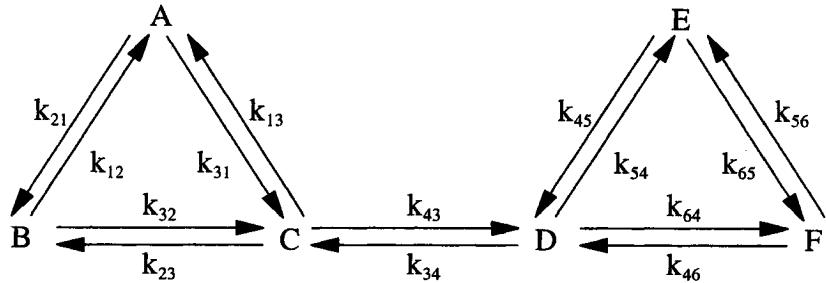


# Linear systems of equations

# Motivating example: Chemical reaction network

- We know:
  - initial concentrations of all components  $A_0, B_0, C_0, D_0, E_0, F_0$
  - kinetic rate constants of reactions  $k_{12}, \dots, k_{65}$
- We want to compute
  - steady-state concentrations of all components  $A, B, C, D, E, F$
- We model all reaction rates as 1<sup>st</sup> order kinetics



Constantinides & Mostoufi, Numerical methods for Chemical Engineers with MATLAB applications, p 139

# Chemical reaction network: equations

- Mass balances:

$$dA/dt = k_{12}B + k_{13}C - k_{21}A - k_{31}A$$

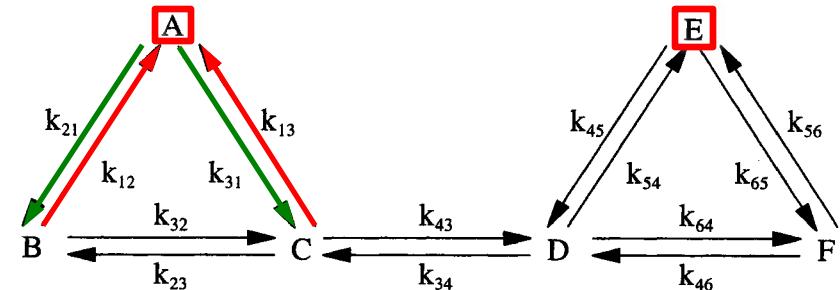
$$dB/dt = k_{21}A + k_{23}C - k_{12}B - k_{32}B$$

$$dC/dt = k_{31}A + k_{32}B + k_{34}D - k_{13}C - k_{23}C - k_{43}C$$

$$dD/dt = k_{43}C + k_{45}E + k_{46}F - k_{34}D - k_{54}D - k_{64}D$$

$$dE/dt = k_{54}D + k_{56}F - k_{45}E - k_{65}E$$

$$dF/dt = k_{65}E + k_{64}D - k_{46}F - k_{56}F$$



Constantinides & Mostoufi, Numerical methods for Chemical Engineers with MATLAB applications, p 139

- Conservation of the species:

$$dA/dt + dB/dt + dC/dt + dD/dt + dE/dt + dF/dt = 0$$

$$A + B + C + D + E + F = \text{const}$$

- The data

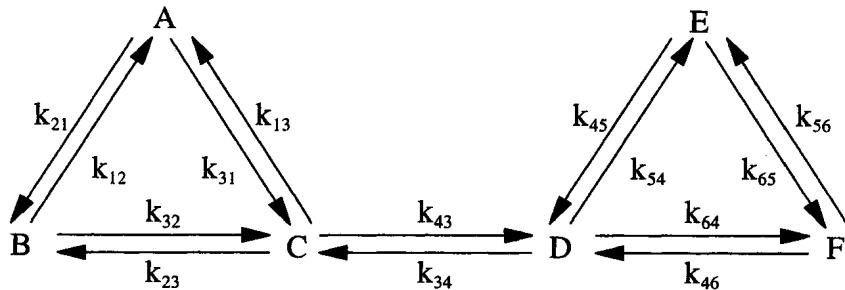
$$A_0 = 1; B_0 = 0; C_0 = 0; D_0 = 0; E_0 = 1; F_0 = 0;$$

$$k_{21} = 0.2; k_{31} = 0.1; k_{32} = 0.1; k_{34} = 0.1; k_{54} = 0.05;$$

$$k_{64} = 0.2; k_{65} = 0.1; k_{12} = 0.1; k_{13} = 0.05; k_{23} = 0.05;$$

$$k_{43} = 0.2; k_{45} = 0.1; k_{46} = 0.2; k_{56} = 0.1;$$

# Chemical reaction network: steady state



Constantinides & Mostoufi, Numerical methods for Chemical Engineers with MATLAB applications, p 139

- At the steady state, the studied system of ODE equations reduces to :

$$A + B + C + D + E + F = 2$$

$$0.2A - 0.2B + 0.05C = 0$$

$$0.1A + 0.1B - 0.3C + 0.1D = 0$$

$$0.2C - 0.35D + 0.1E + 0.2F = 0$$

$$0.05D - 0.2E + 0.1F = 0$$

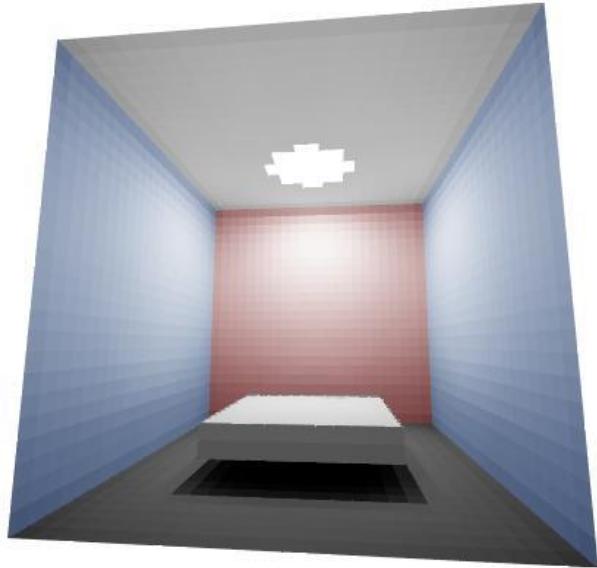
$$0.2D + 0.1E - 0.3F = 0$$

# Another motivating example: Radiosity methods

- Solve the diffusion of light for a room
- The radiosity of a pixel  $j$ ,  $B_j$ , can be computed as a solution of the following linear system of  $n$  equations for a given 3D model with  $n$  pixels:

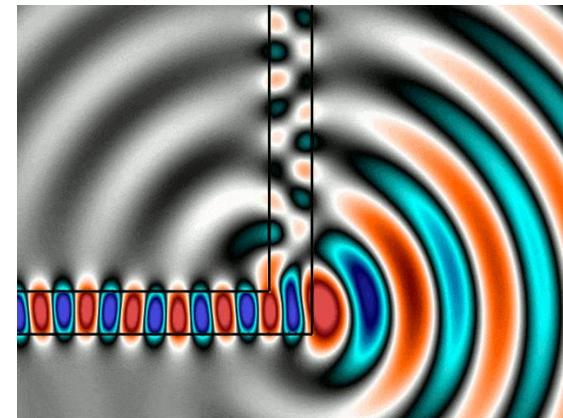
$$B_i = E_i + \rho_i \sum_j B_j F_{i,j}$$

where:  $B_i$  is radiosity of pixel  $i$ ,  $E_i$  is the emission of pixel  $i$ ,  $\rho_i$  is the reflectivity of pixel  $i$ , and  $F_{i,j}$  is the fraction of energy leaving pixel  $i$  arriving directly at  $j$



# Linear systems of equations (LSE)

- Linear systems of equations are ubiquitous in other numerical problems:
  - Interpolation (e.g., construction of the cubic spline interpolant)
  - Boundary value problems (BVP) of ordinary differential equations (ODE)
  - Partial differential equations (PDE)
  - ...



