

Process Intensification and Green Chemistry

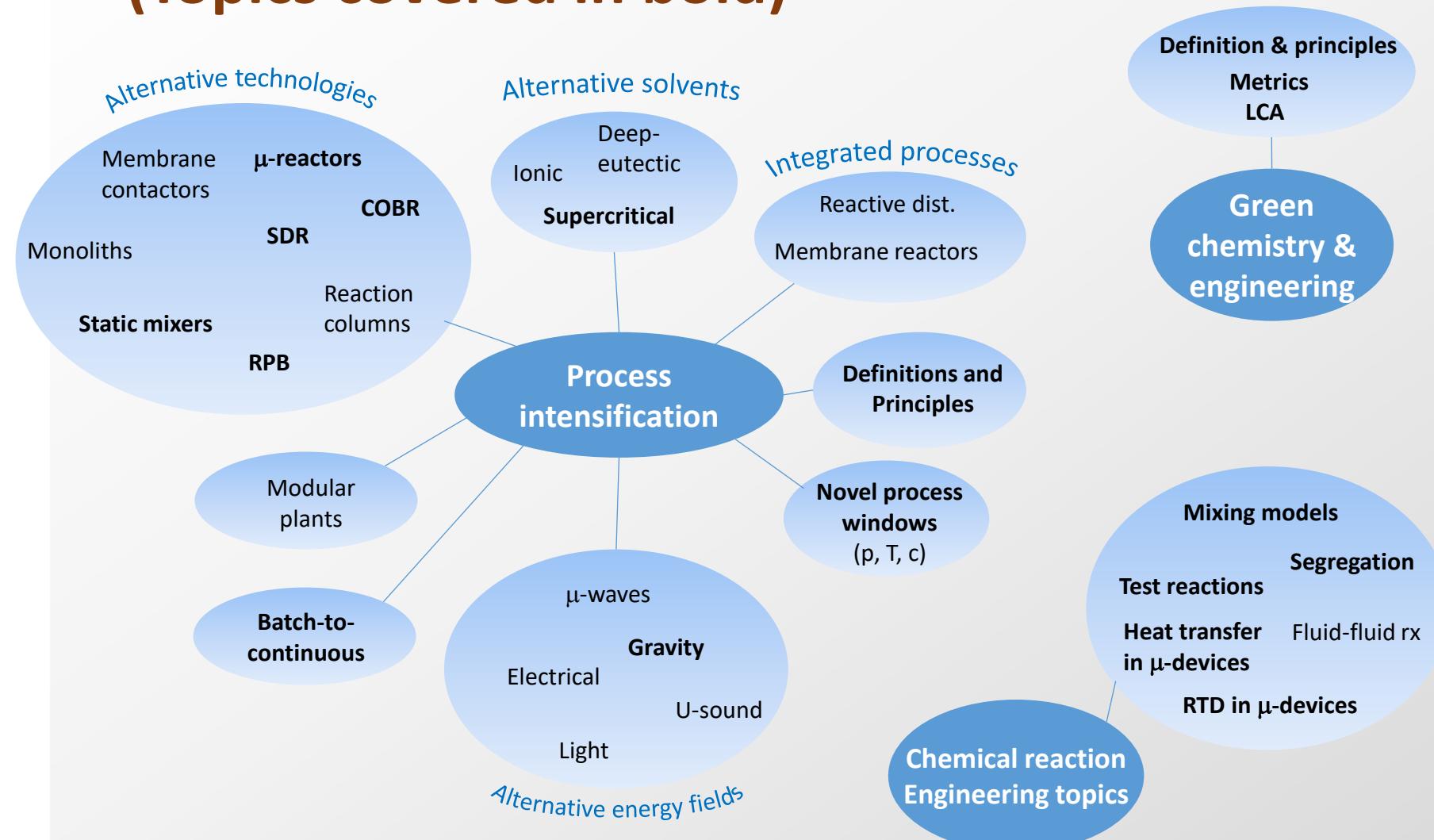
Introduction

EPFL

Master of Science in Chemical Engineering and Biotechnology
Dr. H. Randall

Rev. 1 01/2025

Course objectives


- To give an overview of the **benefits and principles of green chemistry** and engineering.
- To present some of the main **emerging technologies** in the field of chemical process intensification.
- To provide some **additional background** in chemical reaction engineering (e.g., mixing, segregation, RTD and heat transfer in micro-devices).

