
Imports
import numpy as np
import matplotlib.pyplot as plt

a) Function to generate tridiagonal matrix
def generate_tridiagonal_matrix(n):

 matrix = [[0] * n for _ in range(n)]

 # Set main diagonal elements to -2
 for i in range(n):
 matrix[i][i] = -2

 # Set upper diagonal elements to 1
 for i in range(n - 1):
 matrix[i][i + 1] = 1

 # Set lower diagonal elements to 1
 for i in range(1, n):
 matrix[i][i - 1] = 1

 return matrix

Example usage:

n = 4
tridiagonal_matrix = generate_tridiagonal_matrix(n)
for row in tridiagonal_matrix:
 print(row)

[-2, 1, 0, 0]
[1, -2, 1, 0]
[0, 1, -2, 1]
[0, 0, 1, -2]

b) Solve A x=b using LU decomposition
In LU decomposition, we decompose the system of equation A x=b as LU x=b. Then we can
solve the original problem in two sets as L y=b (with forward substitution) and U x= y (with
backward substituion).

Functions
def lu_decompose(A):
 n = len(A)
 L = np.zeros((n, n)) # Initialize L matrix with zeros

 U = np.zeros((n, n)) # Initialize U matrix with zeros

 for i in range(n):

 # Upper triangular matrix
 for k in range(i, n):
 sum_ = 0
 for j in range(i):
 sum_ += L[i][j] * U[j][k]
 U[i][k] = A[i][k] - sum_

 # Lower triangular matrix
 for k in range(i, n):
 if i == k:
 L[i][i] = 1 # Diagonal elements of L are 1
 else:
 sum_ = 0
 for j in range(i):
 sum_ += L[k][j] * U[j][i]
 L[k][i] = (A[k][i] - sum_) / U[i][i]

 return L, U

def forward_substitution(L, b):
 n = len(b)
 y = np.zeros(n)

 # Forward substitution
 for i in range(n):
 y[i] = (b[i] - np.dot(L[i,:i], y[:i])) / L[i,i]

 return y

def backward_substitution(U, y):
 n = len(y)
 x = np.zeros(n)

 # Backward substitution
 for i in range(n-1, -1, -1):
 x[i] = (y[i] - np.dot(U[i,i+1:], x[i+1:])) / U[i,i]

 return x

Example Usage
n = 100
A = generate_tridiagonal_matrix(n)
x_original = np.random.normal(0, 1, n) # generate a random vector
solution from the gaussian distribution with
 # mean 0 and standarad

deviation 1

b = np.dot(A, x_original) # multiply A*x to get b

L,U = lu_decompose(A)

Solve Ly = b using forward substitution
y = forward_substitution(L, b)

Solve Ux = y using backward substitution
x = backward_substitution(U, y) # recovered solution

Compare the error in the recovered solution
store_errors = []
for j in range(len(x_original)):
 error = np.abs(x_original[j] - x[j])
 store_errors.append(error)

plt.figure(figsize = (5,5))
plt.hist(store_errors, bins = 50)
plt.xlabel('Distribution of errors', fontsize = 15)
plt.show()

Remark : We see that the error in the recovered solution is the order of 10− 14

c) Solve A x=b using Gauss Seidel function
The Gauss-Seidel method is an iterative technique used to solve a system of linear equations. It's
an improvement over the Gauss elimination method for solving linear systems. Here's how it
works:

1. Initial Guess: Start with an initial guess for the solution vector x0.

2. Iterative Procedure: Repeat until convergence:

 Update each component of the solution vector iteratively using the current values of
other components. At each iteration kk, update the iith component of the solution
vector x(k)x(k) using the formula:

 x i
(k)= 1

A i i (b i−∑j=1
i− 1

A i j x j
(k)− ∑

j=i+1

n

Ai j x j
(k − 1)) where A is the coefficient matrix, b is the

constant vector, and n is the number of equations.

3. Convergence Criteria: Check for convergence by comparing the new solution x (k)
with the previous solution x (k−1). Typically, convergence is determined by
checking whether the change in the solution vector is below a predefined tolerance
level.

