
Linear systems of equations

N
u

m
e

ri
ca

l M
et

h
o

d
s

1

• We know:

• initial concentrations of all

components A0 , B0 , C0 , D0 , E0 , F0

• kinetic rate constants of reactions

k12 , …, k65

• We want to compute

• steady-state concentrations of all

components A, B, C, D, E, F

• We model all reaction rates as 1st

order kinetics

N
u

m
e

ri
ca

l M
et

h
o

d
s

2

Motivating example:
Chemical reaction network

Constantinides & Mostoufi, Numerical methods for
Chemical Engineers with MATLAB applications, p 139

• Mass balances:

dA/dt = k12B + k13C - k21A - k31A

dB/dt = k21A + k23C - k12B - k32B

dC/dt = k31A + k32B + k34D - k13C- k23C- k43C

dD/dt = k43C + k45E + k46F - k34D - k54D - k64D

dE/dt = k54D + k56F - k45E - k65E

dF/dt = k65E + k64D - k46F - k56F

• Conservation of the species:

dA/dt+dB/dt+dC/dt+dD/dt+dE/dt+dF/dt = 0

A + B + C + D + E + F = const

• The data

A0 =1 ; B0 =0 ; C0 =0 ; D0 =0 ; E0 =1 ; F0 =0 ;

k21 =0.2 ; k31 =0.1 ; k32 =0.1 ; k34 =0.1 ; k54 =0.05 ;

k64 =0.2 ; k65 =0.1 ; k12 =0.1 ; k13 =0.05 ; k23 =0.05 ;
k43 =0.2 ; k45 =0.1 ; k46 =0.2 ; k56 =0.1 ; ;

N
u

m
e

ri
ca

l M
et

h
o

d
s

3

Chemical reaction network: equations

Constantinides & Mostoufi, Numerical methods for
Chemical Engineers with MATLAB applications, p 139

• At the steady state, the studied system of ODE equations reduces to :

A + B + C + D + E + F = 2

0.2A - 0.2B + 0.05C = 0

0.1A + 0.1B - 0.3C + 0.1D = 0

 0.2C - 0.35D + 0.1E + 0.2F = 0

 0.05D - 0.2E + 0.1F = 0

 0.2D + 0.1E - 0.3F = 0

N
u

m
e

ri
ca

l M
et

h
o

d
s

4

Chemical reaction network: steady state

Constantinides & Mostoufi, Numerical methods for
Chemical Engineers with MATLAB applications, p 139

N
u

m
e

ri
ca

l M
et

h
o

d
s

5

Another motivating example:
Radiosity methods

• Solve the diffusion of light for a room

• The radiosity of a pixel i, Bi, can be computed as a

solution of the following linear system of n

equations for a given 3D model with n pixels:

Bi = Ei + ρi ෍

j

BjFi,j

where: Bi is radiosity of pixel i, E𝑖 is the emission

of pixel i, ρi is the reflectivity of pixel i, and Fi,j is

the fraction of energy leaving pixel i arriving

directly at j

• Linear systems of equations are ubiquitous in other
numerical problems:

• Interpolation (e.g., construction of the cubic spline
interpolant)

• Boundary value problems (BVP) of ordinary differential
equations (ODE)

• Partial differential equations (PDE)

• …

N
u

m
e

ri
ca

l M
et

h
o

d
s

6

Linear systems of equations (LSE)

https://vimeo.com/160322285

https://vimeo.com/160322285

• Find:

• vector x ∈ Rn such that it satisfies Ax = b

 where:

• System matrix A ∈ Rn,n with coefficients aij, i,j=1..n

• Right hand side vector (RHS) b ∈ Rn with coefficients bj,
j=1..n

• System matrix A can be:

• Full matrix

• Sparse matrix, that can have a sparsity pattern

• Diagonal, tridiagonal, band-matrix, block-diagonal

N
u

m
e

ri
ca

l M
et

h
o

d
s

7

Linear systems of equations (LSE)

• Solution methods:

• Direct methods

• provide the exact solution in a finite number of
operations (Gauss elimination, etc.)

