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Characteristic times approach

In chemical reactors, a variety of phenomena may
contribute to the overall reactor performance:

* Homogeneous and/or heterogeneous reactions
* Heat and/or mass transfer in fluid phases
e Fluid/fluid or fluid/wall mass transfer

* Physical effects (gravity, surface tension, electrical
forces,...)

= A simple approach to understand their relative
impacts consists in comparing their characteristic

times
Commenge and Falk (2009). Aubin, Commenge, Falk, Prat (2015)
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The reference time

The reference time is a function of the type of
reactor:

e Batch reactor: residence time

e Semi-batch reactor: feed time

. . V
* Continuous reactors: space time 7 = a

* Heterogeneous reactor: modified space time

__ Meat
Tmod — 0
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The fundamental characteristic times

The characteristic time (t,,) for a chemical/physical
phenomenon is linked to the time required for the system to
evolve from a non-equilibrium to an equilibrium state

* In practice, for a property x:
X

top = :
°P  Rate of transformation of x
* Example:
o First-order homogeneous reaction
o Property x: molar concentration ¢
o Rate of transformation of c: r = kc
.y mol
Initial conc. [—3 1
= =[]
mol ] k-co k
m3-s

=t

op —

Initial rate [
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Heat conduction

Heat content

00 = P07 = Toe) [

Heat transfer rate

Qo = AV R R? m3

Characteristic time

Qo _ pCp(T _ Tout) . pPCyp R2

Leond = =

QO_ A(T_Tout) a A
RZ

[s]
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Heat convection

Heat content

00 = P6p(T = Toue) | / ]

m3

Heat transfer rate

. hR h NuAl
= — = —
YT R
A 1
— “ —
V R
: A } (T —Tour) NuA(T —Toye) [W
QO — hV(T _ Tout) < h R = R2 [m3]

Characteristic time

% pcp(T — Tout) _ PGy
Lheat = =

0o NuA(T —T,,) Nul
RZ
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Fundamental characteristic times

Characteristic time Example of R

nth-order homogeneous
reaction

Gravity

Viscosity

Surface tension

15t order heterogeneous
reaction

nth order heterogeneous
reaction

Pl and Green Chemistry

. 1
hom — kcg_l

, - 2R
grav g
PR?
Lyisc = T
PR3

t = |—-
surf 20cos(0)

R
thet,l — Zk
S

R

s*-0

Miniaturization

Height, channel radius

Droplet radius, channel
radius

Droplet radius, channel
radius

Reciprocal surface-to-
volume ratio

Reciprocal surface-to-
volume ratio



Fundamental characteristic times

Diffusive mass transfer R? Diffusion path length
taiff = 7y
Convective mass transfer R? Channel radius
(constant Sh) tmass = ShD
Heat conduction pch2 Length of heat conduction,
teona = 1 wall thickness
Convective heat transfer pPCy R? Channel radius
(constant Nu) theatr = "1 Nu
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Comments on characteristic times, taking
diffusive mass transfer as an example

* Definitions of t ;s depend on what is actually meant by diffusion time
» Time to achieve complete mixing? Would be infinite!
» Time to achieve 90% mixing?
» Etc.
* Asimple solution is to use tg;rr = R?/D, where R is the diffusion path length.

After that time, full mixing is obviously not achieved, but it provides an “order of
magnitude” value which is useful to either:

» Compare the diffusion time to the characteristic times of other processes (reaction, heat
transfer, etc.);

» Assess the effect of system size (characterized by R) on the characteristic time of the
process of concern (diffusion in this case). There is no need for a complex shape factor for
these purposes.
= Don’t focus too much on the absolute value of the characteristic times that you get
from the equations. Instead, use them to assess the changes in the characteristic times
when varying the system size, or on the relative values between the characteristic times

of two different processes.
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Opportunities of miniaturization

The different size-dependence of the various physical and
chemical phenomena lead to the following opportunities:

e Selective intensification of heat transfer vs reaction

o More homogeneous (or isothermal) temperature for kinetic
studies or controlling fast exothermic reactions while
preventing runaway.

e Selective intensification of mass transfer vs reaction

o Increase in conversion and selectivity of competing mass-
transfer limited heterogeneous reactions

o Increase in selectivity of mass-transfer limited heterogeneous
vs homogeneous reactions

 Selective intensification of heterogeneous reaction vs
homogeneous reaction (“grid effect”)

o E.g., control radical chain reactions leading to explosions in
order to operate microreactors in the explosion regime
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Scales of homogeneous chemistry
Characteristic times as a function of dimension

Characteristic time (s)

