Imports

import numpy as np
import matplotlib.pyplot as plt

a) Function to generate tridiagonal matrix
def generate tridiagonal matrix(n):

matrix = [[0] * n for _ in range(n)]

Set main diagonal elements to -2
for i in range(n):
matrix[i][i] = -2

Set upper diagonal elements to 1
for i in range(n - 1):
matrix[i][i + 1] = 1

Set lower diagonal elements to 1
for i in range(l, n):
matrix[i][i - 1] =1

return matrix

Example usage:

n =4
tridiagonal matrix = generate tridiagonal matrix(n)
for row in tridiagonal matrix:

print(row)

[-2, 1, 0, 0]
[11 '21 1r 0]
[OI 1: '21 1]
[0, 0, 1, -2]

b) Solve Ax=b using LU decomposition

In LU decomposition, we decompose the system of equation Ax=b as L U x=b. Then we can
solve the original problem in two sets as L y=b (with forward substitution) and U x=y (with
backward substituion).

Functions

def lu decompose(A):
n len(A)
L np.zeros((n, n)) # Initialize L matrix with zeros

U = np.zeros((n, n)) # Initialize U matrix with zeros
for i in range(n):

Upper triangular matrix
for k in range(i, n):
sum_ = 0
for j in range(i):
sum_ += L[i][j] * U[j]1[k]
U[i][k] = A[i][k] - sum_

Lower triangular matrix
for k in range(i, n):
if 1 ==
L[i][i] = 1 # Diagonal elements of L are 1
else:
sum_ = 0
for j in range(i):
sum_ += L[K][j]1 * U[j1[i]
L{kI[i] = (A[K]I[i] - sum_) / U[i][i]

return L, U

def forward substitution(L, b):
n len(b)
y np.zeros(n)

Forward substitution
for i in range(n):
y[i] = (b[i] - np.dot(L[i,:i], y[:i])) / LI[i,1il]

return y
def backward substitution(U, y):

n len(y)
X np.zeros(n)

Backward substitution
for i in range(n-1, -1, -1):
x[i] = (y[i] - np.dot(U[i,i+1:]1, x[i+1:])) / U[i,i]

return x

Example Usage

n = 100
A = generate tridiagonal matrix(n)
x_original = np.random.normal(0, 1, n) # generate a random vector

solution from the gaussian distribution with
mean 0 and standarad

deviation 1

b = np.dot(A, x original) # multiply A*x to get b
L,U = lu decompose(A)

Solve Ly = b using forward substitution
y = forward substitution(L, b)

Solve Ux = y using backward substitution
X = backward substitution(U, vy) # recovered solution

Compare the error in the recovered solution

store_errors = []

for j in range(len(x original)):
error = np.abs(x originall[j] - x[jl)
store errors.append(error)

plt.figure(figsize = (5,5))

plt.hist(store errors, bins = 50)
plt.xlabel('Distribution of errors', fontsize = 15)
plt.show()

10 4

0 0.5 10 15 2.0 25
Distribution of errors le—14

Remark : We see that the error in the recovered solution is the order of 10™ ™

c) Solve Ax=b using Gauss Seidel function

The Gauss-Seidel method is an iterative technique used to solve a system of linear equations. It's
an improvement over the Gauss elimination method for solving linear systems. Here's how it
works:

1. Initial Guess: Start with an initial guess for the solution vector X,,.
2. TIterative Procedure: Repeat until convergence:

Update each component of the solution vector iteratively using the current values of
other components. At each iteration kk, update the iith component of the solution
vector x(k)x(k) using the formula:

i-1 n

K_ 1 k) k- 1]

X; = b,- Z; A xj - ‘Z+1 A X, where A is the coefficient matrix, b is the
11 J= J=1

constant vector, and n is the number of equations.

3. Convergence Criteria: Check for convergence by comparing the new solution x (k|
with the previous solution x|k — 1]. Typically, convergence is determined by
checking whether the change in the solution vector is below a predefined tolerance
level.