• Iterative methods

• start with an approximate (guess) solution and
iterate to approach to the exact solution

• In all methods, we assume that matrix A is :

• regular/invertible <-> full column rank <-> full row
rank <-> non-zero determinant

N
u

m
e

ri
ca

l M
et

h
o

d
s

8

Linear systems of equations (LSE)

N
u

m
e

ri
ca

l M
et

h
o

d
s

9

Gauss elimination method
• LSE of n equations and n unknowns

• Phase 1: transform to a upper triangular LSE

• Phase 2: solve using the back substitution method

N
u

m
e

ri
ca

l M
et

h
o

d
s

10

• LSE

2x1 - x2 + x3 + 2x4 = 1

x1 + 2x3 - 4x4 = -2

3x1 + x2 - x3 - 10x4 = 5

x1 + x2 - x3 - 6x4 = 3

+ 4x2

Phase 1: forward elimination

pivotal
element

× -0.5

+

× -1.5

+

× -0.5

+

N
u

m
e

ri
ca

l M
et

h
o

d
s

11

• LSE

2x1 - x2 + x3 + 2x4 = 1

+ 1.5x3 - 5x4 = -2.5

+ 2.5x2 - 2.5x3 - 13x4 = 3.5

+ 1.5x2 - 1.5x3 - 7x4 = 2.5

+ 4.5x2 × -1/3

+

×-5/9

+

Phase 1: forward elimination

0

0

0

Eliminated
elements

pivotal
element

N
u

m
e

ri
ca

l M
et

h
o

d
s

12

• LSE

2x1 - x2 + x3 + 2x4 = 1

+ 1.5x3 - 5x4 = -2.5

- 3⅓ x3 - 102⁄9 x4 = 4 8⁄9

- 2x3 - 5⅓ x4 = 3⅓

+ 4.5x2

Phase 1: forward elimination

0

0

0

0

0

Eliminated
elements

pivotal
element

×-3/5

+

N
u

m
e

ri
ca

l M
et

h
o

d
s

13

• LSE

2x1 - x2 + x3 + 2x4 = 1

+ 1.5x3 - 5x4 = -2.5

- 3⅓ x3 - 102⁄9 x4 = 4 8⁄9

0.8 x4 = 0.4

+ 4.5x2

Phase 1: forward elimination

0

0

0

0

0

0

Eliminated
elements

N
u

m
e

ri
ca

l M
et

h
o

d
s

14

Forward elimination: algorithm

Eliminated in
previous i-1 steps

pivotal
element

Elements
to eliminate

Element
to compute

for i in range(n - 1): # Pivoting rows
 for j in range(i + 1, n):
 elFact = -a[j, i] / a[i, i]
 for k in range(i, n):
 a[j, k] += elFact * a[i, k]
 b[j] += elFact * b[i]
 return a, b

N
u

m
e

ri
ca

l M
et

h
o

d
s

17

• LSE

2x1 - x2 + x3 + 2x4 = 1

+ 1.5x3 - 5x4 = -2.5

- 3⅓ x3 - 102⁄9 x4 = 4 8⁄9

0.8 x4 = 0.4

+ 4.5x2

Phase 2: back substitution

x4 = 0.5

0

0

0

0

0

0

N
u

m
e

ri
ca

l M
et

h
o

d
s

18

• LSE

2x1 - x2 + x3 = 0

+ 1.5x3 = 0

- 3⅓ x3 = 10

0.8 x4 = 0.4

+ 4.5x2

Phase 2: back substitution

x3 = -3

N
u

m
e

ri
ca

l M
et

h
o

d
s

19

• LSE

2x1 - x2 = 3

= 4.5

- 3⅓ x3 = 10

0.8 x4 = 0.4

+ 4.5x2

Phase 2: back substitution

x2 = 1

N
u

m
e

ri
ca

l M
et

h
o

d
s

20

• LSE

2x1 = 4

= 4.5

- 3⅓ x3 = 10

0.8 x4 = 0.4

+ 4.5x2

Phase 2: back substitution

x1 = 2

N
u

m
e

ri
ca

l M
et

h
o

d
s

21

Back substitution: algorithm

xi =
1

aii
(i)
bi

(i) - aik
(i)xk

k=i+1

n

å
é

ë
ê

ù

û
ú i = n-1,n - 2,…,1

xn-1 =
1

an-1n-1

(n-1)
bn-1

(n-1) - an-1n

(n-1)xn
é
ë

ù
û

xn =
bn

(n)

ann
(n)

N
u

m
e

ri
ca

l M
et

h
o

d
s

22

Gauss elimination algorithm: cost

• No of arithmetic operations required to solve the LSE

• Additions + subtractions:

• Multiplications + divisions

• The total cost is around

• Compare with Cramer’s rule (n!):

• on a gigaFLOPS machine, and n=50 we need to run for 1046 years

• in comparison, Gauss elimination requires 8.3*10-5 secs

n(n-1)(2n + 5)

6

n(n2 + 3n -1)