4. Termination: Stop the iteration when the convergence criteria are met, and the
solution vector has sufficiently converged

def gauss_seidel(A, b, x0, tol, max_iter=100000):
 n = len(b)
 x = x0 # Initial guess

 for _ in range(max_iter):
 x_new = np.zeros(n)
 for i in range(n):
 # Compute the new value of x[i]
 x_new[i] = (b[i] - np.dot(A[i,:i], x_new[:i]) -
np.dot(A[i,i+1:], x[i+1:])) / A[i,i]

 # Check for convergence
 if np.linalg.norm(x_new - x) < tol:
 return x_new

 x = x_new

 raise ValueError("Gauss-Seidel method did not converge within the
maximum number of iterations.")

Example usage:

A = np.array(A)
b = np.array(b)
x0 = np.zeros(n)
x_gs = gauss_seidel(A, b, x0, tol = 1e-5)

d) Modify the Gauss-Seidel function to display tolerance at
each iteration.
def mod_gauss_seidel(A, b, x0, tol, max_iter=100000):

 n = len(b)
 x = x0 # Initial guess
 norm_t = []
 for iter_ in range(max_iter):
 x_new = np.zeros(n)
 for i in range(n):
 # Compute the new value of x[i]
 x_new[i] = (b[i] - np.dot(A[i,:i], x_new[:i]) -
np.dot(A[i,i+1:], x[i+1:])) / A[i,i]

 # Check for convergence
 norm = np.linalg.norm(x_new - x)
 norm_t.append(norm)
 #print(f'iteration: {iter_}, residual: {norm}')
 if norm < tol:
 return x_new, norm_t

 x = x_new

 raise ValueError("Gauss-Seidel method did not converge within the
maximum number of iterations.")

Example usage:
A = np.array(A)
b = np.array(b)
x_gs, residual = mod_gauss_seidel(A, b, x0,tol = 1e-5)

plt.figure(figsize = (15,5))

plt.subplot(121)

plt.plot(residual)
plt.xlabel('Iterations', fontsize = 20)
plt.ylabel('Residual', fontsize = 20)

plt.subplot(122)

plt.loglog(residual)
plt.xlabel('Iterations', fontsize = 20)

plt.ylabel('Residual', fontsize = 20)

plt.show()

e) Gauss-Seidel and LU decomposition for pre-defined
system
A = np.load('A.npy')
b = np.load('b.npy')

LU decomposition

L,U = lu_decompose(A)

Solve Ly = b using forward substitution
y = forward_substitution(L, b)

Solve Ux = y using backward substitution
x_lu = backward_substitution(U, y)

Gauss Seidel

x_gs, residual = mod_gauss_seidel(A, b, x0,tol = 1e-5)

/tmp/ipykernel_18587/3806670321.py:10: RuntimeWarning: overflow
encountered in true_divide
 x_new[i] = (b[i] - np.dot(A[i,:i], x_new[:i]) - np.dot(A[i,i+1:],
x[i+1:])) / A[i,i]

--

ValueError Traceback (most recent call
last)
Input In [77], in <cell line: 3>()
 1 ## Gauss Seidel

----> 3 x_gs, residual = mod_gauss_seidel(A, b, x0,tol = 1e-5)

Input In [63], in mod_gauss_seidel(A, b, x0, tol, max_iter)
 17 return x_new, norm_t
 19 x = x_new
---> 21 raise ValueError("Gauss-Seidel method did not converge within
the maximum number of iterations.")

ValueError: Gauss-Seidel method did not converge within the maximum
number of iterations.

	Imports
	a) Function to generate tridiagonal matrix
	Example usage:

	b) Solve using LU decomposition
	Functions
	Example Usage
	Compare the error in the recovered solution

	c) Solve using Gauss Seidel function
	d) Modify the Gauss-Seidel function to display tolerance at each iteration.
	e) Gauss-Seidel and LU decomposition for pre-defined system