# Linear systems of equations (LSE)

- Find:
  - vector  $x \in R^n$  such that it satisfies  $Ax = b$

where:

- System matrix  $A \in R^{n,n}$  with coefficients  $a_{ij}$ ,  $i,j=1..n$
- Right hand side vector (RHS)  $b \in R^n$  with coefficients  $b_j$ ,  $j=1..n$
- System matrix  $A$  can be:
  - Full matrix
  - Sparse matrix, that can have a sparsity pattern
    - Diagonal, tridiagonal, band-matrix, block-diagonal

# Linear systems of equations (LSE)

- Solution methods:
  - Direct methods
    - provide the exact solution in a finite number of operations (Gauss elimination, etc.)
  - Iterative methods
    - start with an approximate (guess) solution and iterate to approach to the exact solution
- In all methods, we assume that matrix A is :
  - regular/invertible  $\leftrightarrow$  full column rank  $\leftrightarrow$  full row rank  $\leftrightarrow$  non-zero determinant

# Gauss elimination method

- LSE of  $n$  equations and  $n$  unknowns

$$Ax = b \Leftrightarrow \begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{ni} & \cdots & a_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b_i \\ \vdots \\ b_n \end{bmatrix}$$

- Phase 1:** transform to a upper triangular LSE

$$\begin{bmatrix} a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & a'_{ii} & \cdots & a'_{in} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & a'_{nn} \end{bmatrix} \begin{bmatrix} x_1 \\ \vdots \\ x_i \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} b_1 \\ \vdots \\ b'_i \\ \vdots \\ b'_n \end{bmatrix}$$

