>
-
s}
D
=
(]
=
(@)
=
(%)
©
(@)
e
o+
(]
>
©
O
=
(]
=
)
=

Ordinary differential equations

Thursday, 01 November 2016

Differential equations

* Differential equations are composed of an unknown function

and its derivatives.

* Depending on the number of independent variables we

distinguish:

>
-
)
Z
£
(D)
<
(@)
=
[%2]
©
o
e
)
()
>
©
O
=
(D)
=
>
=

* Ordinary Differential Equations (ODEs) — single variable functions

* Partial Differential Equations (PDEs) — functions of several variables

(could even be infinite-dimensional) and their partial derivatives

* ODEs can involve higher-order derivatives, however these ODEs

can be converted in the system of 15t-order ODEs

L
d2 dt 2
—=f(x _) = dx
=% xzzg 7; = f(xlaxz)

Example: three-tanks system

* Calculate the temporal evolution of the water levels in tanks:
* QOutput valve is fully opened
* Leakage openings are closed

* |Itis known:

Initial level in the tanks is h,=h,=h,=25cm

Flow rates of the pumps F,=50ml/s and F,=0 ml/s
Cross sections A=0.00154 m? and S,=0.00005 m?
Earth acceleration g=9.81 m/s?

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

Pump 1 Pump 2
[N\ 7 \
A) { | B
\
$ Tank 1 Tank 2 Tank 3
3 N !
1 Ao | B
h1 h2 1h
£, S| £y 3 I

leakage openings connection pipes outflow valve

Example: three-tanks system

The general mass balance equation: The Torricelli rule:

F,=S,-sgn(h—h)\2g|h—h,|

2 F), =S, -sgn(h,—h)2g | h,~ h, |
A—=p F. —p F

P, r Pl =Pty F =8 -J2g|h|

dh
prj:pwE_prb

dh,
prEZPWFYZ-i_pWFVB_pWF;

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

Pump 1 Pump 2

_k/ v‘,
¢ Tank 1 Tank 2 ¢ Tank 3
£ A f
h h 1h
r, S| Fsly: | 1L

leakage openings connection pipes outflow valve

First-order Ordinary Differential Equations

We are looking for a function that satisfies the equation

dx
Rl ,f
” S (x,t)
* Example:
P d);(tt)+x(t)=0

>
-
)
L
=
(]
=
(@)
=
(%)
©
(@)
e
)
(]
>
©
O
=
(]
=
)
=

there is a family of solutions (infinite-dimensional space of

solutions: x()=Ke',K=12,...

X

ODEs define a vector field: i.e.
define the slopes of x(t), not

the actual values of x(t) x(t)””

* For one particular solution, we

need a value of x(t,) at some t, 71]

Initial Value Problems

* Typically, the additional condition to uniquely determine the

solution is the initial value of the function at t=t,

* For a nt"-order ODE (that can be converted to the system of

n 1t-order ODEs) we need n initial conditions (at one point,

i.e. for x, dx/dt, d’x/dt?,... at t,)

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

* VP problem: find x(t) such that
X initial value

dx

—=[(x(0).0), 1>0

x(0)=x,

Numerical solution of ODEs

* Approximate solution is calculated in a step-by-step fashion

starting from the initial condition x(t,)

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

Euler forward method

* In the expression for the ODE: ? = f(x(2),1), x(0)=x,
t

* At the time t, approximate dx/dt with the forward difference:

dx _ X)) — ()
dt h
x(t,) therefore, we approximate values of x(7,)

x(t,,)=x(t)+hf (x(2),t,)
\J

+0(h), h=t_ —t

k

>
-
)
D
£
()
<
(@)
=
[%2]
©
(@)
e
)
()
>
‘©
O
=
()
=
>
=

x(1,) = x(1,) + hf (x(t,).t,)
x(tl) x(2,)=x(t,)+ hf (x(¢),t))

))

Euler forward method

d.
* Example: ?);=2x—3t, x(0)=1

* We use the Euler forward method: x(¢,_,)=x(¢,)+ hf (x(¢,),t,)
* For h=t,,,-t,= 0.1 we get:

x(t,=0.1)=1+0.1-(2-1-3-0)=1.2
X(1,=02)=12+0.1-(2-1.2-3-0.1)=1.41
x(1,=0.3)=1.41+0.1-(2-1.41-3-0.2) = 1.632

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

x(t,, =1)=3.7979

Euler forward method

* This method is single-step and explicit, i.e. uses information at

t, to compute the solution at ¢t

* The value of x at t, is estimated using forward difference

x(2,)

