:

I |
L}

Active mTORC1
complex

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022
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2. Collect the pathways where the selected species exist




Signaling network reconstruction

2. Collect the pathways where the selected species exist

4 BDNF A 4 mTOR A

Signaling Amino Cellular TP53
PTEN acids MTOR response Regulates
Regulation regulate signalling HEEANBTElEE to heat Metabolic

(TRKB) mTORC1 stress Genes

\

4 AMPK )

Energy Activation

of

Regulation
dependent TP53 . of NMDA
Mitochondrial regulation Regulates [T e ; Carnitine receptors of TP.53
biogenesi f mTOR Metaboli of energy (GLUTA4) acroautophag Lipophagy metabolism and Activity
Ogenesis 0 etabolic metabolism to the . through
LKBlt—)\,{J\MPK penes plasma posets:g;ptlc hosphorwatiy




Signaling network reconstruction

2. Collect the pathways where the selected species exist

-

) 4

NS

BDNF mTOR
Signaling Amino Cellular TP53
PTEN acids MTOR response Regulates
Regulation regulate signalling acroautophag to heat Metabolic
(TRKB) mTORC1 stress Cenes
Energy ) Activation .
of Regulation
| . dependent U, Integration SLC2A4 3 NG, of TP53
Mitochondrial regulation Regulates f h . h Carnitine receptors o
biogenesis of mTOR Metabolic of energy (GLUT) CLARSE LI P ey metabolism and EITLS
metabolism to the . through
by Genes lasma postsynaptic
LKB1-AMPK events

hosphorylaticy

A

The pathway collection is not only based in the original state of the species but

also in modified states of the species

(e.g. phosphorylated state, ubiquitinated state, complex component)



Signaling network reconstruction

2. Collect the pathways where the selected species exist

mTOR
Aminog Cellular TP53
PTEN acids MTOR response Regulates
Regulation regulate signalling SRR EIEEY to heat Metabolic
mTORC1 stress Genes

\

Active mTORC1 complex [I] mTORC1:Ragulator:RagA,B:GTP:RagC,D:GDP:SLC38A9 [l]
mTORC1 [c] mTORC1:RHEB:GTP:AKT1S1 [I]
mTORC1 dimer [n] mTORC1:RHEB:GTP:p-S183,T246-AKT1S1:YWHAB [I]
mTORC1 with p-$722,5792-RPTOR:Ragulator:Rag:GNP:RHEB:GTP [I] MTORC1:RHEB:GTP:p-S758-ULK1:ATG13:RB1CC1:ATG101 [I]
MTORC1 with p-$722,5792-RPTOR:Ragulator:Rag:RHEB:GTP [I] mTORC1:RHEB:GTP:p-T246-AKT1S1 [I]
MTORC1 with p-S722,5792-RPTOR:RHEB:GTP:p-S758-ULK1:ATG13:RB1CC1:ATG101 [I] MTORC1:RHEB:GTP:ULK1:ATG13:RB1CC1:ATG101 [I]
MTORC1:p-T246-AKT1S1:YWHAB [I] v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:mTORC1:RHEB:GTP [I]
mTORC1:Ragulator:Rag:GNP:RHEB:GDP [l] v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1 [I]
MTORC1:Ragulator:Rag:GNP:RHEB:GDP [I] v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTP [I]

MTORC1:Ragulator:Rag:GNP:RHEB:GTP [l]

A The pathway collection is not only based in the original state of the species but
also in modified states of the species
(e.g. phosphorylated state, ubiquitinated state, complex component)
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3. Expand the list of pathways selection

Signaling by NTRK2 (TRKB)

illespie M., et al. “The Reactome Pathway Knowledgebase
2022.” Nucleic Acids Research 2022



Signaling network reconstruction

3. Expand the list of pathways selection

Signaling by NTRK2 (TRKB)
(NeuroTrophic Receptor Kinase 2; Tyrosine Protein Kinase))

Gillespie M., et al. “The Reactome Pathway Knowledgebase
2022.” Nucleic Acids Research 2022



Signaling network reconstruction

3. Expand the list of pathways selection

Signaling by NTRK2 (TRKB)

| d * PIP3 activates AKT signaling

PI3K (phosphatidylinositol 3-kinase)
and Akt (protein kinase B)