- Phase 2:** solve using the back substitution method

## Phase 1: forward elimination

• LSE

## pivotal element

$$\boxed{2x_1} - x_2 + x_3 + 2x_4 = 1$$

$$x_1 + 4x_2 + 2x_3 - 4x_4 = -$$

$$3x_1 + x_2 - x_3 - 10x_4 =$$

$$x_1 + x_2 - x_3 - 6x_4 =$$

# Phase 1: forward elimination

- LSE

•  $2x_1 - x_2 + x_3 + 2x_4 = 1$

•  $0 + 4.5x_2 + 1.5x_3 - 5x_4 = -2.5$

•  $0 + 2.5x_2 - 2.5x_3 - 13x_4 = 3.5$

•  $0 + 1.5x_2 - 1.5x_3 - 7x_4 = 2.5$

**pivotal element**

**Eliminated elements**

$\times -1/3$   
 $\times -5/9$

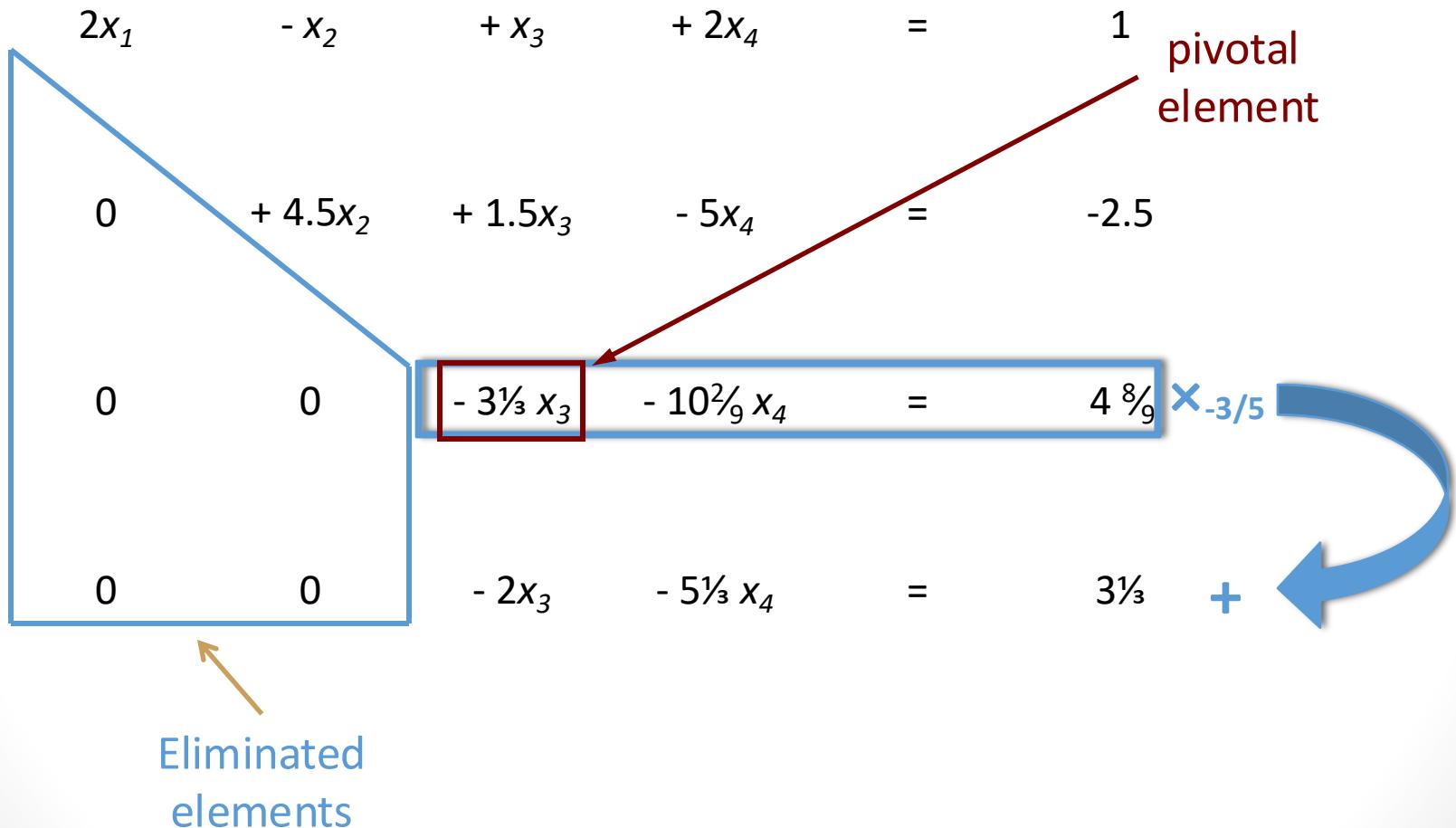
+

+

+

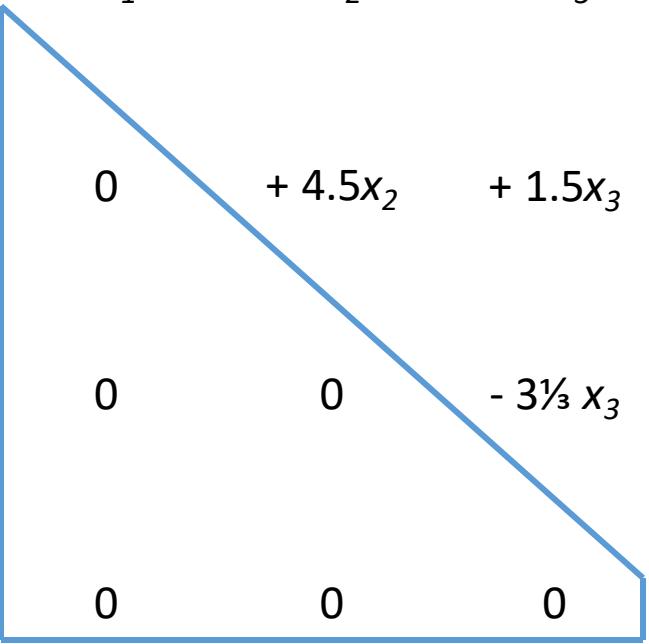
# Phase 1: forward elimination

- LSE



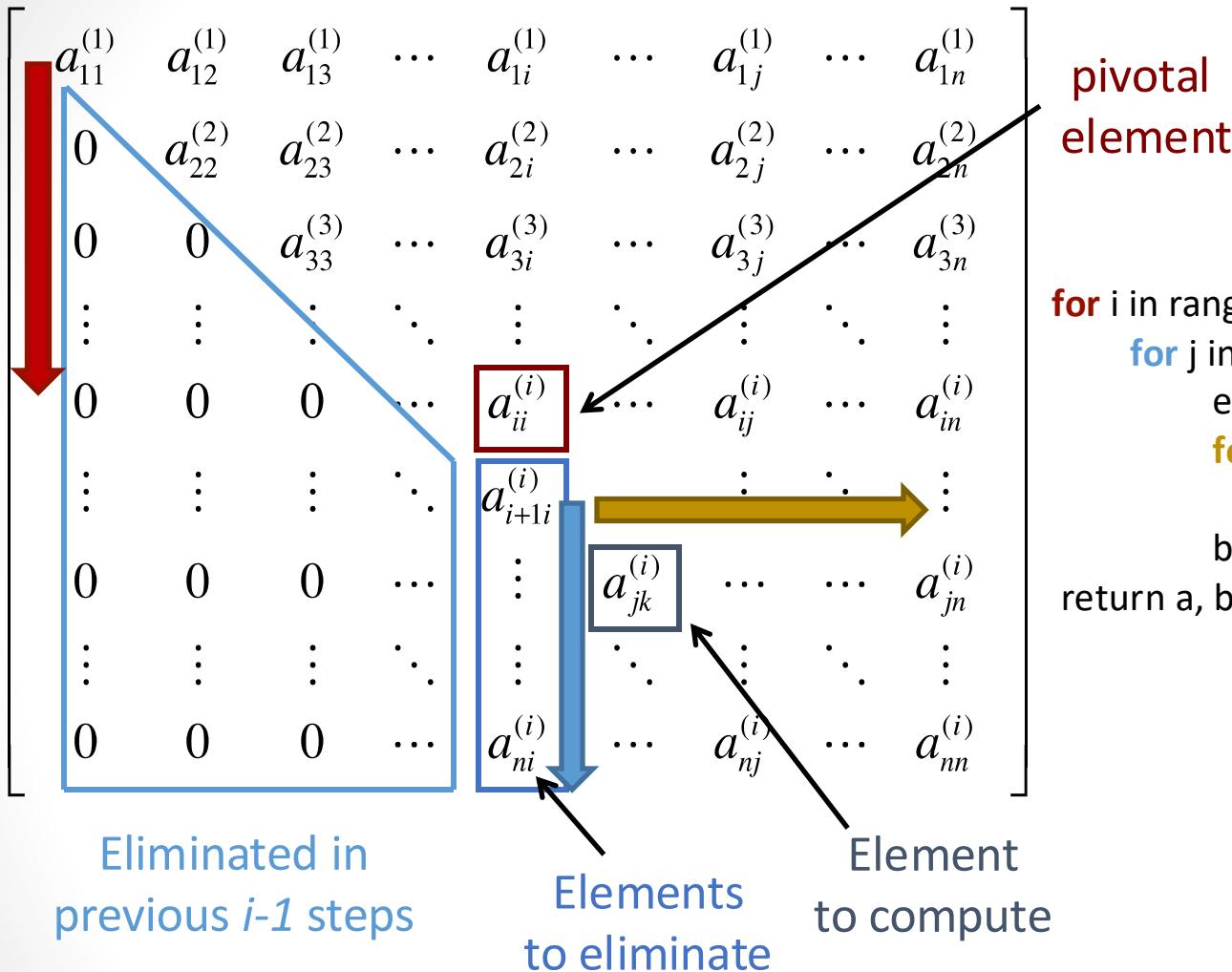
# Phase 1: forward elimination

- LSE


$$\begin{array}{cccc|c} 2x_1 & -x_2 & +x_3 & +2x_4 & = & 1 \\ 0 & +4.5x_2 & +1.5x_3 & -5x_4 & = & -2.5 \\ 0 & 0 & -3\frac{1}{3}x_3 & -10\frac{2}{9}x_4 & = & 4\frac{8}{9} \\ 0 & 0 & 0 & 0.8x_4 & = & 0.4 \end{array}$$

Eliminated elements

# Forward elimination: algorithm



```

for i in range(n - 1): # Pivoting rows
    for j in range(i + 1, n):
        elFact = -a[j, i] / a[i, i]
        for k in range(i, n):
            a[j, k] += elFact * a[i, k]
        b[j] += elFact * b[i]
return a, b

```

## Phase 2: back substitution

- LSE

$$2x_1 - x_2 + x_3 + 2x_4 = 1$$

$$0 + 4.5x_2 + 1.5x_3 - 5x_4 = -2.5$$

$$0 \quad 0 - 3\frac{1}{3}x_3 - 10\frac{2}{9}x_4 = 4\frac{8}{9}$$

$$0 \quad 0 \quad 0 \quad 0.8x_4 = 0.4$$

$$x_4 = 0.5$$

## Phase 2: back substitution

- LSE

$$2x_1 - x_2 + x_3 = 0$$

$$+ 4.5x_2 + 1.5x_3 = 0$$

$$- 3\frac{1}{3}x_3 = 10$$

$$0.8x_4 = 0.4$$

$$x_3 = -3$$

## Phase 2: back substitution

- LSE

$$2x_1 - x_2 = 3$$

$$+ 4.5x_2 = 4.5$$

$$- 3\frac{1}{3}x_3 = 10$$

$$0.8x_4 = 0.4$$

$$x_2 = 1$$

## Phase 2: back substitution

- LSE

$$2x_1 = 4$$

$$+ 4.5x_2 = 4.5$$

$$- 3\frac{1}{3}x_3 = 10$$

$$0.8x_4 = 0.4$$

$$x_1 = 2$$

# Back substitution: algorithm

$$\left[ \begin{array}{cccccc} a_{11}^{(1)} & a_{12}^{(1)} & a_{13}^{(1)} & \cdots & a_{1n}^{(1)} & & \\ 0 & a_{22}^{(2)} & a_{23}^{(2)} & \cdots & a_{2n}^{(2)} & x_1 & b_1^{(1)} \\ 0 & 0 & a_{33}^{(3)} & \cdots & a_{3n}^{(3)} & x_2 & b_2^{(2)} \\ \vdots & \vdots & \vdots & \ddots & \vdots & x_3 & b_3^{(3)} \\ 0 & 0 & 0 & a_{n-1n-1}^{(n-1)} & a_{n-1n}^{(n-1)} & x_{n-1} & b_{n-1}^{(n-1)} \\ 0 & 0 & 0 & 0 & a_{nn}^{(n)} & x_n & b_n^{(n)} \end{array} \right] = \left[ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \right]$$