108 o NI
£ micro | meso I lab | pilot ;
< AR R s
rv E
104 ' } tairf Lcond I 5
0 A
102 L rom = 1 min I I || . »*]
F | I, -’
10 E‘t } i ' l"j"' Lsurf 3
hom | | o |
' l L
e
10257 S ettt I"::‘.'l l |
----- A
......... .n"' 1
103 Rl ! i Laplac[a }
~* |
10_4_ A ' V{e.ng.tﬂln .LL.! S e v el
10um 100 um 1 mm 1cm 10 cm im

Characteristic dimension

Air/water systems — Laplace length~3 mm
Below the Laplace length, surface tension effects greater than gravity effects
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Process efficiency

The process efficiency nis the fraction of the
maximum amount of a property x, which has been
transferred or converted:

* |[n practice, for a property x:

x transferred or converted

(> Maximum transferrable or convertible x

* Example

Co—C
Co

= conversion

o Chemical reaction: n =
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Process efficiency
Example 1: first order homogeneous reaction
in a plug-flow reactor

 Variation of property c proportional to itself (first-order
process): r = kc

* PFR at steady-state: Lo kcoc= Coexp(—kT)

dt

= n = Cin—Cout —1— exp (_ L ) =1 — exp(—Da)

Cin—0 E
where :
— — 1 C C
or = trem1 =3 N
ref. time T )
Da = = — = k1 (Damkohler number)

~ charact. time top
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Process efficiency
Example 2: heat transfer in a plug-flow heat
exchanger

 Variation of property T proportional to itself (first-order

process): a__ v (T-T,)

dt pVcy

= n = Tin—Tout = exp (_ L) = 1 — exp(—NTU)

Tin—Tw top

T,,=constant

Where: T
pVc

Lop = Llheat = U—Ap ) ]

TUA G

pVc, top

in

T T

w W

(Nb. of transfer units)

NTU =
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Process efficiency

Example 3: first order homogeneous reaction

in CSTR

e Variation of property c is proportional to itself (first-
order process): r = kc

* CSTR at steady-state; =24t — y = k¢ .

T

Cin—C -
I:> 77 — n out . Op
where :
1

top = thoma1 = I

Da = kT

Pl and Green Chemistry

T

Da

T 1+—— " 14Da
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Cout

Cin
¢ A

v

Ny

&

(
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Number of operation units
(NOU)

* A generalization of NTU (heat/mass transfer) and
Damkohler number (reaction) concepts:

reference time T

characteristic time of global operation top

NOU =
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Effect of NOU on n

Efficiency as a function of NOU for first-
order processes

120%
100%
80%
60%
40%
20%
0%

Efficiency
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Coupling of characteristic times

* Parallel coupling

1 1 1
= — + —

tglob L1 L2

Fastest phenomenon
dominates

Example: parallel reactions A

* Consecutive coupling

tgiop = U1 T+ 13

Example: consecutive reactions A—B—C

Slowest phenomenon dominates
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Example 1 of coupling Ag<B

* Parallel-consecutive coupling:

: 1
o 15t order hom. reaction A - B thom =
hom
R2
o Mass transfer A - catalyst surface tmass = 55
m
: R
o 15t order het. reaction A - C thet = 5,
S
Flow 0 B, Catalyst
g
\ A, — C

Pl and Green Chemistry Miniaturization
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Example 1 of coupling Ag<B

A.— C

1 1 1
— +

top thom tmass + thet

1
I:N-op : 1
Khomt R2 , R

ShDm 2k

* Conversion X for first-order process in PFR:

Process efficiency No of operation units

l | i
n=X=1—-exp(—NOU) =1 —exp <——)
op
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Example 1 of coupling A<B

Effect of scale on process time

1.E+02

Ime
N\
\
\

1.E+01 ' -

1.E+00

1.E-01

v

1.E-02

1.E-03

1.E-04

1.E-05 4
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Normalized scale

Normalized characteristic t

— thom -:tmass - -thet —tglob
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Example 1 of coupling Ag<B

A.— C

S

* Domain1:¢t,,,, <t <, .
o Homogeneous reaction is the fastest (¢, the smallest)
= Homogeneous reaction totally governs the overall process

* Domain 2: t, ., <t,, <t ..

o Heterogeneous reaction is the fastest (t, ., the smallest) but t_ .. is
larger than t, . (i.e., slow mass transfer)

=Homogeneous reaction mostly governs the overall process

* Domain3:t, <t ,..<t.m

o Mass transfer faster than homogeneous reaction but t, .. is larger
than t,, (slow mass transfer)

= Mass transfer governs the overall process

Domain4:t, .. <t ..<t.m
o Mass transfer faster than heterogeneous reaction
= Heterogeneous reaction governs the process
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Example 1 of coupling