3

2

3
n3

• A simple example:

• Assume now that we are using 4-digit arithmetic

N
u

m
e

ri
ca

l M
et

h
o

d
s

23

Pivoting

× -1000

+

0.001 1

0 -999

é

ë
ê

ù

û
ú
x1

x2

é

ë

ê
ê

ù

û

ú
ú

=
1

-998

é

ë
ê

ù

û
ú

x1

x2

é

ë

ê
ê

ù

û

ú
ú

=
1000(1- 998 / 999)

998
999

é

ë

ê
ê

ù

û

ú
ú

human
intervention

¾ ®¾¾¾

1000
999

998
999

é

ë

ê
ê
ê

ù

û

ú
ú
ú

0.001 1

1 1

é

ë
ê

ù

û
ú
x1

x2

é

ë

ê
ê

ù

û

ú
ú

=
1

2

é

ë
ê

ù

û
ú

x1

x2

é

ë

ê
ê

ù

û

ú
ú

=
1000(1- 0.998)

0.998

é

ë
ê
ê

ù

û
ú
ú

=
2

0.998

é

ë
ê

ù

û
ú

N
u

m
e

ri
ca

l M
et

h
o

d
s

24

Pivoting

1 1

0.001 1

é

ë
ê

ù

û
ú
x1

x2

é

ë

ê
ê

ù

û

ú
ú

=
2

1

é

ë
ê

ù

û
ú

×-0.001

+

1 1

0 0.999

é

ë
ê

ù

û
ú
x1

x2

é

ë

ê
ê

ù

û

ú
ú

=
2

0.998

é

ë
ê

ù

û
ú

x1

x2

é

ë

ê
ê

ù

û

ú
ú

=
2 - 998 / 999

998
999

é

ë

ê
ê

ù

û

ú
ú

human
intervention

¾ ®¾¾¾

1000
999

998
999

é

ë

ê
ê
ê

ù

û

ú
ú
ú

x1

x2

é

ë

ê
ê

ù

û

ú
ú

=
2 - 0.998

0.998

é

ë
ê

ù

û
ú =

1.002

0.998

é

ë
ê

ù

û
ú

• Pivoting (swapping the rows)

• Assume now that we are using 4-digit arithmetic

N
u

m
e

ri
ca

l M
et

h
o

d
s

25

Partial (row) pivoting

Swap
these rows

Largest in
magnitude

• Swapping rows only changes the order of equations

N
u

m
e

ri
ca

l M
et

h
o

d
s

26

Full pivoting

Swap
these rows

Largest in
magnitude

Swap these columns

• When swapping columns, remember to swap the solution vector, i.e., xp becomes xi and
vice versa!

• Errors due to finite-precision arithmetic are introduced in each

arithmetic operation

• Introduced errors propagate

• When the pivotal element, a(i,i), is very small, the multiplying

factor in the process of elimination, elFact=a(j,i)/a(i,i), will be

very large

• In a limiting case, when a(i,i) is zero, one has to perform

division by zero!

• Solution: swap rows/columns or both rows and columns to use

a pivotal element with the largest magnitude

N
u

m
e

ri
ca

l M
et

h
o

d
s

27

Pivoting recapitulation

N
u

m
e

ri
ca

l M
et

h
o

d
s

28

LU decomposition

A L U

Ux = y
LUx = b

y

thus, we are
solving instead:

Ly = b
Ax = b - forward substitution

- back substitution

N
u

m
e

ri
ca

l M
et

h
o

d
s

29

LU decomposition: example

a11 a12 a13

a21 a22 a23

a31 a32 a33

é

ë

ê
ê
ê

ù

û

ú
ú
ú

Þ

l11 0 0

l21 l22 0

l31 l32 l33

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 u12 u13

0 1 u23

0 0 1

é

ë

ê
ê
ê

ù

û

ú
ú
ú

l11 = a11 l21 = a21 l31 = a31

l11u12 = a12 Þ u12 =
a12

l11

l11u13 = a13 Þ u13 =
a13

l11

l21u12 + l22 = a22 Þ l22 = a22 - l21u12

l31u12 + l32 = a32 Þ l32 = a32 - l31u12

l21u13 + l22u23 = a23 Þ u23 =
a23 - l21u13

l22

l31u13 + l32u23 + l33 = a33

ß

l33 = a33 - l31u13 - l32u23

N
u

m
e

ri
ca

l M
et

h
o

d
s

30

LU decomposition: algorithm

1 Compute 1st column of L as: 11 ii al =

2 Compute 1st row of U as:
11

1

1
l

a
u

j

j =

njji
l

ula
u

niijulal

ii

i

k kjikij

ij

j

k

kjikijij

,,3,2,

,,2,1,

1

1

1

1





=
−

=

=−=




−

=

−

=

3 Compute sequentially columns of L and rows of U as:

N
u

m
e

ri
ca

l M
et

h
o

d
s

31

LU decomposition: remarks

• Solving a LSE using LU decomposition requires

• factorization of A as LU

• forward substitution

• backward substitution

• For any number of RHS vectors (vectors b) we need to perform

LU decomposition only once!