$$x_n = \frac{b_n^{(n)}}{a_{nn}^{(n)}}$$

$$x_{n-1} = \frac{1}{a_{n-1n-1}^{(n-1)}} [b_{n-1}^{(n-1)} - a_{n-1n}^{(n-1)} x_n]$$

$$x_i = \frac{1}{a_{ii}^{(i)}} \left[ b_i^{(i)} - \sum_{k=i+1}^n a_{ik}^{(i)} x_k \right] \quad i = n-1, n-2, \dots, 1$$

# Gauss elimination algorithm: cost

- N° of arithmetic operations required to solve the LSE

- Additions + subtractions:

$$\frac{n(n - 1)(2n + 5)}{6}$$

- Multiplications + divisions

$$\frac{n(n^2 + 3n - 1)}{3}$$

- The total cost is around

$$\frac{2}{3}n^3$$

- Compare with Cramer's rule ( $n!$ ):

- on a gigaFLOPS machine, and  $n=50$  we need to run for  $10^{46}$  years
    - in comparison, Gauss elimination requires  $8.3 \cdot 10^{-5}$  secs

# Pivoting

- A simple example:

$$\begin{bmatrix} 0.001 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} \quad \begin{matrix} \times -1000 \\ + \end{matrix} \quad \text{blue U-shaped arrow}$$

$$\begin{bmatrix} 0.001 & 1 \\ 0 & -999 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ -998 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1000(1 - 998/999) \\ 998/999 \end{bmatrix} \xrightarrow{\text{human intervention}} \begin{bmatrix} 1000/999 \\ 998/999 \end{bmatrix}$$

- Assume now that we are using 4-digit arithmetic

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1000(1 - 0.998) \\ 0.998 \end{bmatrix} = \begin{bmatrix} 2 \\ 0.998 \end{bmatrix}$$

# Pivoting

- Pivoting (swapping the rows)

$$\begin{bmatrix} 1 & 1 \\ 0.001 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \end{bmatrix} \quad \begin{matrix} \times -0.001 \\ + \end{matrix} \quad \text{blue arrow}$$

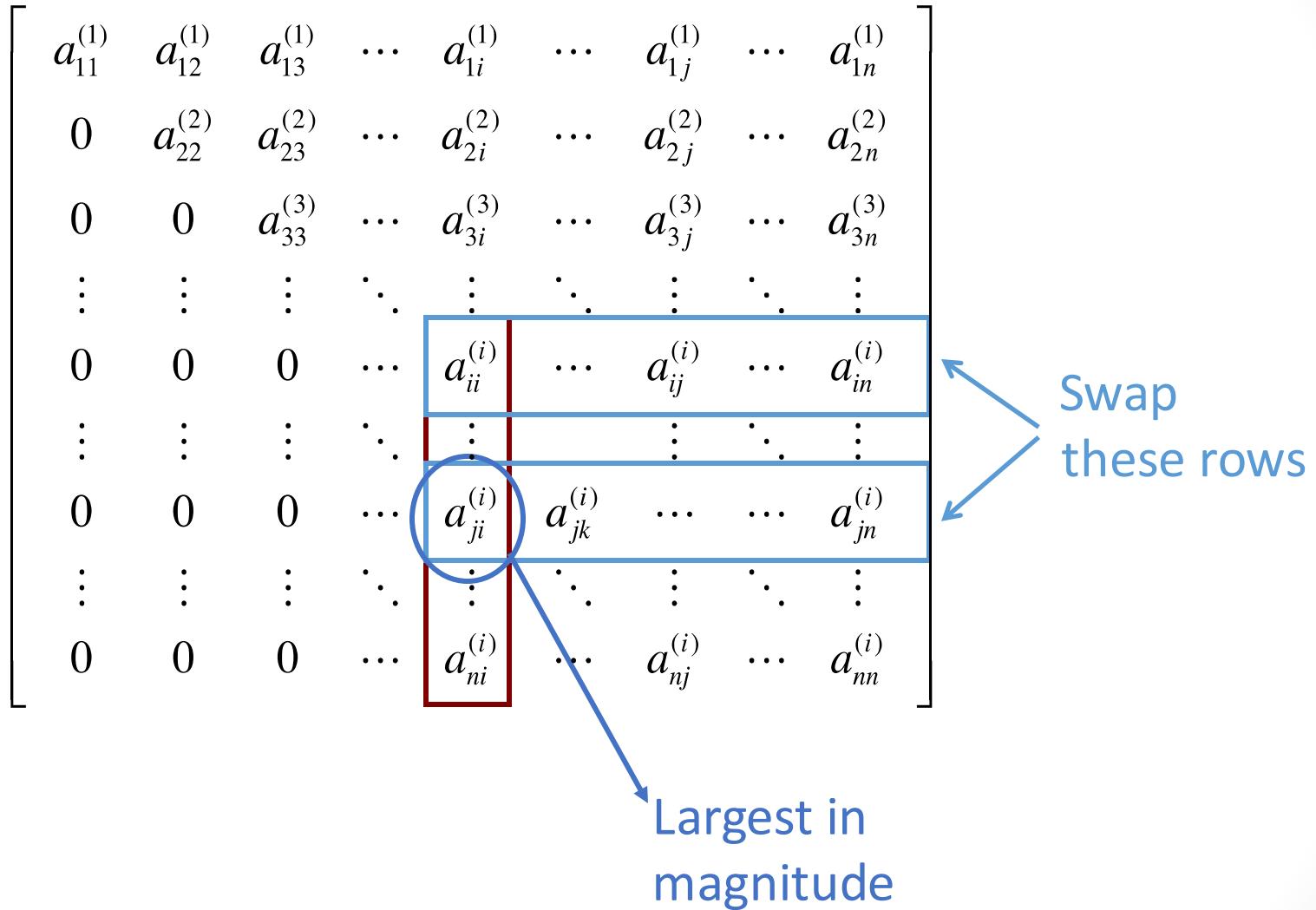
$$\begin{bmatrix} 1 & 1 \\ 0 & 0.999 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 \\ 0.998 \end{bmatrix}$$

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 - 998/999 \\ 998/999 \end{bmatrix} \xrightarrow{\text{human intervention}} \begin{bmatrix} 1000/999 \\ 998/999 \end{bmatrix}$$

