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•  Differen7al	equa7ons	are	composed	of	an	unknown	func7on	

and	its	deriva7ves.	

•  Depending	on	the	number	of	independent	variables	we	

dis7nguish:	

•  Ordinary	Differen7al	Equa7ons	(ODEs)	–	single	variable	func7ons	

•  Par7al	Differen7al	Equa7ons	(PDEs)	–	func7ons	of	several	variables	

(could	even	be	infinite-dimensional)	and	their	par7al	deriva7ves		

•  ODEs	can	involve	higher-order	deriva7ves,	however	these	ODEs	

can	be	converted	in	the	system	of	1st-order	ODEs			
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Differential	equations	

  

     d 2x
dt2 = f (x, dx

dt
) ⇒

x1=x , x2=
dx
dt

dx1

dt
= x2

dx2

dt
= f (x1,x2 )



•  Calculate	the	temporal	evolu7on	of	the	water	levels	in	tanks:	
•  Output	valve	is	fully	opened	
•  Leakage	openings	are	closed	

•  It	is	known:	
•  Ini7al	level	in	the	tanks	is	h1=h2=h3=25cm	
•  Flow	rates	of	the	pumps	F1=50ml/s	and	F2=0	ml/s	
•  Cross	sec7ons	A=0.00154	m2	and	Sn=0.00005	m2	

•  Earth	accelera7on	g=9.81	m/s2	
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Example:	three-tanks	system	

Tank	1	

  F1   F2 A

  h1
  h2   h3  F12   F23  Fo Sn

Tank	2	 Tank	3	

Pump	1	 Pump	2	

leakage	openings	 connec7on	pipes	 ouQlow	valve	



	

N
um

er
ic
al
	M

et
ho

ds
	in
	C
he

m
ist
ry
	

4	

Example:	three-tanks	system	

  

The general mass balance equation:

ρw A
dh1

dt
= ρwF1 − ρwF12

ρw A
dh2

dt
= ρwF12 − ρwF23

ρw A
dh3

dt
= ρwF2 + ρwF23 − ρwFo

  

The Torricelli rule:

F12 = Sn ⋅sgn(h1 − h2 ) ⋅ 2g | h1 − h2 |

F23 = Sn ⋅sgn(h2 − h3) ⋅ 2g | h2 − h3 |

Fo = Sn ⋅ 2g | h3 |

SOLVE	

Tank	1	

  F1   F2 A

  h1
  h2   h3  F12   F23  Fo Sn

Tank	2	 Tank	3	

Pump	1	 Pump	2	

leakage	openings	 connec7on	pipes	 ouQlow	valve	



• We	are	looking	for	a	func7on	that	sa7sfies	the	equa7on	

•  Example:		

•  there	is	a	family	of	solu7ons	(infinite-dimensional	space	of	

solu7ons:	
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First-order	Ordinary	Differential	Equations	

  

dx
dt

= f (x,t)

  

dx(t)
dt

+ x(t) = 0

  x(t) = Ke− t , K = 1,2,...

 t

 x•  ODEs	define	a	vector	field:	i.e.	
define	the	slopes	of	x(t),	not	

the	actual	values	of	x(t)	

•  For	one	par7cular	solu7on,	we	

need	a	value	of	x(t0)	at	some	t0	

x(t0)		

  t0



•  Typically,	the	addi7onal	condi7on	to	uniquely	determine	the	

solu7on	is	the	ini7al	value	of	the	func7on	at	t=t0						

•  For	a	nth-order	ODE	(that	can	be	converted	to	the	system	of	

n	1st-order	ODEs)	we	need	n	ini7al	condi7ons	(at	one	point,	

i.e.	for	x,	dx/dt,	d2x/dt2,…	at	t0)	

•  IVP	problem:	find	x(t)	such	that	
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Initial	Value	Problems	

 t

 x ini7al	value	

  

dx
dt

= f (x(t),t), t > 0

x(0) = x0



•  Approximate	solu7on	is	calculated	in	a	step-by-step	fashion	

star7ng	from	the	ini7al	condi7on		x(t0)		
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Numerical	solution	of	ODEs	

  x(t0 )

  t0   t1   t2    t3 !
 t

  x(t1)

  x(t2 )
  x(t3)



•  In	the	expression	for	the	ODE:	

•  At	the	7me	tk	approximate	dx/dt	with	the	forward	difference:	
  

dx
dt

= f (x(t),t), x(0) = x0
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Euler	forward	method	

  x(t0 )

  t0   t1   t2    t3 !
 t

  x(t1)

  x(t2 )
  x(t3)

  
dx
dt

=
x(tk+1)− x(tk )

h
+O(h), h = tk+1 − tk

  

therefore, we approximate values of  x(tk )

x(tk+1) = x(tk )+ hf (x(tk ),tk )

   

↓
x(t1) = x(t0 )+ hf (x(t0 ),t0 )
x(t2 ) = x(t1)+ hf (x(t1),t1)
!