B
Effect of scale on process efficiency Ag<
(plug-flow reactor, constant space-time) * " ¢

105% [ 1
X=1—9Xp -7 khom +ﬁ
100% ShDy, ' 2k,

95%

90%

A

85% 4

80%

Conversion

75%

A
A 4

70%

65%

60%
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Normalized scale
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Example 1 of coupling

B
Effect of scale on selectivity Ag<
(plug-flow reactor, constant space-time) * " ¢
120% 1/t »
5(6)21/% ("’WT/S(S: e+)t )
— 100% om mass T lhet
O
é 80%
3 z :
~ 60% 1
z <
s 2
E 40% : 3 :
v
N 20%

0%
1.E-03 1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03

Normalized scale
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Example 2 of coupling

2 ShD,,
* Consecutive-parallel coupling: a4 = gike = 3R
1 R?

o Mass transfer A - cat. surface e —

: 1
o Het. reaction A - B (ordermy) t,4 = T
asle(Cfl,o)
: 1
o Het. reaction A - C (order m,) t,, = 3=
askas(cio)
Flow Ay
Lmass Catalyst 2R
t t
B = AS S C v
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Example 2 of coupling A 4A<B

Effect of scale on relative selectivity ° C
t, ~ B
A mass A
tr2 C
ki(ca)™  ky , o
= = 1~ Mm;
SB/C kz(Cj )mz k2 (CA)
(ca—ca) ¢y ¢, . [ tr1tr2 ]
= + - CA =
\ tmass trl trz | rltrz + tmass(trl +tr2)
|
Steady-state at catalyst surface
k t (mz—m1)
_)SB/C: [—1(CA)m1 mZ] [1+ mass_l_ mass]
k> tr1 Lr2

\ }
|

Eass (includes mass transfer effects)
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Example 2 of coupling A A<B
Effect of scale on relative selectivity (PFR) * °°
R? R

tmass = 5 crpy 0 tr1 = (my-1)
A S, 2k1s( AO) -

C

1.2 ¢
tr—l = 0.1; Sh = 3.66; D,, = 1075m?/s ; kyg = 7- 1073 moll~™1 . m3m1-2 . g~1

r2

Cio =0.2mol-m~

1\

0.8 \\ T2

04— \\\\\ :2'5

02 Decrease mass transfer rate — decrease

) surface concentration — relative decrease

of reaction with highest apparent order

0 ! !

0.0001 0.001 0.01 0.1
Radius (m)

3.

;cs =1mol-m™3
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Effect of scale on process parameters
Constant Q and NOU. t,, < R™

~ Miniaturization - -
=l & parallelization B =
L N =4
T 1% N.L.R? i
e NOU = — = o« —=<— o« N.L.R*™™ = constant
top  Qtop QR
=>N.L, « Rm_z/
Rm—2
eV « N,L_.R? «xc R™ Le e
e S < N.R?
L Q L. L. _ RM6
e Ap(lam) « up — X X
p(lam) bpz ™ N.RZRZ T NR* N2

Pl and Green Chemistry Miniaturization 29



Effect of scale on process parameters
Constant Q and NOU. t,, < R™

Table for m=0 (Ex: nt" order hom. reaction)

The table describes the effect of a change in R on various variables when keeping one
of them constant (indicated in bold)

Operation | Ref. time | Volume | Channel |Channel | Cross Pressure
no. length section drop

N

C

Constant Constant Constant Constant < R~2 x R? x R~°
Constant Constant Constant o« R~2 Constant Constant o« R~2
Constant Constant Constant x R~3 X R x R~1 Constant

Ex:R—>§atconstanth=>NC—>ch22=ch4 and Ap > Ap X 22 = Ap X 4
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Effect of scale on process parameters
Constant Q and NOU. t,, < R™

Table for m=1 (Ex: 1t order het. reaction)

Operation | Ref. time | Volume | Channel |Channel |Cross Pressure
length section

R < R xR  Constant «R! « R? x R™°
< R < R « R «x R~!  Constant x R x R73
< R < R x R x R™? < R Constant o« R!
R « R « R x R™?>®> «R'™ o« R 9> Constant
Ex: R — g at constant Ap = N, — N, x 3%°> = N, X 15.6 and L, - % = %
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Effect of scale on process parameters
Constant Q and NOU. t,, < R™

Table for m=2 (Ex: Diffusive mass transfer)

Operation | Ref. time | Volume | Channel |Channel | Cross Pressure
length section drop
Ap

o« R2 x R?2 « R? Constant Constant o« R2 o R4

o« R?2 x R? x R? o« R~2 « R? Constant Constant

R
Ex:R — 7 at constant L.
T T

4_ —
= Ap — Ap x 4* = Apx 256 and T - 7 =
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