- Assume now that we are using 4-digit arithmetic

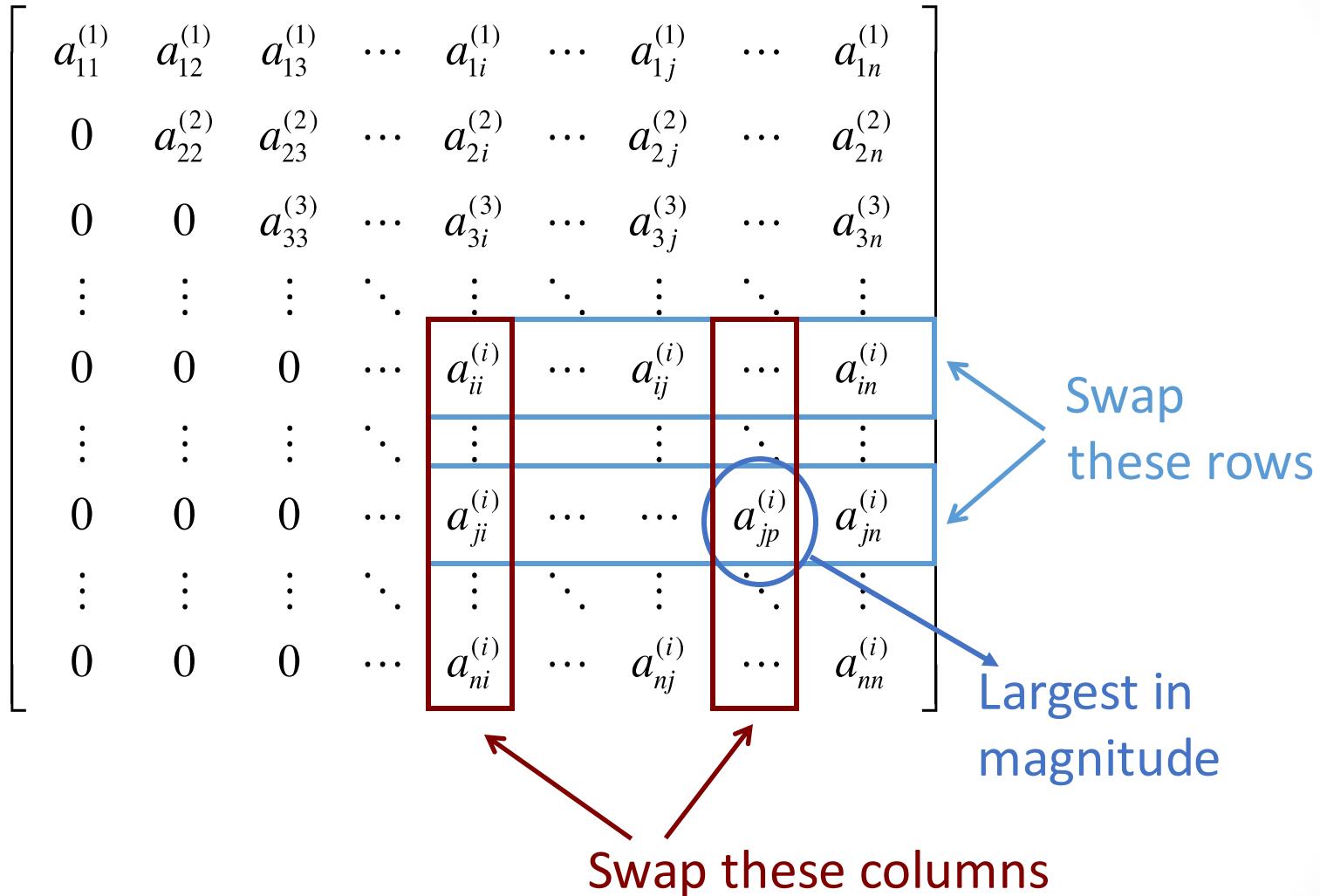
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2 - 0.998 \\ 0.998 \end{bmatrix} = \begin{bmatrix} 1.002 \\ 0.998 \end{bmatrix}$$

# Partial (row) pivoting



- Swapping rows only changes the order of equations

# Full pivoting



- When swapping columns, remember to swap the solution vector, i.e.,  $x_p$  becomes  $x_i$  and vice versa!

# Pivoting recapitulation

- Errors due to finite-precision arithmetic are introduced in each arithmetic operation
- Introduced errors propagate
- When the pivotal element,  $a(i,i)$ , is very small, the multiplying factor in the process of elimination,  $elFact=a(j,i)/a(i,i)$ , will be very large
- In a limiting case, when  $a(i,i)$  is zero, one has to perform division by zero!
- Solution: swap rows/columns or both rows and columns to use a pivotal element with the largest magnitude

# LU decomposition

$$\begin{bmatrix}
 a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\
 \vdots & \ddots & \vdots & \cdots & \vdots \\
 a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\
 \vdots & & \vdots & \ddots & \vdots \\
 a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
 \end{bmatrix} = 
 \begin{bmatrix}
 l_{11} & & & & 0 \\
 \vdots & \ddots & & & \\
 l_{i1} & \cdots & l_{ii} & & \\
 \vdots & & \vdots & \ddots & \\
 l_{n1} & \cdots & l_{ni} & \cdots & l_{nn}
 \end{bmatrix} 
 \begin{bmatrix}
 1 & \cdots & u_{1i} & \cdots & u_{1n} \\
 \vdots & \ddots & \vdots & \cdots & \vdots \\
 0 & & 1 & \cdots & u_{in} \\
 & & \ddots & \ddots & \vdots \\
 & & & & 1
 \end{bmatrix}$$

A      L      U

$$\left. \begin{array}{l}
 Ax = b \\
 LUx = b \\
 y
 \end{array} \right\} \text{thus, we are solving instead:} \quad \begin{array}{ll}
 Ly = b & \text{- forward substitution} \\
 Ux = y & \text{- back substitution}
 \end{array}$$

# LU decomposition: example

$$\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
 \end{bmatrix} \rightarrow
 \begin{bmatrix}
 l_{11} & 0 & 0 \\
 l_{21} & l_{22} & 0 \\
 l_{31} & l_{32} & l_{33}
 \end{bmatrix} \begin{bmatrix}
 1 & u_{12} & u_{13} \\
 0 & 1 & u_{23} \\
 0 & 0 & 1
 \end{bmatrix}$$

$$l_{11} = a_{11} \quad l_{21} = a_{21} \quad l_{31} = a_{31}$$

$$l_{11}u_{12} = a_{12} \quad \text{P} \quad u_{12} = \frac{a_{12}}{l_{11}}$$

$$l_{11}u_{13} = a_{13} \quad \text{P} \quad u_{13} = \frac{a_{13}}{l_{11}}$$

$$l_{31}u_{13} + l_{32}u_{23} + l_{33} = a_{33}$$

β

$$l_{33} = a_{33} - l_{31}u_{13} - l_{32}u_{23}$$

$$l_{21}u_{12} + l_{22} = a_{22} \quad \text{P} \quad l_{22} = a_{22} - l_{21}u_{12}$$

$$l_{31}u_{12} + l_{32} = a_{32} \quad \text{P} \quad l_{32} = a_{32} - l_{31}u_{12}$$

$$l_{21}u_{13} + l_{22}u_{23} = a_{23} \quad \text{P} \quad u_{23} = \frac{a_{23} - l_{21}u_{13}}{l_{22}}$$