>
-
)
D
£
()
=
(@)
=
[%2]
©
(@)
e
)
()
>
“©
O
=
()
=
>
=

true value of x(t,)

/

x(t,)

estimated \
value of x(t,) A’T
+— —r¢—r¢—r 4 —> t
[4 t 4

Stiff systems

Stiff ODEs describe systems with very different time scales, i.e.
some components of these systems evolve relatively slowly

whereas others are changing rapidly

The Jacobian matrix of this kind of systems has eigenvalues that

differ greatly in magnitude

Euler forward method is very inefficient in solving stiff systems
as stability can be ensured only with very small steps (the

rapidly varying component, i.e. large A, calls for a small h)

INTEGRATION OF STIFF EQUATIONS*
E I By C. F. Curriss aND J. O. HIRSCHFELDER
L]
Xal I lp e [TrE NAvAL RESEARCH LABORATORY, DEPARTMENT OF CHEMISTRY, TINIVERSITY OF
WisconsiN, MADISON, WISCONSIN
Communicated by Farrington Daniels, December 29, 1951

In the study of chemical kinetics, electrical circuit theory, and problems

of missile guidance a type of differential equation arises which is exceed-

ingly difficult to solve by ordinary numerical procedures. A very satis-

factory method of solution of these equations is obtained by making use of

a forward interpolation process. This scheme has the unusual property

>
-
)
Z
£
(D)
<
(@)
=
[%2]
©
o
e
)
()
>
©
O
=
(D)
=
>
=

Euler backward method
* At t, approximate dx/dt with the backward finite difference:

d —
?)lf - f(X(t),t), x(O) — XO = X(tk+1)h X(tk) - f(x(tk+1)’tk+1)+ O(h)

h=t,, -t
therefore, neglecting O(/%), we have
x(t,,)—x(t)—hf (x(,,,).t,,,)=0

since x(Z,,,) is unknown, we have to resolve

x(2,)

>
-
)
D
£
()
<
(@)
=
[%2]
©
(@)
e
)
()
>
‘©
O
=
()
=
>
=

the nonlinear system, where we take w=x(7
gw)=w—x(t,)—hf (w;t,,)

k+1)

S (x(t i).t k) For example use Newton-Raphson
—x(t,)—h
Wn+1 = Wn o x(a)f f(w : k+1) = 0,1,...
/ 1—h— > (W)

S,).t,,) Initial condition:

- (@) w=x(1,)

t { -t t -+« (11) Euler forward difference estimate of x(z)

Euler backward method

d.
* Example: ?);=2x—3t, x(0)=1

* In each step we have to solve: x(¢,,)—x(¢,)—hf (x(¢_,).t,.,)=0

>
-
)
D
£
()
=
(@)
=
[%2]
©
(@)
e
)
()
>
“©
O
=
()
=
>
=

w=x(t)—h-(2-w=3-¢t_)=0
LX) =3k,
(1-2h)
* For h=t,,,-t,= 0.1 we have: x(s,=0.1)=w= 1_13'3'1)'(1)'1 =1.2125
x(t,=0.2)=w= 1.212529.3:9-2 _} 4406
0.8
(= 0.3) = o LHA06=03:03 | coes

’ 0.8

x(t,=1)=w=4.5733

Explicit vs Implicit methods

Mentioned previously: Euler forward method is explicit, i.e. f is

evaluated with x, at time t, to compute the solution x,,,(t,.,)

Another alternative: evaluate f with x,,, before we know its

value (at time t,,,). Methods with this feature are implicit

>
-
)
Z
£
(D)
<
(@)
=
[%2]
©
o
e
)
()
>
©
O
=
(D)
=
>
=

Implicit methods necessitate more computations as it is

required to solve algebraic equations to compute x, ,,

Implicit methods are more robust (i.e. have larger stability

region than explicit methods)

* Therefore, implicit methods are more appropriate for solving

stiff systems

Runge-Kutta methods

* Motivation: improve the accuracy of solution without calculating

higher order derivatives

* General formulation:

)=x(t)+haK +a,K +-+aK)

(k+1

K, =f(x@).1)
K,=f(x()+hp, K.t +hao)

>
-
)
D
£
()
<
(@)
=
[%2]
©
(@)
e
)
()
>
‘©
O
=
()
=
>
=

K = f(x(t,)+ hf3 —11K +hp _12K +---+hf - K .t tho)