O Gillespie M., et al. “The Reactome Pathway Knowledgebase

2022.” Nucleic Acids Research 2022



Signaling network reconstruction

3. Expand the list of pathways selection

Signaling by NTRK2 (TRKB)

i

1@

- |

| d " PIP3 activates AKT signaling

O

o Gillespie M., et al. “The Reactome Pathway Knowledgebase
2022.” Nucleic Acids Research 2022



Signaling network reconstr

3. Expand the list of pathways selection

ucti

S,

= 43

e

RHO GTPases Activate
WASPs and WAVEs

DAG and IP3 signaling

Gillespie M., et al. “The Reactome Pathway Knowledgebase

2022.” Nucleic Acids Research 2022
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3. Expand the list of pathways selection
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3. Expand the list of pathways selection

< [BDNFJ > root species
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3. Expand the list of pathways selection

< [BDNFJ > root species

— layer 2
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Signaling network reconstruction

3. Expand the list of

pathways selection

BDNF root species
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Signaling network reconstruction

xpand the list of pathways selection

BDNF root species

Signaling
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3. Expand the list of pathways selection
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3. Expand the list of pathways selection — _




Signaling network reconst

Final pathways network
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Signaling network reconstruction

Final pathways network =
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Final pathways network
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Signaling network reconstruction

@4 layers suffici@




Signaling network reconstruction

3. Expand the list of pathways selection

Cumulative number of

new pathways per layer

Number of pathways saturates as
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Signaling network reconstruction

3. Expand the list of pathways selection

New pathways per root species
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Number of new pathways

Signaling network reconstruction

3. Expand the list of pathways selection
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Signaling network reconstruction

4. Curate manually all the pathways of the final list




Signaling network reconstruction

4. Curate manually all the pathways of the final list

Reactions and species information
can be downloaded automatically
but:

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022

Signaling by NTRK2 (TRKB)




Signaling network reconstruction

4. Curate manually all the pathways of the final list

. o . Signaling by NTRK2 (TRKB)
Reactions and species information can be

downloaded automatically but:

1) Dashed lines in the graph =3 g o »

represent flow of

information but the data
does not exist.

ATP ADP

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022



Signaling network reconstruction

4. Curate manually all the pathways of the final list

Cytoprotection by HMOX1

| =4

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022



Signaling network reconstruction

4. Curate manually all the pathways of the final list

‘‘‘‘‘‘‘‘

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022



Signaling network reconstruction

4. Curate manually all the pathways of the final list

Cytoprotection by HMOX1

KEAP1-NFE2L2 pathway

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022



Signaling network reconstruction
KEAP1-NFE2L2 pathway

4. Curate manually all the pathways of the final list

Cytoprotection by HMOX1

KEAP1-NFE2L2 pathway

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022



Signaling network reconstruction
KEAP1-NFE2L2 pathway

4. Curate manually all the pathways of the final list

Cytoprotection by HMOX1

KEAP1-NFE2L2 pathway

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022



Signaling network reconstruction

KEAP1-NFE2L2 pathway

4. Curate manually all the pathways of the final list

Cytoprotection by HMOX1

KEAP1-NFE2L2 pathway

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022



Signaling network reconstruction

4. Curate manually all the pathways of the final list KEAP1-NFE2L2 pathway

Cytoprotection by HMOX1

KEAP1-NFE2L2 pathway

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022




Signaling network reconstruction

4. Curate manually all the pathways of the final list KEAP1-NFE2L2 pathway

Cytoprotection by HMOX1

KEAP1-NFE2L2 pathway

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022




Signaling network reconstruction

4. Curate manually all the pathways of the final list KEAP1-NFE2L2 pathway

Cytoprotection by HMOX1

Create a reaction:

p-NFE2L2 + MAFK  —Pp-NFE2L2:MAFK

Gillespie M., et al. “The Reactome Pathway Knowledgebase 2022.” Nucleic Acids Research, 2022




Signaling network reconstruction

4. Curate manually all the pathways of the final list

Reactions and species information can be
downloaded automatically but:

1) Dashed lines in the graph
represent flow of information but
the data does not exist.

2) The connection between
different pathways should

be checked.