# LU decomposition: algorithm

$$\begin{bmatrix}
 a_{11} & \cdots & a_{1i} & \cdots & a_{1n} \\
 \vdots & & \vdots & & \vdots \\
 a_{i1} & \cdots & a_{ii} & \cdots & a_{in} \\
 \vdots & & \vdots & & \vdots \\
 a_{n1} & \cdots & a_{ni} & \cdots & a_{nn}
 \end{bmatrix} = \begin{bmatrix}
 l_{11} & & & & 0 \\
 \vdots & & & & \\
 l_{i1} & \cdots & l_{ii} & & \\
 \vdots & & \vdots & & \\
 l_{n1} & \cdots & l_{ni} & \cdots & l_{nn}
 \end{bmatrix} \begin{bmatrix}
 1 & \cdots & u_{1i} & \cdots & u_{1n} \\
 \vdots & & \vdots & & \vdots \\
 1 & \cdots & u_{ii} & & \\
 \vdots & & \vdots & & \\
 0 & \cdots & \ddots & & 1
 \end{bmatrix}$$

- 1 Compute 1st column of L as:  $l_{i1} = a_{i1}$
- 2 Compute 1st row of U as:  $u_{1j} = \frac{a_{1j}}{l_{11}}$
- 3 Compute sequentially columns of L and rows of U as:

$$l_{ij} = a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \quad j \leq i, \quad i = 1, 2, \dots, n$$

$$u_{ij} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}}{l_{ii}} \quad i \leq j, \quad j = 2, 3, \dots, n$$

# LU decomposition: remarks

- Solving a LSE using LU decomposition requires
  - factorization of  $A$  as  $LU$
  - forward substitution
  - backward substitution
- For any number of RHS vectors (vectors  $b$ ) we need to perform LU decomposition only once!



$$\frac{2}{3}n^3 + n^2 + n^2 \quad \text{total operations}$$

# LU decomposition: remarks

- Solving a LSE using LU decomposition requires
  - factorization of A as LU
  - forward substitution
  - backward substitution
- For any number of RHS vectors (vectors  $b$ ) we need to perform LU decomposition only once!
- Each element of A matrix is used only once to compute the corresponding element of L or U matrix  $\rightarrow$  so L and U can be stored in A
- Partial pivoting is sufficient, and widely implemented



$$\frac{2}{3}n^3 + n^2 + n^2 \quad \text{total operations}$$

# Cholesky decomposition

- For symmetric matrices, we can use the following decomposition:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

- Since  $A=LL^T$ , i.e.  $U=L^T$ , we need to compute only  $L$
- Half as many operations as LU
- A must be symmetric, positive definite, i.e.,  $x^T A x > 0$ , for all  $x \neq 0$
- Recommended method for solving symmetric positive definite systems

# Cholesky decomposition: example

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

$$l_{11}^2 = a_{11} \quad \triangleright \quad l_{11} = \sqrt{a_{11}}$$

$$l_{11}l_{21} = a_{12} \quad \triangleright \quad l_{21} = \frac{a_{12}}{l_{11}}$$

$$l_{11}l_{31} = a_{13} \quad \triangleright \quad l_{31} = \frac{a_{13}}{l_{11}}$$

$$l_{21}^2 + l_{22}^2 = a_{22} \quad \triangleright \quad l_{22} = \sqrt{a_{22} - l_{21}^2}$$

$$l_{21}l_{31} + l_{22}l_{32} = a_{23} \quad \triangleright \quad l_{32} = \frac{a_{23} - l_{21}l_{31}}{l_{22}}$$

$$l_{31}^2 + l_{32}^2 + l_{33}^2 = a_{33} \quad \triangleright \quad l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2}$$

# Cholesky decomposition: algorithm

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{12} & a_{22} & a_{23} \\ a_{13} & a_{23} & a_{33} \end{bmatrix} \Rightarrow \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} l_{11} & l_{21} & l_{31} \\ 0 & l_{22} & l_{32} \\ 0 & 0 & l_{33} \end{bmatrix}$$

$$\left. \begin{array}{l} l_{11} = \sqrt{a_{11}} \\ l_{22} = \sqrt{a_{22} - l_{21}^2} \\ l_{33} = \sqrt{a_{33} - l_{31}^2 - l_{32}^2} \\ l_{21} = a_{12}/l_{11} \\ l_{31} = a_{13}/l_{11} \\ l_{32} = (a_{23} - l_{21}l_{31})/l_{22} \end{array} \right\} \Downarrow \quad \left. \begin{array}{l} l_{ii} = \sqrt{a_{ii} - \sum_{k=1}^{i-1} l_{ik}^2} \quad i = 1 \dots n \\ l_{ji} = \frac{a_{ij} - \sum_{k=1}^{i-1} l_{ik}l_{jk}}{l_{ii}} \quad j = i + 1 \dots n \end{array} \right\}$$

- The algorithm would fail if it would be required to take the square root of a negative number
- Therefore, another condition on  $A \rightarrow$  positive definiteness

# Recapitulation on direct methods

- Idea: transform the original LSE into a simpler, equivalent LSE that is ‘easier’ to solve
- Easy to solve LSE: diagonal, upper or lower triangular
- Finitely many elementary operations – number depending on  $n$
- Gauss elimination methods, LU decomposition, Cholesky decomposition
- Some well-known methods such as the Cramer’s rule or the explicit computation of the inverse of  $A$  are computationally prohibitive.

# Sparse systems

- For sparse systems

$$\begin{bmatrix} a_{11} & 0 & a_{13} & a_{14} & 0 \\ 0 & a_{22} & 0 & a_{24} & 0 \\ a_{31} & 0 & a_{33} & 0 & a_{35} \\ a_{41} & a_{42} & 0 & a_{44} & 0 \\ 0 & 0 & a_{53} & 0 & a_{55} \end{bmatrix}$$

- During the process of forward elimination there is a fill-in effect

$$\begin{bmatrix} a_{11} & 0 & a_{13} & a_{14} & 0 \\ 0 & a_{22} & a'_{23} & a'_{24} & 0 \\ 0 & 0 & a'_{33} & a'_{34} & a'_{35} \\ 0 & 0 & 0 & a'_{44} & a'_{45} \\ 0 & 0 & 0 & 0 & a'_{55} \end{bmatrix}$$

non-zero, fill-in, terms

- Fill-in terms can considerably increase storage requirements
- For large and sparse systems - use **iterative methods** instead, or direct methods adapted for sparse systems

# Iterative methods - Main idea

- The original system  $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1$

$$a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2$$

$$a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3$$

- Convert to

$$\begin{aligned}
 x_1 &= \frac{b_1}{a_{11}} - \frac{a_{12}}{a_{11}}x_2 - \frac{a_{13}}{a_{11}}x_3 \\
 x_2 &= \frac{b_2}{a_{22}} - \frac{a_{21}}{a_{22}}x_1 - \frac{a_{23}}{a_{22}}x_3 \\
 x_3 &= \frac{b_3}{a_{33}} - \frac{a_{31}}{a_{33}}x_1 - \frac{a_{32}}{a_{33}}x_2
 \end{aligned}
 \quad \left. \begin{array}{l} \\ \\ \end{array} \right\} Cx + d$$

- Solve iteratively

$$x^{(k)} = Cx^{(k-1)} + d$$

# Iterative methods for solving LSE

- If LSE are of a very large size, the computational efforts required for applying direct methods are prohibitively expensive
- Iterative techniques for LSE (Relaxation methods)
  - Jacobi method
  - Gauss-Seidel method
  - Successive Over Relaxation (SOR) method
- One iteration step typically costs  $\sim n$  arithmetic operations in case of a sparse matrix
- The cost depends on how many iteration steps are required to obtain a certain accuracy.