\ J
Y

Runge-Kutta (RK) of nt" order

*dy... 0(1,...,[31,1,... - constants derived in such a way that the approximation

matches as many terms in the Taylor expansion as possible

2"d-order Runge-Kutta method

x(¢,)=x(t)+h(aK +aKkK))
K, =f(x(t).t,)
K, =f(x(¢,)+hp, K ,t, +hat)
* To obtain an approximation with the local truncation error of

O(h3): a+a,=1, o a,=05 p a =05

1 2 1,1 %2

* a2 can be considered as a parameter — for a2= 0.5 we obtain

Heun’s method (with a single corrector)

x(tk+1) = x(tk) + g(K1 +K))

K, =f(x()1,)
K, =f(x(¢t,)+hK t +h)

\ A
¥ 4

x”(t

k+1
k+1)

>
-
)
D
£
()
=
(@)
=
[%2]
©
(@)
e
)
()
>
“©
O
=
()
=
>
=

Geometric interpretation of Heun’'s method

X(1,) /

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

/ - - - - ~
K =1(xt))). [Predictor
xP(t,,,)=x(t)+hK
i; }l i;+1

x(¢,,,)=x(t)+ S(K1 +K))

K, =f(x(¢,).t,)
K, =f(x()+hK t +h)

\ A
¥ 4

x”(t

k+1

k+1)

Geometric interpretation of Heun’'s method

Kz = f(xp (tk+1)’tk+1)

K, = f(x(tk),l‘k)\'.(redicytor

xP(t,,,)=x(t)+hK

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

tk h tk+1

x(¢,,,)=x(t)+ S(K1 +K))

K, =f(x(¢,).t,)
K, =f(x()+hK t +h)

\ A
¥ 4

x”(t

k+1

k+1)

Geometric interpretation of Heun’'s method

K2 = f(xp(tkﬂ)’tkﬂ)

~.
K/

~

K =1(xt))). [Predictor
xP(t,,,)=x(t)+hK

tk h tk+1

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

x(¢,,,)=x(t)+ S(K1 +K))

K, =f(x(¢,).t,)
K, =f(x()+hK t +h)

\ A
¥ 4

x”(t

k+1

k+1)

Geometric interpretation of Heun’'s method

}k)c\ﬁ o

S
~
/ ~

%(K1 + Kz) h ‘ Predictor
xP(t,,,)=x(t)+hK

< »
<« »

tk h tk+1

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

x(¢,,,)=x(t)+ S(K1 +K))

K, =f(x(¢,).t,)
K, =f(x()+hK t +h)

\ A
¥ 4

Xp(t k+1

k+1)

Geometric interpretation of Heun’'s method

Corrector:
x(¢,)=x(t)+hK +K))/2

Sg
x(t,) i

>
-
)
D
£
()
=
(@)
=
)
©
(@)
e
)
()
>
“©
O
=
()
=
)
=

/ correction
l(K1 + K 2) Predictor
xP(t,,,)=x(t)+hK
l:k h t;c+1
h ™ Predictor
x(tk+1)=x(tk)+E(Kl+K2) N
X (1 =x(f,)+
K, =f(x(¢,).t,) >~ . ¢ 1
Corrector:

K, =f(x(t)+hK ,t +h)

\ Y } H_j ~ .X(tkH) = X(fk) T é(1{1 + f(‘xp(tkﬂ)’tkﬂ))
/ 2

Xp(t k+1

k+1)

Multistep methods

* Euler and Runge-Kutta are single-step methods, as

information from prior point t, is used to compute x(t,,,)

* Multistep methods use instead information from several

prior points

>
-
)
Z
£
(D)
<
(@)
=
[%2]
©
o
e
)
()
>
©
O
=
(D)
=
>
=

* Adams-Bashforth-Moulton method
Adams-Bashforth Predictor (explicit)

xXP(t,)=x(t)+ 2—h4(55 Fx)t) =59 f (x(t,)t) +37 f(x(t,)t) =9 (x(t,)t)

Adams-Moulton Corrector (implicit)

x(rm)=x(tk)+2—};(9f<xp(tkﬂ>,rkﬂ)+19f(x<rk>,rk>—5f<x<tk_1>,rk_1>+f(x(tk_z),tk_g)

* not a self-starting method — needs three previous values of x(t,) to start

» changing the step-size difficult as formulas are dependent on equally spaced

consecutive points

Comparison of ODE methods

Method

Local/global
truncation error

Number of function
evaluations per step

Numerical Methods in Chemistry

23