Signaling network reconstruction

4. Curate manually all the pathways of the final list

Reactions and species information can be

downloaded automatically but:

1) Dashed lines in the graph New reactions added to the network after manual
represent flow of information but curation:

the data does not exist.

2) The connection between different * Reactions from dashed lines = 820

pathways should be checked.

* Reactions between different pathways = 26

AN /
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Analysis with concepts from network theory

Degree centrality

Undirected Directed




Degree centrality of the selected pathways network
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egree centrality of the selected pathways network

o
o
0 C? O@OOO
o o
Species Degree o %00
° o °o 5 o o
o) o
oo OOO b0 oo ° OO o o ©
ADP [cytosol] 647 000 500088 o 00 o a0 %S ©
o 00 oo 9 %g%o o o
o o ©
ATP [cytosol] 494 & o o, o, e 7
o S o o
© o~ 00 o o o oo o
S 0 & o o
[} P o) ¢} o} [¢] o
nucieopiasm o o o © 00 00 o
o o ° o0 o o o o o o %o o
ooooo 009 0% 4 o 85 0©° °
H20 [cytosol] 163 0% o 9 o 0o 0P o o %0 00p o o
o o [e] ° Oo o ooo%o oo o ooo oo © ©O og @ R
P. t I 153 o 0%o o° © e 0% o0 0 S ©o ° o
i [cytoso 0o®  ©5o S oe  o° 000 0 3 %0 o 00
o 00 © o oo o o © o o o
o o o O oo oo o0 o o o 00 © o o©o
00 © 2o © 9 o
ATP [nucleoplasm] 150 0°° o Foowm
o
o
Ub [cytosol] 121 oo & 0
Toget
o
o 0% o o
600 o
000
o
oo
o
o
o ©%
OOO 00
o o0 (SNe) o o
5% %%
0.0 00g o 8o
o o 09
d o o @
oo 0%° °% Og &
[e¥e) (€] o o
00 5 O o 800
09 o 0045 o ogg
¢} 8 oo o
©  og 2 o 9% [e3)
Ooc?og 0 5o @ o ® o %y
L ° o Soo ? 006’0000 09 050
o o o %o B o ® 4 6)0053000%0
Og S o o o © 00,° 09 %
0 o © 200 e~ o
o o o o
SRR <R OOOOO% % §o
e
0 ©05°0 50 %Y
0 0p@ o
o Qo4 o _o
Oo & ooooo%j o ¢}
o 2906 oo o
o Sle]
o © [e)
o "o o®
Op o o0
E. Loere
o o % ©d 00
o o °0o0 o
oo % © o o °
o O o
o o o
o o
o o
°© 0% o
[el¥e) o
o o ©O 080
o (€]
005 © ©0o ° ° o
o o © o o o o oy
00 060 % oS 00 050 o ©
o
o o >
000 <
o o8
©o % o?é)
) 000



Co-factors identification and removal

Signaling by NTRK2 (TRKB)

Why should we remove co-
factors from the final
network?




Co-factors identification and removal

Signaling by NTRK2 (TRKB)
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Why should we remove co-

factors from the final

network?

Avoid producing biological
meaningless resulis.




Co-factors identification and removal

Selection of co-factor list for removal:

- Based on the degree ranking of the whole Reactome network.




Co-factors identification and removal

Selection of co-factor list for removal:

- Based on the degree ranking of the whole Reactome network.

Cumulative fraction of species

with degree k or greater
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Co-factors identification and removal

Selection of co-factor list for removal: A Keep important small
second messengers:
- Based on the degree ranking of the whole Reactome network.
) * cAMP
I e * cGMP
§"§ 0.8 ;Degree > 20 o IP
o o : 268 species (~1%) 3
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Degree k



Selection of co-factor list for removal:

- Based on the degree ranking of the whole Reactome network.