4. Termination: Stop the iteration when the convergence criteria are met, and the
solution vector has sufficiently converged

def gauss seidel(A, b, x0, tol, max iter=100000):
n = len(b)
X = X0 # Initial guess

for _in range(max iter):
X _new = np.zeros(n)
for i in range(n):
Compute the new value of x[1i]
x new[i] = (b[i] - np.dot(A[i,:i], x new[:i]) -
np.dot(A[i,i+1:], x[i+1:1)) / A[i,il]

Check for convergence
if np.linalg.norm(x new - x) < tol:
return x_new

X = X_new

raise ValueError("Gauss-Seidel method did not converge within the
maximum number of iterations.")

Example usage:

np.array(A)
np.array(b)
0 = np.zeros(n)
~gs = gauss seidel(A, b, x0, tol = le-5)

d) Modify the Gauss-Seidel function to display tolerance at
each iteration.
def mod gauss seidel(A, b, x0, tol, max iter=100000):

n len(b)
X = x0 # Initial guess
norm t = []
for iter_ in range(max_iter):
X_new = np.zeros(n)
for 1 in range(n):
Compute the new value of x[1i]
x new[i] = (b[i] - np.dot(A[i,:i], x new[:i]) -
np.dot(A[i,i+1:], x[i+1:1)) / A[i,i]

Check for convergence
norm = np.linalg.norm(x_new - Xx)
norm_t.append(norm)
#print(f'iteration: {iter }, residual: {norm}')
if norm < tol:

return x_new, norm_t

X = X_new

raise ValueError("Gauss-Seidel method did not converge within the
maximum number of iterations.")

Example usage:
A = np.array(A)
b = np.array(b)
X _gs, residual = mod gauss seidel(A, b, x0,tol = le-5)

plt.figure(figsize = (15,5))
plt.subplot(121)

plt.plot(residual)
plt.xlabel('Iterations', fontsize = 20)
plt.ylabel('Residual’', fontsize = 20)

plt.subplot(122)

plt.loglog(residual)
plt.xlabel('Iterations', fontsize

20)

plt.ylabel('Residual', fontsize = 20)
plt.show()

10

)
.
=] = ._.
i
& 2 2

Residual

Residual

=

=1
)
I

=
—
=1

w

o 500 1000 1500 2000 2500 3000 3500 4000 100 10t

: o e
Iterations

Iterations

e) Gauss-Seidel and LU decomposition for pre-defined
system

A = np.load('A.npy')

b = np.load('b.npy")

LU decomposition

L,U = lu _decompose(A)

Solve Ly = b using forward substitution
y = forward substitution(L, b)

Solve Ux = y using backward substitution
X lu = backward substitution(U, y)

Gauss Seidel

X _gs, residual = mod gauss seidel(A, b, x0,tol = le-5)

/tmp/ipykernel 18587/3806670321.py:10: RuntimeWarning: overflow
encountered in true divide

X new[i] = (b[i] - np.dot(A[i,:i], x new[:1]) - np.dot(A[i,i+1:],
x[i+1:]1)) / A[i,1i]

ValueError Traceback (most recent call
last)

Input In [77], in <cell line: 3>()
1 ## Gauss Seidel

----> 3 x gs, residual = mod gauss seidel(A, b, x0,tol = le-5)

Input In [63], in mod gauss seidel(A, b, x0, tol, max iter)
17 return x new, norm t
19 X = X _new
---> 21 raise ValueError("Gauss-Seidel method did not converge within

the maximum number of iterations.")

ValueError: Gauss-Seidel method did not converge within the maximum
number of iterations.

	Imports
	a) Function to generate tridiagonal matrix
	Example usage:

	b) Solve using LU decomposition
	Functions
	Example Usage
	Compare the error in the recovered solution

	c) Solve using Gauss Seidel function
	d) Modify the Gauss-Seidel function to display tolerance at each iteration.
	e) Gauss-Seidel and LU decomposition for pre-defined system