# Jacobi method

$$x_1^{(k)} = -\frac{a_{12}}{a_{11}} x_2^{(k-1)} - \frac{a_{13}}{a_{11}} x_3^{(k-1)} + \frac{b_1}{a_{11}}$$

$$x_2^{(k)} = -\frac{a_{21}}{a_{22}} x_1^{(k-1)} - \frac{a_{23}}{a_{22}} x_3^{(k-1)} + \frac{b_2}{a_{22}}$$

$$x_3^{(k)} = -\frac{a_{31}}{a_{33}} x_1^{(k-1)} - \frac{a_{32}}{a_{33}} x_2^{(k-1)} + \frac{b_3}{a_{33}}$$

- Needs an initial solution vector
- Compute new values of solution,  $x^{(k)}$ , using the values from the previous iteration,  $x^{(k-1)}$

# Jacobi method: example

- Apply the Jacobi method to solve the system:

$$5x_1 - x_2 = -7$$

$$x_1 + 4x_2 = 7$$

- we got

$$x_1^{(k)} = -\frac{a_{12}}{a_{11}}x_2^{(k-1)} + \frac{b_1}{a_{11}} = \frac{1}{5}x_2^{(k-1)} - \frac{7}{5}$$

$$x_2^{(k)} = -\frac{a_{21}}{a_{22}}x_1^{(k-1)} + \frac{b_2}{a_{22}} = -\frac{1}{4}x_1^{(k-1)} + \frac{7}{4}$$

- if we take the starting point  $(x_1, x_2) = (0, 0)$  and perform iterations

$$x_1^{(1)} = \frac{1}{5} \times 0 - \frac{7}{5} = -\frac{7}{5}$$

$$x_2^{(1)} = -\frac{1}{4} \times 0 + \frac{7}{4} = \frac{7}{4}$$

$$x_1^{(2)} = \frac{1}{5} \times \frac{7}{4} - \frac{7}{5} = -\frac{21}{20}$$

$$x_2^{(2)} = -\frac{1}{4} \times -\frac{7}{5} + \frac{7}{4} = \frac{42}{20}$$

$$x_1^{(6)} = -1.0001$$

$$x_2^{(6)} = 2.0002$$

# Gauss-Seidel method

- As soon as an element

from  $\mathbf{x}$  is updated,

it is used subsequently

$$x_1^{(k)} = -\frac{a_{12}}{a_{11}}x_2^{(k-1)} - \frac{a_{13}}{a_{11}}x_3^{(k-1)} + \frac{b_1}{a_{11}}$$

$$x_2^{(k)} = -\frac{a_{21}}{a_{22}}x_1^{(k)} - \frac{a_{23}}{a_{22}}x_3^{(k-1)} + \frac{b_2}{a_{22}}$$

$$x_3^{(k)} = -\frac{a_{31}}{a_{33}}x_1^{(k)} - \frac{a_{32}}{a_{33}}x_2^{(k)} + \frac{b_3}{a_{33}}$$

- Typically converges more rapidly than the Jacobi method
- More difficult to parallelize

# Gauss-Seidel method: example

- System: 
$$\begin{aligned} 5x_1 - x_2 &= -7 \\ x_1 + 4x_2 &= 7 \end{aligned}$$
- Gauss-Seidel iteration: 
$$\begin{aligned} x_1^{(k)} &= -\frac{a_{12}}{a_{11}}x_2^{(k-1)} + \frac{b_1}{a_{11}} = \frac{1}{5}x_2^{(k-1)} - \frac{7}{5} \\ x_2^{(k)} &= -\frac{a_{21}}{a_{22}}x_1^{(k)} + \frac{b_2}{a_{22}} = -\frac{1}{4}x_1^{(k)} + \frac{7}{4} \end{aligned}$$
- if we take the starting point  $(x_1, x_2) = (0, 0)$  and perform iterations:

$x_1^{(1)} = \frac{1}{5} \times 0 - \frac{7}{5} = -\frac{7}{5}$

$x_1^{(2)} = \frac{1}{5} \times \frac{21}{10} - \frac{7}{5} = -\frac{49}{50}$

$x_1^{(3)} = \frac{1}{5} \times \frac{399}{200} - \frac{7}{5} = -1.001$

$x_2^{(1)} = -\frac{1}{4} \times -\frac{7}{5} + \frac{7}{4} = \frac{21}{10}$

$x_2^{(2)} = -\frac{1}{4} \times -\frac{49}{50} + \frac{7}{4} = \frac{399}{200}$

$x_2^{(3)} = -\frac{1}{4} \times -1.001 + \frac{7}{4} = 2.0001$

$x_1^{(4)} = \frac{1}{5} \times \frac{8001}{4000} - \frac{7}{5} = 0.99995$

$x_1^{(6)} = -1.0001$

$x_2^{(4)} = -\frac{1}{4} \times -0.99995 + \frac{7}{4} = 1.99999$

$x_2^{(6)} = 2.0002$

Compared to Jacobi:

# Successive Over Relaxation (SOR)

$$x_1^{(k)} = (1 - \omega)x_1^{(k-1)} + \frac{\omega}{a_{11}}(b_1 - a_{12}x_2^{(k-1)} - a_{13}x_3^{(k-1)})$$

$$x_2^{(k)} = (1 - \omega)x_2^{(k-1)} + \frac{\omega}{a_{22}}(b_2 - a_{21}x_1^{(k)} - a_{23}x_3^{(k-1)})$$

$$x_3^{(k)} = (1 - \omega)x_3^{(k-1)} + \frac{\omega}{a_{33}}(b_3 - a_{31}x_1^{(k)} - a_{32}x_2^{(k)})$$

- Can be derived by multiplying the decomposed system obtained from the Gauss-Seidel method by the relaxation parameter  $\omega$
- The iterative parameter  $\omega$  should always be chosen such that  $0 < \omega < 2$  ( $1 < \omega < 2$  – over-relaxation,  $0 < \omega < 1$  – dampening)
- Number of iterations to reach desired accuracy depends on  $\omega$

# On convergence of iterative methods

- A necessary and sufficient condition for convergence of these methods: the magnitude of the largest eigenvalue of  $C$  should be smaller than 1
- If  $A$  is diagonally dominant matrix (i.e., the size of the diagonal element is larger than the sum of the moduli of the other elements in the row -  $|a_{ii}| > |a_{i1}| + |a_{i2}| + \dots + |a_{i(i-1)}| + |a_{i(i+1)}| + \dots + |a_{in}|$ ) then Jacobi and Gauss-Seidel converge (sufficient condition)
- If  $A$  is symmetric and positive definite, then Gauss-Seidel converges (Jacobi not necessarily) (sufficient condition)
- A necessary condition for convergence of SOR is  $0 < \omega < 2$ . If, in addition,  $A$  is symmetric and positive definite, then this condition is also sufficient

# Recapitulation on iterative solution methods

- Starting from an initial solution  $x_0$ , the solution vector  $x$  is iteratively computed:  $x_{k+1} = x_k + w(b - Ax_k)$ ,  $w \neq 0$
- Number of iterations (and therefore elementary operations) is apriori unknown
- May not converge
- Jacobi method, Gauss-Seidel method, Successive Over Relaxation (SOR)
- There exist other methods that solve linear systems by minimizing the residual of the equation:  $r_k = (b - Ax_k)$  – see Krylov subspace methods

# Sensitivity of linear systems

- For a given system  $Ax=b$ , the exact solution is given by  $x^* = A^{-1}b$
- In many real world applications  $A$  and  $b$  are known only approximately -> which might prevent us to find  $x^*$
- Assume that we know the exact  $A$  but not  $b$  (we know  $\hat{b}$ )
  - Q: how sensitive is our solution with respect to uncertainty in  $b$ ?