Co-factors identification and removal

A Keep important small
second messengers:

54 co-factors, small molecules

ATP Pi Ac-CoA Fe2+ |MP
ADP PPi GSH Mg2+ NTP(4-)
AMP H+ GSSG /n2+ NO
CTP H20 PAPS NTP HCOOH
CDP Ub PAP K+ QH2
CMP NAD+ AdoMet Cl- THF
GTP NADH AdoHcy NH4+

GDP NADP+ | K63polyUb CH20

GMP NADPH H202 NH3

UTP 02 Na+ dNTP

UDP CO2 FADH2 BH4

UMP CoA-SH FAD HCO3-




o-factors identification and removal
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Final network of selected pathways
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Analysis of the final network of selected pathways



Analysis of the final network of selected pathways

A
e 5
K

Other components
10% (610 species)

Strongly

o connected o
28% component 15%
(1604 species) 47% (854 species)

(2743 species)

In-component
- |

Out-component

The “bow-tie” diagram




Analysis of the final network of selected pathways

adjacency matrix
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Analysis of the final network of selected pathways

. Degree per species
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Analysis of the final network of selected pathways

Degree distribution
(linear scale)

Fraction of species with
degree k
®

Degree k



Analysis of the final network of selected pathways
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Analysis of the final network of selected pathways

Path distance between species pairs
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from Signaling Models to Information

Flows



Method for connecting signaling network species

From species 1 to species 9

10

. .,:)




Method for connecting signaling network species

From species 1 to species 9

We enforce the start species (1)
and the target species (9) to be
active and minimize the
number of active connections.




Method for connecting signaling network species

Why minimize?

1) Focus on the most essential
species and connections of
the information flow.

2) Identify the parsimonious
way of cellular signal
transduction.




Method for connecting signaling network species

We exhaustively enumerate
alternative paths!

Minimal path:
4 connections




Method for connecting signaling network species

We exhaustively enumerate
alternative paths!

Minimal path:
4 connections

Alternative path:
Minimal path + 2




Studying BDNF connection to mTOR

The start species is the BDNF ligand.

What about the target species?
Need for a systematic way to identify target species.



Studying BDNF connection to mTOR

Start Target
BDNF homodimer [e] Active mTORC1 complex [l]
BDNF homodimer [e] mTORC1 [c]

BDNF homodimer [e]

mTORC1 dimer [n]

BDNF homodimer [e]

mTORC1 with p-$722,5792-RPTOR:Ragulator:Rag:GNP:RHEB:GTP [I]

BDNF homodimer [e]

MTORC1 with p-§722,S792-RPTOR:Ragulator:Rag:RHEB:GTP [l]

BDNF homodimer [e]

MTORC1 with p-5722,5792-RPTOR:RHEB:GTP:p-S758-
ULK1:ATG13:RB1CC1:ATG101 []

BDNF homodimer [e]

mTORC1:p-T246-AKT1S1:YWHAB [l]

BDNF homodimer [e]

mTORC1:Ragulator:Rag:GNP:RHEB:GDP [l]

BDNF homodimer [e]

MTORC1:Ragulator:Rag:GNP:RHEB:GDP [l]

BDNF homodimer [e]

MTORC1:Ragulator:Rag:GNP:RHEB:GTP []

BDNF homodimer [e]

mTORC1:Ragulator:RagA,B:GTP:RagC,D:GDP:SLC38AZ9 [l]

BDNF homodimer [e]

mTORC1:RHEB:GTP:AKT151 [l]

BDNF homodimer [e]

mTORC1:RHEB:GTP:p-5183,T246-AKT1S1:YWHAB [l]

BDNF homodimer [e]

MTORC1:RHEB:GTP:p-S758-ULK1:ATG13:RB1CC1:ATG101 [I]

BDNF homodimer [e]

MmTORC1:RHEB:GTP:p-T246-AKT1S1 [I]

BDNF homodimer [e]

MTORC1:RHEB:GTP:ULK1:ATG13:RB1CC1:ATG101 [I]

BDNF homodimer [e]

v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:mTORC1:RHEB:GTP [l]

BDNF homodimer [e]

v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1 [l]

BDNF homodimer [e]

v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTP [l]