Required prior knowledge

- Transport phenomena
- Chemical kinetics
- Thermodynamics
- Chemical reaction engineering
- Separation processes
- Thermal safety of chemical processes

Scope of course

(Topics covered in bold)

Course content

1. Elements of Green Chemistry

- Survey of the chemical industry
- Green chemistry basics
- Green metrics: atom economy, reaction mass efficiency, atom efficiency, effective mass yield, carbon efficiency, process mass intensity, energy intensity
- Industrial examples: phenol and Carbaryl production
- Green engineering principles

2. Essentials of Life Cycle Assessment

- LCA aims and methodology
- LCA metrics (impact categories)
- Example: dimethyl carbonate production

3. Process Intensification

- General principles and benefits
- Description of selected process intensification technologies
 - “Higee” contactors (rotating packed beds)

- Spinning-disc reactors (thin-film and rotor-stator)

- Oscillatory baffled reactors / crystallizers

4. Batch-to-continuous

- Advantages and limitations of batch reactors
- Advantages and limitations of continuous reactors
- High pressure processing
- Criteria for an implementation of continuous processing
- Examples

5. Miniaturization

- Characteristic process times
- Coupling of processes
- Effect of scale on process parameters

Course content

6. Effect of Mixing on Chemical Reactions

- Macro-, meso- and micro-mixing
- Segregation
- Effect of total segregation on reactor performance
- Effect of partial segregation on reactor performance and selectivity
- Experimental mixing time characterization via physical and chemical methods

7. Mixing in Microchannels

- Flow regimes in microchannels
- Mixing by pure diffusion
- Mixing time for laminar mixing in a shear field

8. Microreactors

- Overview and benefits

- Passive micromixers: parallel lamination, serial lamination, chaotic mixers and segmented flow
 - Flow regimes, mixing principles & examples
- Active micromixers: pressure disturbance, electrokinetic
- Commercial systems
- Industrial examples

9. RTD in microreactors

- Microchannels, fixed-beds, static mixers, coiled tubes and flow inverters, segmented flow

10. Heat management in microreactors

- Heat transfer in various geometries
- Thermal sensitivity
- Multipoint injection

Miscellaneous

- **Team**

- harvey.randall@dsm-firmenich.com
- Patrick.kelley@epfl.ch

- **Course material**

- Slides and articles (placed in moodle)
- Some modifications to slides might be done during the semester (we will inform you on any significant changes)
- Exercises (placed in moodle before the course)
- Exercise solutions (placed in moodle after the exercise session)
- 3 quizzes (as homework, ungraded)
- Course recordings (Kaltura, slides + audio only – no video, link: see moodle)

- **Course organization**

- 2 periods of course + 1 period exercises per week
- Hybrid (live in room CHB2355 + via Zoom. Zoom links placed in moodle)
- 1 final written exam
 - Closed book, formula sheet (two A4 sheets, recto-verso)
 - Mix of theoretical questions (multiple choice, true or false) and short problems

Important comments

- **About the exercise sessions**

- It is important to try solving the exercises by yourself.
- The solutions often seem obvious once you read them.
- Trying to find the solution by yourself is more difficult but will develop your problem-solving skills and your creativity in a way that just reading the solutions won't.

→ **Simply reading the solutions is insufficient**

- **About the course slides**

- Slides are only intended to be a support for the course.
- They contain pictures, charts, tables and equations, but no full explanations.
- The latter are provided orally during the course.
- The exam will contain some theoretical questions, the answers to which are not necessarily written in the slides but explained orally during the course.

→ **Simply looking at the slides is insufficient**

Bibliography (key books)

- Stankiewicz , A. and J. Moulijn. **Re-engineering the Chemical Processing Plant: Process Intensification**. 2004. Marcel Dekker, New York.
- Reay, D., C. Ramshaw and A. Harvey. **Process Intensification - Engineering for Efficiency: Sustainability and Flexibility**. 2008. Elsevier Ltd.
- Hessel, V., A. Renken, J.C. Schouten and J.-I. Yoshida (eds.). **Micro Process Engineering—A Comprehensive Handbook**. 2009. Wiley-VCH.
- Poux, M., P. Cognet and C. Gourdon. **Green Process Engineering: From Concepts to Industrial Applications**. 2015. CRC Press.
- Boodhoo, K. and A. Harvey. **Process Intensification for Green Chemistry: Engineering Solutions for Sustainable Chemical Processing**. 2013. John Wiley & Sons Inc.
- Kashid, M., A. Renken and L. Kiwi-Minsker. **Microstructured Devices for Chemical Processing**. 2015. Wiley-VCH.
- Poux, M., P. Cognet and C. Gourdon. **Green Process Engineering**. 2015. CRC Press.
- Pena-Pereira, F. and M. Tobiszewski. **The Application of Green Solvents in Separation Processes**. 2017. Elsevier.
- Anastas, P.T. and J.C. Warner. 1998. **Green Chemistry: Theory and Practice**. Oxford University Press, New York.
- Hessel, V., Kralisch, D. and N. Kockmann. **Novel Process Windows**, 2015. Wiley.
- Cavani, F., G. Centi, S. Perathoner, F. Trifiro, **Sustainable Industrial Processes. Sustainable Industrial Chemistry**, 2009, Wiley-VCH.