# Motivational example: deblurring images

- Images blurred: the lens out of focus, defects in lens or optical system, turbulence...
- Frequent problem in astronomy (e.g., Hubble)
- Linear system  $Ax=b$ :
  - A – blurring matrix
  - x – sharp image
  - b – blurred image



taken from L. Vandenberghe

# Deblurring images



Blurred image (b)



Blurred image + noise  
(jitter in b)

taken from L. Vandenberghe

# Deblurring images

- Solve the system for the two blurred images

What happened here???



$$A^{-1}b$$

$$A^{-1}\hat{b}$$

taken from L. Vandenberghe

# Sensitivity of linear systems

- For a given system  $Ax=b$ , the exact solution is given by  $x^* = A^{-1}b$
- In many real world applications  $A$  and  $b$  are known only approximately -> which might prevent us to find  $x^*$
- Assume that we know the exact  $A$  but not  $b$  (we know  $\hat{b}$ )
  - Q: how sensitive is our solution with respect to uncertainty in  $b$ ?
  - If we denote  $\hat{x} = A^{-1}\hat{b}$ , we can define
    - Deviation:  $e = x^* - \hat{x}$
    - Residual:  $r = b - A\hat{x} = Ae$
- We need residual to be small in some sense -> we need a distance measure in the vector space

# Vector norms

- It is a mapping  $R^n \rightarrow R$  satisfying
  - $\|x\| > 0, \|x\| = 0$  iff  $x = 0$  – positivity
  - $\|ax\| = \|a\|\|x\|$  – homogeneity
  - $\|x + y\| \leq \|x\| + \|y\|$  – triangle inequality
- P-norm
  - $\|x\|_p = (|x_1|^p + |x_2|^p + \dots + |x_n|^p)^{1/p}$ 
    - Manhattan norm (1 norm) :  $p = 1$
    - Euclidian norm (2 norm):  $p = 2$
    - Maximum norm ( $\infty$  norm):  $\|x\|_\infty = \max_{1 \leq i \leq n} |x_i|$

# Matrix norms

- It is a mapping  $R^{m \times n} \rightarrow R$  satisfying the three properties presented for the vector norms. A matrix p-norm can additionally be
  - $\|Ax\| \leq \|A\| \|x\|$  - consistent
  - $\|AB\| \leq \|A\| \|B\|$  - submultiplicative
- 2-norm
  - $\|A\|_2 = \sqrt{\lambda_{max}(A^T A)}$

# Condition number

- Relates relative errors in the inputs ( $b$ ) to relative errors in solutions:

$$\delta x = \frac{\|x^* - \hat{x}\|}{\|x^*\|} \propto \delta b = \frac{\|b^* - \hat{b}\|}{\|b^*\|}$$

$$\delta x = \frac{\|x^* - \hat{x}\|}{\|x^*\|} = \frac{\|A^{-1}(b^* - \hat{b})\|}{\|x^*\|} \leq \frac{\|A^{-1}\| \|b^* - \hat{b}\|}{\|x^*\|} \frac{\|b^*\|}{\|b^*\|}$$

$$\delta x \leq \frac{\|A^{-1}\|}{\|x^*\|} \|b^*\| \quad \delta b = \frac{\|A^{-1}\|}{\|x^*\|} \|Ax^*\| \quad \delta b \leq \|A^{-1}\| \|A\| \delta b$$

- Condition number:  $\|A^{-1}\| \|A\|$ 
  - For 2- norm ( $\|A\|_2 = \sqrt{\lambda_{max}(A^T A)}$ ), the condition number is equal to the ratio of the largest and smallest eigenvalue

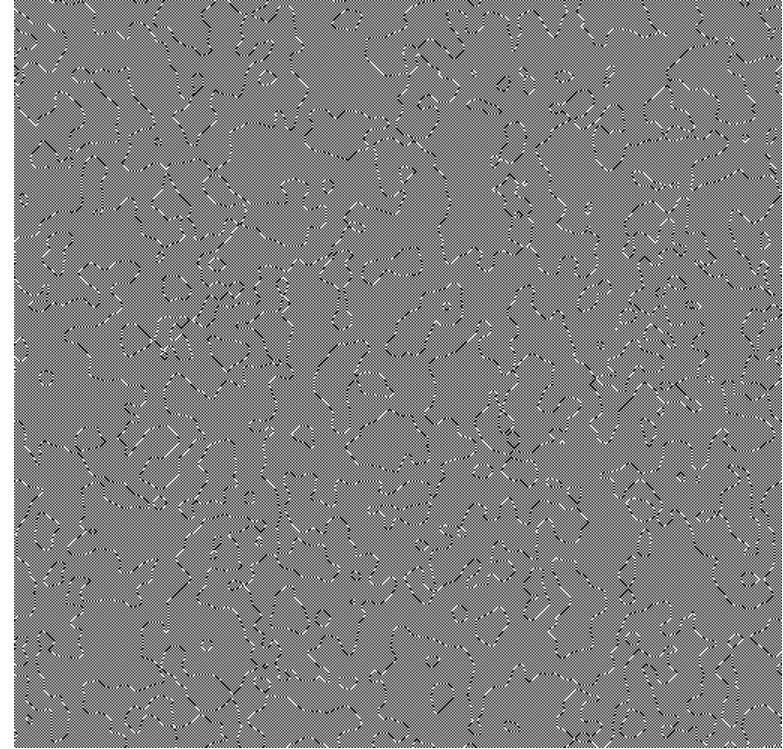
# Condition number

- Some properties
  - Scale-invariant  $\text{cond}(aA) = \text{cond}(A)$ , for all  $a$
  - It is norm dependent
  - In general,  $\text{cond}(A) \gg 1$  system is highly sensitive:
    - a small jitter in RHS ( $\delta b$ ) results in big errors in solutions ( $\delta x$ )
    - ill-conditioned systems (otherwise well-conditioned systems)
- When there is uncertainty in  $A$ 
$$\delta x \leq \text{cond}(A)(\delta A + \delta b)$$

# Deblurring images

- $A$  is nonsingular with condition number  $\sim 10^9$

$$\delta x \leq \|A^{-1}\| \|A\| \delta b$$



$$A^{-1}b$$

taken from L. Vandenberghe

$$A^{-1}\hat{b}$$