Studying BDNF connection to mTOR

Start Target Result
BDNF homodimer [e] Active mTORC1 complex [I] NO
BDNF homodimer [e] mTORC1 [c] NO
BDNF homodimer [e] mTORC1 dimer [n] NO
BDNF homodimer [e] mTORC1 with p-S722,S792-RPTOR:Ragulator:Rag:GNP:RHEB:GTP [l] YES
BDNF homodimer [e] MTORC1 with p-5722,5792-RPTOR:Ragulator:Rag:RHEB:GTP [I] YES
. MTORC1 with p-5722,5792-RPTOR:RHEB:GTP:p-S758-
BDNF homodimer [e] ULK1:ATG13:RB1CC1:ATG101 [I] YES
BDNF homodimer [e] mTORC1:p-T246-AKT1S1:YWHARB [l] YES
BDNF homodimer [e] mTORC1:Ragulator:Rag:GNP:RHEB:GDP [l] YES
BDNF homodimer [e] MTORC1:Ragulator:Rag:GNP:RHEB:GDP [I] YES
BDNF homodimer [e] MTORC1:Ragulator:Rag:GNP:RHEB:GTP [l] NO
BDNF homodimer [e] mTORC1:Ragulator:RagA,B:GTP:RagC,D:GDP:SLC38A9 [l] NO
BDNF homodimer [e] MTORC1:RHEB:GTP:AKT1S1 [l] NO
BDNF homodimer [e] mTORC1:RHEB:GTP:p-5183,T246-AKT1S1:YWHARB [l] YES
BDNF homodimer [e] MTORC1:RHEB:GTP:p-S758-ULK1:ATG13:RB1CC1:ATG101 [l] YES
BDNF homodimer [e] MmTORC1:RHEB:GTP:p-T246-AKT151 [l] YES
BDNF homodimer [e] MTORC1:RHEB:GTP:ULK1:ATG13:RB1CC1:ATG101 [] YES
BDNF homodimer [e] | v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:mTORC1:RHEB:GTP [l] NO
BDNF homodimer [e] v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1 [l] NO
BDNF homodimer [e] | v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTP [l] NO




Studying BDNF connection to mTOR

Start Target Result| Min path
BDNF homodimer [e] Active mTORC1 complex [I] NO -
BDNF homodimer [e] mTORC1 [c] NO -
BDNF homodimer [e] mTORC1 dimer [n] NO -
BDNF homodimer [e] mTORC1 with p-S722,S792-RPTOR:Ragulator:Rag:GNP:RHEB:GTP [l] YES 22
BDNF homodimer [e] MTORC1 with p-5722,5792-RPTOR:Ragulator:Rag:RHEB:GTP [I] YES 23
. MTORC1 with p-5722,5792-RPTOR:RHEB:GTP:p-S758-
BDNF homodimer [e] ULK1:ATG13:RB1CC1:ATG101 [I] YES | 22
BDNF homodimer [e] mTORC1:p-T246-AKT1S1:YWHARB [l] YES 13
BDNF homodimer [e] mTORC1:Ragulator:Rag:GNP:RHEB:GDP [l] YES 23
BDNF homodimer [e] MTORC1:Ragulator:Rag:GNP:RHEB:GDP [I] YES 24
BDNF homodimer [e] MTORC1:Ragulator:Rag:GNP:RHEB:GTP [l] NO -
BDNF homodimer [e] mTORC1:Ragulator:RagA,B:GTP:RagC,D:GDP:SLC38A9 [l] NO -
BDNF homodimer [e] MTORC1:RHEB:GTP:AKT1S1 [l] NO -
BDNF homodimer [e] MmTORC1:RHEB:GTP:p-5183,T246-AKT1S1:YWHAB [l] YES 14
BDNF homodimer [e] MTORC1:RHEB:GTP:p-S758-ULK1:ATG13:RB1CC1:ATG101 [I] YES 26
BDNF homodimer [e] mTORC1:RHEB:GTP:p-T246-AKT151 [l] YES 12
BDNF homodimer [e] MTORC1:RHEB:GTP:ULK1:ATG13:RB1CC1:ATG101 [l] YES 25
BDNF homodimer [e] | v-ATPase:Ragulator:RRAGA,B:GDP:RRAGC,D:GDP:mTORC1:RHEB:GTP [l] NO -
BDNF homodimer [e] v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1 [l] NO -
BDNF homodimer [e] | v-ATPase:Ragulator:RRAGA,B:GTP:RRAGC,D:GDP:mTORC1:RHEB:GTP [l] NO -
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Start Target Min path No Alts| No Alts|No Alts| No Alts Target
Pmin |(Pmin+1|Pmin+2|Pmin+3 Pathway
BDNF homodimer [e] mTORC1:RHEB:GTP:p-T246-AKT151 [l] 12 1 1 - - MTOR
BDNF homodimer [e] mTORC1:p-T246-AKT1S1:YWHAB [I] 13 1 1 - - MTOR
BDNF homodimer [e] mTORC1:RHEB:GTP:p-S183,T246-AKT1S1:YWHAB [l] 14 1 1 - - MTOR
BDNF homodimer [e] mTORC1 with p-S722,5792-RPTOR:Ragulator:Rag:GNP:RHEB:GTP [l] 22 2 6 10 11 ;TI;(;::
MTOR
BDNF homodimer [e] mTORC1:Ragulator:Rag:GNP:RHEB:GDP [l] 23 2 6 10 11 AMPK
TP53
. MTORC1 with p-S722,5792-RPTOR:RHEB:GTP:p-S758-
BDNF homodimer [e] ULKEI,:ATG13:RB1 CC1:ATG101 [I P 22 2 6 10 11 Macroautophagy
BDNF homodimer [e] MTORC1 with p-S722,S792-RPTOR:Ragulator:Rag:RHEB:GTP [l] 23 2 6 10 1 Macroautophagy
BDNF homodimer [e] MTORC1:Ragulator:Rag:GNP:RHEB:GDP [l] 24 2 6 10 1 Macroautophagy
BDNF homodimer [e] MTORC1:RHEB:GTP:ULK1:ATG13:RB1CC1:ATG101 [l] 25 2 6 10 11 Macroautophagy
BDNF homodimer [e] MTORC1:RHEB:GTP:p-S758-ULK1:ATG13:RB1CC1:ATG101 [] 26 2 6 10 11 Macroautophagy
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Start Target Min path

