ChE-403 Problem Set 3.4

Week 13
Problem 1

Consider a reaction with kinetics:
Catalyst slab

r = k (zero order)

Occurring in catalyst pellets in the form of slabs:

Assume that we are at low conversion and that there is no external mass transfer
limitations so that Cy g = Cys.

Equimolar counter-diffusion can also be assumed.

Write the internal mass transfer balance for this reaction, determine the Thiele modulus
after putting it in dimensionless form and propose appropriate boundary conditions.

Note: because it’s a zero order reaction, you have to assume that in certain conditions, the
concentration will be zero before the middle of the particle. You can assume that this
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center. With the two boundary conditions and the property C4(x,) = 0 you can solve for
Xo and the integration constants.

Solution:

1-D mass balance:
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Integrating twice, we get:
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Problem 2

Solve the problem of combined internal and external transport we saw in class for a slab
for the case where we have a first order RX and an isothermal slab.

The general form of the equation was:
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With boundary conditions:
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Solution:

Because it’s isothermal, we can ignore the change in temperature, therefore, the equation
reduces to:
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With boundary conditions:
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As we have seen before, the general solution to such an equation is:

C, = cstlexp(¢y) + cst2exp(—dy)



Let’s apply the boundary conditions:
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Problem 3

Consider the liquid phase hydrogenation of cyclohexene to cyclohexane (in an inert
solvent) that happens in the presence of a solid catalyst dispersed in the liquid. The
reaction is semi-batch in hydrogen (i.e. hydrogen pressure is kept constant during the
entire reaction).

H, P = constant

Q=0

These are the data we measure for this reaction. Can you interpret each of the figures?

Figure 1: We observe a linear relationship between the time and the cyclohexene
concentration given below. This relationship is also present for the data collected in
Figures 2 and 3.

Cyclohexene concentration

Time

Figure 2: Effect of the catalyst weight (total catalyst added to the solution at a single
metal loading) on the reaction rate.

Rate of reaction

Weight of catalyst

Figure 3: Evaluation of temperature effects and stirring speed on the reaction rate.
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Solution:

In Figure 1 we observe a linear relationship between time and the concentration of
cyclohexene. This means that the reaction is zero order in cyclohexene. Of course this is
not physically possible. In all likelihood the rate is dependent on cyclohexene but only at
more advanced times. At these conversions, it is likely that we have the following rate
expression:

k Ccyclo CHZ _ k

r~ =~
14+ KCopero +++ K ™

Which indicates that cyclohexene is saturating the surface of the catalyst.

Therefore, there can be no mass transfer dependence on cyclohexene, only on H.. We can
draw the system as:

! Boundary !
C Gas | Bulk layer :
H2 ' ; .l
external” |
I Particle

i “internal”
1
1

C

cyclohexene

v

Radius

In Figure 2, we see that at low loadings, the rate is proportional to catalyst mass, which is
consistent with intrinsic kinetics (no mass transfer). As the dependence slows, it is
possible mass transfer plays a role but once the rate stays constant with increased catalyst



mass, it cannot be dependent on either external or internal mass transfer. In this case, the
rate must be dependent on the mass transfer of H. between the gas and the liquid, which is
independent of the amount of catalyst that is added.

Figure 3 shows that at low stirring speed, there are mass transfer limitations at all
temperatures. The fact that we always see a smaller slope than at high stirring speed
(even at low T°) indicates this. At high stirring speed, there is definitely mass transfer
limitations at high T° but we could be measuring the actual E, at low T°.



