
Imports
import numpy as np
import matplotlib.pyplot as plt

a) Function to generate tridiagonal matrix
def generate_tridiagonal_matrix(n):
    
    matrix = [[0] * n for _ in range(n)]  

    # Set main diagonal elements to -2
    for i in range(n):
        matrix[i][i] = -2

    # Set upper diagonal elements to 1
    for i in range(n - 1):
        matrix[i][i + 1] = 1

    # Set lower diagonal elements to 1
    for i in range(1, n):
        matrix[i][i - 1] = 1

    return matrix

Example usage:

n = 4
tridiagonal_matrix = generate_tridiagonal_matrix(n)
for row in tridiagonal_matrix:
    print(row)

[-2, 1, 0, 0]
[1, -2, 1, 0]
[0, 1, -2, 1]
[0, 0, 1, -2]

b) Solve A x=b using LU decomposition
In LU decomposition, we decompose the system of equation A x=b as LU x=b. Then we can 
solve the original problem in two sets as L y=b (with forward substitution) and U x= y  (with 
backward substituion).

Functions
def lu_decompose(A):
    n = len(A)
    L = np.zeros((n, n))  # Initialize L matrix with zeros



    U = np.zeros((n, n))  # Initialize U matrix with zeros

    for i in range(n):
        
        # Upper triangular matrix
        for k in range(i, n):
            sum_ = 0
            for j in range(i):
                sum_ += L[i][j] * U[j][k]
            U[i][k] = A[i][k] - sum_

        # Lower triangular matrix
        for k in range(i, n):
            if i == k:
                L[i][i] = 1  # Diagonal elements of L are 1
            else:
                sum_ = 0
                for j in range(i):
                    sum_ += L[k][j] * U[j][i]
                L[k][i] = (A[k][i] - sum_) / U[i][i]

    return L, U

def forward_substitution(L, b):
    n = len(b)
    y = np.zeros(n)

    # Forward substitution
    for i in range(n):
        y[i] = (b[i] - np.dot(L[i,:i], y[:i])) / L[i,i]

    return y

def backward_substitution(U, y):
    n = len(y)
    x = np.zeros(n)

    # Backward substitution
    for i in range(n-1, -1, -1):
        x[i] = (y[i] - np.dot(U[i,i+1:], x[i+1:])) / U[i,i]

    return x

Example Usage
n = 100
A = generate_tridiagonal_matrix(n)  
x_original  = np.random.normal(0, 1, n)  # generate a random vector 
solution from the gaussian distribution with 
                                           # mean 0 and standarad 



deviation 1
    
b = np.dot(A, x_original)                  # multiply A*x to get b

L,U = lu_decompose(A)

# Solve Ly = b using forward substitution
y = forward_substitution(L, b)

# Solve Ux = y using backward substitution
x = backward_substitution(U, y)            # recovered solution

Compare the error in the recovered solution
store_errors = []
for j in range(len(x_original)):
    error = np.abs(x_original[j] - x[j])
    store_errors.append(error)
    
plt.figure(figsize = (5,5))
plt.hist(store_errors, bins = 50)
plt.xlabel('Distribution of errors', fontsize = 15)
plt.show()



Remark : We see that the error in the recovered solution is the order of 10− 14

c) Solve A x=b using Gauss Seidel function
The Gauss-Seidel method is an iterative technique used to solve a system of linear equations. It's
an improvement over the Gauss elimination method for solving linear systems. Here's how it 
works:

1. Initial Guess: Start with an initial guess for the solution vector x0.

2. Iterative Procedure: Repeat until convergence:

 Update each component of the solution vector iteratively using the current values of
other components. At each iteration kk, update the iith component of the solution 
vector x(k)x(k) using the formula:
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constant vector, and n is the number of equations.

3. Convergence Criteria: Check for convergence by comparing the new solution x (k ) 
with the previous solution x (k−1 ). Typically, convergence is determined by 
checking whether the change in the solution vector is below a predefined tolerance 
level.

4. Termination: Stop the iteration when the convergence criteria are met, and the 
solution vector has sufficiently converged

def gauss_seidel(A, b, x0, tol, max_iter=100000):
    n = len(b)
    x = x0  # Initial guess

    for _ in range(max_iter):
        x_new = np.zeros(n)
        for i in range(n):
            # Compute the new value of x[i]
            x_new[i] = (b[i] - np.dot(A[i,:i], x_new[:i]) - 
np.dot(A[i,i+1:], x[i+1:])) / A[i,i]

        # Check for convergence
        if np.linalg.norm(x_new - x) < tol:
            return x_new
        
        x = x_new

    raise ValueError("Gauss-Seidel method did not converge within the 
maximum number of iterations.")

# Example usage:



A = np.array(A)
b = np.array(b)
x0 = np.zeros(n)
x_gs = gauss_seidel(A, b, x0, tol = 1e-5)

d) Modify the Gauss-Seidel function to display tolerance at 
each iteration.
def mod_gauss_seidel(A, b, x0, tol, max_iter=100000):
    
    n = len(b)
    x = x0  # Initial guess
    norm_t = []
    for iter_ in range(max_iter):
        x_new = np.zeros(n)
        for i in range(n):
            # Compute the new value of x[i]
            x_new[i] = (b[i] - np.dot(A[i,:i], x_new[:i]) - 
np.dot(A[i,i+1:], x[i+1:])) / A[i,i]

        # Check for convergence
        norm = np.linalg.norm(x_new - x)
        norm_t.append(norm)
        #print(f'iteration: {iter_}, residual: {norm}')
        if norm < tol:
            return x_new, norm_t
        
        x = x_new

    raise ValueError("Gauss-Seidel method did not converge within the 
maximum number of iterations.")

# Example usage:
A = np.array(A)
b = np.array(b)
x_gs, residual = mod_gauss_seidel(A, b, x0,tol = 1e-5)

plt.figure(figsize = (15,5))

plt.subplot(121)

plt.plot(residual)
plt.xlabel('Iterations', fontsize = 20)
plt.ylabel('Residual', fontsize = 20)

plt.subplot(122)

plt.loglog(residual)
plt.xlabel('Iterations', fontsize = 20)



plt.ylabel('Residual', fontsize = 20)

plt.show()

e) Gauss-Seidel and LU decomposition for pre-defined 
system
A = np.load('A.npy')
b = np.load('b.npy')

## LU decomposition

L,U = lu_decompose(A)

# Solve Ly = b using forward substitution
y = forward_substitution(L, b)

# Solve Ux = y using backward substitution
x_lu = backward_substitution(U, y)            

## Gauss Seidel

x_gs, residual = mod_gauss_seidel(A, b, x0,tol = 1e-5)

/tmp/ipykernel_18587/3806670321.py:10: RuntimeWarning: overflow 
encountered in true_divide
  x_new[i] = (b[i] - np.dot(A[i,:i], x_new[:i]) - np.dot(A[i,i+1:], 
x[i+1:])) / A[i,i]

----------------------------------------------------------------------
-----
ValueError                                Traceback (most recent call 
last)
Input In [77], in <cell line: 3>()
      1 ## Gauss Seidel



----> 3 x_gs, residual = mod_gauss_seidel(A, b, x0,tol = 1e-5)

Input In [63], in mod_gauss_seidel(A, b, x0, tol, max_iter)
     17         return x_new, norm_t
     19     x = x_new
---> 21 raise ValueError("Gauss-Seidel method did not converge within 
the maximum number of iterations.")

ValueError: Gauss-Seidel method did not converge within the maximum 
number of iterations.
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