1:RHEB:GTP:p-T246-AKT1S1 [l]

ip-1246-AK :YWHAEB
BDNF homodimer [e] mTORC1:RHEB:GTP:p-S183,T246-AKT1S1:YWHAB [l] 14 1 1 - - MTOR
BDNF homodimer [e] mTORC1 with p-S722,5792-RPTOR:Ragulator:Rag:GNP:RHEB:GTP [l] 22 2 6 10 11 ;TIII(;::
MTOR
BDNF homodimer [e] mTORC1:Ragulator:Rag:GNP:RHEB:GDP [l] 23 2 6 10 11 AMPK
TP53

MTORC1 with p-S722,5S792-RPTOR:RHEB:GTP:p-S758-

BDNF homodimer [e] ULK1:ATG13:RB1CC1:ATG101 [I] 22 2 6 10 1 Macroautophagy
BDNF homodimer [e] MTORC1 with p-S722,S792-RPTOR:Ragulator:Rag:RHEB:GTP [l] 23 2 6 10 1 Macroautophagy
BDNF homodimer [e] MTORC1:Ragulator:Rag:GNP:RHEB:GDP [l] 24 2 6 10 1 Macroautophagy
BDNF homodimer [e] MTORC1:RHEB:GTP:ULK1:ATG13:RB1CC1:ATG101 [l] 25 2 6 10 11 Macroautophagy
BDNF homodimer [e] MTORC1:RHEB:GTP:p-S758-ULK1:ATG13:RB1CC1:ATG101 [] 26 2 6 10 11 Macroautophagy




Studyi




Studying BDNF connection to mTOR



Studying BDNF connection to mTOR

B oo BDNEDJI RK2
e ]ED ' K2, h r
o
me nej




Studying BDNF connection to mTOR

BBBBBBB

[: acel
BDNF:p-5¥-NTRK2
h r
me nej



Studying BDNF connection to mTOR

BDNF,NT, -NTRK2



Studying BDNF connection to mTOR

hg
[extracel
regmn] BDONERIRK2
BDI K2 h .
P .
mi ]
me BB%]IF‘ CNTRK2
h
4 {
BDN: . RK2

e]
BDNF,NTF4:p-5Y-NTRK :GAB1:PIK3CA:PIK3R1
m e]




Studying BDNF connection to mTOR







Studying BDNF connection to mTOR

PD'G
J moRBIBAe]

p-S-AK 1:PIP3
m e]




Studying BDNF connection to mTOR




Studying BDNF connection to mTOR




Studying BDNF connection to mTOR

.
p-m!mp-TSO AKTA1
m e]




Studying BDNF connection to mTOR

mTORC1:RHE -T246-AKT1S1
[l
m e]




Studying BDNF connection to mTOR

mTORC1

‘
@ T ) D

( HEATrepeats | FAT | FRB( Kinase | FATC ()
mTOR T

— oo )

Activated Akt1 phosphorylates PRAS40

b
I
7 3 _x
..._—.
o
7 E]
=} - %
2 3
2
-
318 Tz
]
2>
H
]

mTORC1:RHE -T246-AKT1S1
[l
m e]




Studying BDNF connection to mTOR
/‘:i .