•  Example:	

• We	use	the	Euler	forward	method:	

•  For	h=tk+1-tk=	0.1	we	get:	

  

dx
dt

= 2x − 3t, x(0) = 1
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Euler	forward	method	

  t0   t1   t2    t3 !

  x(t0 )

 t

  x(t1)

  x(t2 )
  x(t3)

  x(tk+1) = x(tk )+ hf (x(tk ),tk )

   

x(t1 = 0.1) = 1+ 0.1⋅(2 ⋅1− 3⋅0) = 1.2
x(t2 = 0.2) = 1.2+ 0.1⋅(2 ⋅1.2− 3⋅0.1) = 1.41
x(t3 = 0.3) = 1.41+ 0.1⋅(2 ⋅1.41− 3⋅0.2) = 1.632
!

x(t10 = 1) = 3.7979



•  This	method	is	single-step	and	explicit,	i.e.	uses	informa7on	at	

tk	to	compute	the	solu7on	at		tk+1	

•  The	value	of	x	at	tk	is	es7mated	using	forward	difference	

N
um

er
ic
al
	M

et
ho

ds
	in
	C
he

m
ist
ry
	

10	

Euler	forward	method	

  x(t0 )

  t0   t1   t2    t3 !
 t

  x(t1)

  x(t2 )
  x(t3)

true	value	of	x(t1)	

es7mated	
value	of	x(t1)	



•  S7ff	ODEs	describe	systems	with	very	different	7me	scales,	i.e.	

some	components	of	these	systems	evolve	rela7vely	slowly	

whereas	others	are	changing	rapidly	

•  The	Jacobian	matrix	of	this	kind	of	systems	has	eigenvalues	that	

differ	greatly	in	magnitude	

•  Euler	forward	method	is	very	inefficient	in	solving	s7ff	systems	

as	stability	can	be	ensured	only	with	very	small	steps	(the	

rapidly	varying	component,	i.e.	large	λ,	calls	for	a	small	h)	

•  Example:		
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Stiff	systems	



•  At	tk	approximate	dx/dt	with	the	backward	finite	difference:	

  

dx
dt

= f (x(t),t), x(0) = x0 ⇒
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Euler	backward	method	

  

x(tk+1)− x(tk )
h

= f (x(tk+1),tk+1)+O(h)

h = tk+1 − tk

  

therefore, neglecting O(h), we have
x(tk+1)− x(tk )− hf (x(tk+1),tk+1) = 0

  

since x(tk+1) is unknown, we have to resolve 

the nonlinear system, where we take w=x(tk+1):

g(w) = w− x(tk )− hf (w,tk+1)

  x(t0 )

  t0    t1!  tk    tk+1 !
 t

  x(t1)
  f (x(tk ),tk )

  f (x(tk+1),tk+1)

  

For example, use Newton-Raphson 

wn+1 = wn −
wn − x(tk )− hf (wn ,tk+1)

1− h
∂ f
∂w

(wn ,tk+1)
, n = 0,1,...

Initial condition:
(i) w0 = x(tk )

(ii) Euler forward difference estimate of x(tk+1)



•  Example:	

•  In	each	step	we	have	to	solve:	

•  For	h=tk+1-tk=	0.1	we	have:	

  

dx
dt

= 2x − 3t, x(0) = 1
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Euler	backward	method	

  t0   t1   t2    t3 !

  x(t0 )

 t

  x(t1)

  x(t2 )
  x(t3)

  

x(tk+1)− x(tk )− hf (x(tk+1),tk+1) = 0
w− x(tk )− h ⋅(2 ⋅w− 3⋅ tk+1) = 0

w =
x(tk )− 3⋅h ⋅ tk+1

(1− 2h)

   

x(t2 = 0.1) = w = 1− 3⋅0.1⋅0.1
1− 2 ⋅0.1

= 1.2125

x(t2 = 0.2) = w = 1.2125− 0.3⋅0.2
0.8

= 1.4406

x(t3 = 0.3) = w = 1.4406− 0.3⋅0.3
0.8

= 1.6883

!

x(t10 = 1) = w = 4.5783



•  Men7oned	previously:	Euler	forward	method	is	explicit,	i.e.	f	is	

evaluated	with	xk	at	7me	tk		to	compute	the	solu7on	xk+1(tk+1)	

•  Another	alterna7ve:	evaluate	f	with	xk+1	before	we	know	its	

value	(at	7me	tk+1	).	Methods	with	this	feature	are	implicit	

•  Implicit	methods	necessitate	more	computa7ons	as	it	is	

required	to	solve	algebraic	equa7ons	to	compute	xk+1	

•  Implicit	methods	are	more	robust	(i.e.	have	larger	stability	

region	than	explicit	methods)	

•  Therefore,	implicit	methods	are	more	appropriate	for	solving	

s7ff	systems	
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Explicit	vs	Implicit	methods	



•  Mo7va7on:	improve	the	accuracy	of	solu7on	without	calcula7ng	

higher	order	deriva7ves	

•  General	formula7on:			

•  a1,…,	α1,…,β1,1,…	-	constants	derived	in	such	a	way	that	the	approxima7on	

matches	as	many	terms	in	the	Taylor	expansion	as	possible		
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Runge-Kutta	methods	

   x(tk+1) = x(tk )+ h(a1K1 + a2K2 +!+ anKn )

   

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hβ1,1K1,tk + hα1 )

!
Kn = f (x(tk )+ hβn−1,1K1 + hβn−1,2K2 +"+ hβn−1,n−1Kn−1,tk + hα n−1 )

Runge-Kufa	(RK)	of	nth	order	



•  To	obtain	an	approxima7on	with	the	local	trunca7on	error	of	

O(h3):	

•  a2	can	be	considered	as	a	parameter	–	for		a2=	0.5	we	obtain	

Heun’s	method	(with	a	single	corrector)	
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2nd–order	Runge-Kutta	method	

  x(tk+1) = x(tk )+ h(a1K1 + a2K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hβ1,1K1,tk + hα1 )

  
a1 + a2 = 1, α1 a2 = 0.5, β1,1 a2 = 0.5

  
x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1



  x(tk )
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Geometric	interpretation	of	Heun’s	method	

  
x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  

Predictor

x p (tk+1) = x(tk )+ hK1

  K1 = f (x(tk ),tk )
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Geometric	interpretation	of	Heun’s	method	

  
x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  K2 = f (x p (tk+1),tk+1)

  x(tk )

  K1 = f (x(tk ),tk )

  

Predictor

x p (tk+1) = x(tk )+ hK1
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Geometric	interpretation	of	Heun’s	method	

  
x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  K1 = f (x(tk ),tk )

  K2 = f (x p (tk+1),tk+1)

  x(tk )

  

Predictor

x p (tk+1) = x(tk )+ hK1
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Geometric	interpretation	of	Heun’s	method	

  
x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  x(tk )

  
1
2

K1 + K2( )
  

Predictor

x p (tk+1) = x(tk )+ hK1
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Geometric	interpretation	of	Heun’s	method	

  
x(tk+1) = x(tk )+ h

2
(K1 + K2 )

  

K1 = f (x(tk ),tk )
K2 = f (x(tk )+ hK1,tk + h)

  x
p (tk+1)   tk+1

 tk   tk+1 h

  x(tk )

  

Corrector:
x(tk+1) = x(tk )+ h(K1 + K2 ) / 2

  
1
2

K1 + K2( )
  

Predictor

x p (tk+1) = x(tk )+ hK1

correc%on	

  

Predictor

x p (tk+1) = x(tk )+ hK1

  

Corrector:

x(tk+1) = x(tk )+ h
2

(K1 + f (x p (tk+1),tk+1))



•  Euler	and	Runge-Kufa	are	single-step	methods,	as	

informa7on	from	prior	point	tk	is	used	to	compute	x(tk+1)	

•  Mul7step	methods	use	instead	informa7on	from	several	

prior	points	

•  Adams-Bashforth-Moulton	method	

•  not	a	self-star7ng	method	–	needs	three	previous	values	of		x(tk)	to	start	

•  changing	the	step-size	difficult	as	formulas	are	dependent	on	equally	spaced	

consecu7ve	points		
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Multistep	methods	

  

Adams-Bashforth Predictor (explicit)

x p (tk+1) = x(tk )+ h
24

55 f (x(tk ),tk )−59 f (x(tk−1),tk−1)+ 37 f (x(tk−2 ),tk−2 )− 9 f (x(tk−3),tk−3)( )
Adams-Moulton Corrector (implicit)

x(tk+1) = x(tk )+ h
24

9f (x p (tk+1),tk+1)+19 f (x(tk ),tk )−5 f (x(tk−1),tk−1)+ f (x(tk−2 ),tk−2 )( )
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Comparison	of	ODE	methods	

Method	 Local/global	
trunca%on	error	

Number	of	func%on	
evalua%ons	per	step	

Euler	forward/
backward	

O(h2)	/	O(h)	 1	

2nd-order	Runge-
Kufa	(Heun)	

O(h3)	/	O(h2)	 2	

4th-order	Runge-
Kufa	

O(h5)	/	O(h4)	 4	

Adams-Bashforth-
Moulton	

O(h5)	/	O(h4)	 2	