Signaling by NTRKZ\
(TRKB)

12 connections
13 species
5 pathways

BDNF,NTF4:p-5Y-NTRK: :GAB1:PIK3CA:PIK3R1
S ‘
\ P 2 /
m e]

/

fo1ps

activates
AKT
signaling

etabolism &
of nitric oxi:{e

ﬂ'}“I MTOR signaling ]
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Crosstalks in signaling pathways

a Insulin pathway e WNT pathway
o
Ligand Insulin/IGF— YT Plasma
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d Hippo pathway J_ ,@
Nucleus

i 1 @-— ¢ High AMP/ATP

—

c

Heinrichs, Arianne. “Signalling Crosstalk.” Nature Shimobayashi, Mitsugu, and Michael N. Hall. “Making New Contacts: The MTOR Network in Metabolism
Reviews Molecular Cell Biology, 2006 and Signalling Crosstalk.” Nature Reviews Molecular Cell Biology, 2014
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Method for generating balanced signaling networks

From species connections to reactions

* It is based on optimizing pathway topology

* The reactant-reaction-product relations are the motifs

o

XA XA XB
y] y]
6 00
XA Xp
Xp Xp

Mitsos, Alexander, et al. “Identifying Drug Effects via Pathway Alterations Using an Integer Linear Programming
Optimization Formulation on Phosphoproteomic Data.” PLOS Computational Biology, 2009



Method for generating balanced signaling networks

A hybrid sequential method

1) PathTracer algorithm to identify

the minimal path between two
species.

Biotechnology
Journal

www.biotechnology-journal.com

Biotechnol. J. 2016, 11, 648-661

Research Article

MapMaker and PathTracer for tracking carbon
in genome-scale metabolic models

Christopher J. Tervo and Jennifer L. Reed




Method for generating balanced signaling networks

A hybrid sequential method

1) PathTracer algorithm to identify
the minimal path between two
species.

2) Oftadeh et al. formulation of the Mitsos et al.
method to identify the minimal network that
balances the minimal path.

Biotechnology Biotechnol. ). 2016, 11, 648661
Journal

www.biotechnology-journal.com

Research Article

MapMaker and PathTracer for tracking carbon
in genome-scale metabolic models

OPEN @ ACCESS Freely available online PLOS computationAL BioLoGY

Identifying Drug Effects via Pathway Alterations using an
Integer Linear Programming Optimization Formulation
on Phosphoproteomic Data

Alexander Mitsos’, loannis N. Melas?, Paraskeuas Siminelakis?, Aikaterini D. Chairakaki?, Julio
Saez-Rodriguez®*, Leonidas G. Alexopoulos**

Christopher J. Tervo and Jennifer L. Reed

Journal of Receptors and Signal Transduction
Volume 38, 2018 - Issue 5-6

Research Article

Accounting for robustness in modeling signal
transduction responses

Mohammad Omid Oftadeh & Sayed-Amir Marashi &
Pages 442-447 | Received 20 Aug 2018, Accepted 25 Dec 2018, Published online: 22 Feb 2019




Method for generating balanced signaling networks

Network for From connections Network for
minimal path to reactions balanced path
Pathways 115 — Pathways 115

Species 5811 Species 5947
Reactions 8696 Reactions 4409
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Studying BDNF connection to AMPK

Start Target Result| Min path
BDNF homodimer [e] Activated AMPK heterotrimer [n] YES 18
BDNF homodimer [e] AMPK heterotrimer (active) [c] NO -
BDNF homodimer [e] AMPK heterotrimer (inactive) [n] NO -
BDNF homodimer [e] AMPK heterotrimer [c] YES 21
BDNF homodimer [e] AMPK heterotrimer:AMP [n] NO -
BDNF homodimer [e] AMPK-alpha2:AMPK-beta:AMPK-gamma:AMP [c] NO -
BDNF homodimer [e] p-AMPK heterotrimer [c] YES 20
BDNF homodimer [e] p-AMPK heterotrimer:AMP |[c] YES 21
BDNF homodimer [e] p-AMPK heterotrimer:AMP [n] YES 22
) p-AMPK heterotrimer:AMP:p-S317,467,556,638,T575-ULK1:
BDNF h d YES 23
omodimer [e] ATG13:RB1CC1:ATG101 [c]
. p-AMPK heterotrimer:AMP:p-T180,5317,467,556,638,T575-ULK1:
BDNF h d YES 24
omodimer [e] ATG13:RB1CC1:ATG101 [c]
. p-AMPK heterotrimer:AMP:p-T180,5317,467,556,638,T575-ULK1:
BDNF h d YES 26
omodimer [e] ATG13:RB1CC1:ATG101 [er]
. p-AMPK heterotrimer:AMP:p-T180,5317,467,556,638,T575-ULK1:
BDNF h d YES 25
omodimer [e] p-ATG13:p-RB1CC1:ATG101 [c]
BDNF homodimer [e] p-AMPK heterotrimer:AMP:ULK1:ATG13:RB1CC1:ATG101 [c] YES 22
BDNF homodimer [e] SESN1,2,3:p-AMPK heterotrimer:AMP |[c] YES 17
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Studying BDNF connection to AMPK

BDNF to Activated AMPK heterotrimer

Regulation of TP53 Expression and Degradation
S Phase

PIP3 activates AKT signaling
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From ligand to transcription factor

Transcription factor Gene

GSR
From BDNF to NFE2L GSTAS

(NRF2) transcription HMOX1

factor IDH1
p-NFE2L2 [n] ME1

PRDX1
SRXN1
TALDO1
TKT
G6PD
GCLC
GCLM
GSTA1
NQO1
PGD
SLC7A11
TXNRD1
p-NFE2L2:MAFK [n] HMOX1

p-AcK-NFE2L2:CREBBP, EP300 [n]




From ligand to transcription factor

Oxidative
stress

From BDNF to NFE2L
(NRF2) transcription
factor

Metabolic
stress

FTL1
Iron/heme FTH1
homeostasis, ¢
resistance to
ferroptosis - HMOX1
Iron
metabolism
GSR GCLM
SLC7A11 GCLC

Glutathione GPX2
metabolism

I\l Wu WL, Papagiannakopoulos T. 2020.

ﬂ Annu. Rev. Cancer Biol. 4:413-35

Oncogenic
stress
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Thioredoxin
metabolism

\

Detoxification of
ROS, drugs, and toxins

PGD
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ME1 —3 reducing
potential
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Multidrug resistance-
associated proteins



From ligand to transcription factor

Start Target Result| Min path

BDNF homodimer [e] p-NFE2L2 [n] YES 10

BDNF homodimer [e] | p-AcK-NFE2L2:CREBBP, EP300 [n] | YES 12

BDNF homodimer [e] p-NFE2L2:MAFK [n] YES 11
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Perspectives

Create dynamical signaling models
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Co-factors identification and removal
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Co-factors identification and removal




Analysis of the final network of selected pathways
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Analysis of the final network of selected pathways

Ry e Connections
[ ® Species
-
Neurotransmitter receptors and postsynaptic signal transmission = U [0)
HDR through HRR or SSA = ® )
Mitotic G1 phase and G1/S transition = ® O
PIP3 activates AKT signaling = o

Interleukin-1 family signaling =
Signaling by NTRK1 (TRKA) =

Phase Il - Conjugation of compounds = ®
Integration of energy metabolism =
Mitotic G2-G2/M phases =
RAF/MAP kinase cascade =




Analysis of the final network of selected pathways
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Method for generating balanced signaling networks
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Method for generating balanced signaling networks
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Method for generating balanced signaling networks
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Method for generating balanced signaling networks
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Method for generating balanced signaling networks
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Study deregulation in signaling pathways
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Studying BDNF connection to AMPK
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Studying BDNF connection to AMPK
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Studying BDNF connection to AMPK
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Studying BDNF connection to AMPK
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