2

3
n3 + n2 + n2 total operations

N
u

m
e

ri
ca

l M
et

h
o

d
s

32

LU decomposition: remarks

• Solving a LSE using LU decomposition requires

• factorization of A as LU

• forward substitution

• backward substitution

• For any number of RHS vectors (vectors b) we need to perform

LU decomposition only once!

• Each element of A matrix is used only once to compute the

corresponding element of L or U matrix –> so L and U can be

stored in A

• Partial pivoting is sufficient, and widely implemented

2

3
n3 + n2 + n2 total operations

N
u

m
e

ri
ca

l M
et

h
o

d
s

33

Cholesky decomposition

• For symmetric matrices, we can use the following decomposition:

• Since A=LLT, i.e. U=LT, we need to compute only L

• Half as many operations as LU

• A must be symmetric, positive definite, i.e., xTAx > 0, for all x≠0

• Recommended method for solving symmetric positive definite

systems



















































33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

N
u

m
e

ri
ca

l M
et

h
o

d
s

34

Cholesky decomposition: example



















































33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

l11

2 = a11 Þ l11 = a11

l11l21 = a12 Þ l21 =
a12

l11

l11l31 = a13 Þ l31 =
a13

l11

l21

2 + l22

2 = a22 Þ l22 = a22 - l21

2

l21l31 + l22l32 = a23 Þ l32 =
a23 - l21l31

l22

l31

2 + l32

2 + l33

2 = a33 Þ l33 = a33 - l31

2 - l32

2

• The algorithm would fail if it would be required to take the square
root of a negative number

• Therefore, another condition on A -> positive definiteness

N
u

m
e

ri
ca

l M
et

h
o

d
s

35

Cholesky decomposition: algorithm



















































33

3222

312111

333231

2221

11

332313

232212

131211

00

00

00

l

ll

lll

lll

ll

l

aaa

aaa

aaa

Þ lii = aii - lik
2

k=1

i-1

å i = 1…n

l11 = a11

l22 = a22 - l21

2

l33 = a33 - l31

2 - l32

2

l21 = a12 l11

l31 = a13 l11

l32 = (a23 - l21l31) l22

Þ l ji =

aij - likl jk
k=1

i-1

å

lii
j = i +1…n

N
u

m
e

ri
ca

l M
et

h
o

d
s

36

Recapitulation on direct methods

• Idea: transform the original LSE into a simpler,

equivalent LSE that is ‘easier’ to solve

• Easy to solve LSE: diagonal, upper or lower triangular

• Finitely many elementary operations – number

depending on n

• Gauss elimination methods, LU decomposition,

Cholesky decomposition

• Some well-known methods such as the Cramer’s rule or

the explicit computation of the inverse of A are

computationally prohibitive.

N
u

m
e

ri
ca

l M
et

h
o

d
s

37

Sparse systems
• For sparse systems

• During the process of forward elimination there is a fill-in effect

• Fill-in terms can considerably increase storage requirements

• For large and sparse systems - use iterative methods instead, or

direct methods adapted for sparse systems























5553

444241

353331

2422

141311

000

00

00

000

00

aa

aaa

aaa

aa

aaa































55

4544

353433

242322

141311

0000

000

00

00

00

a

aa

aaa

aaa

aaa non-zero, fill-in, terms

N
u

m
e

ri
ca

l M
et

h
o

d
s

38

Iterative methods - Main idea

• The original system

• Convert to

• Solve iteratively

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

x1 =
b1

a11

-
a12

a11

x2 -
a13

a11

x3

x2 =
b2

a22

-
a21

a22

x1 -
a23

a22

x3

x3 =
b3

a33

-
a31

a33

x1 -
a32

a33

x2

Cx + d

dCxx kk += −)1()(

N
u

m
e

ri
ca

l M
et

h
o

d
s

39

Iterative methods for solving LSE

• If LSE are of a very large size, the computational efforts required for

applying direct methods are prohibitively expensive

• Iterative techniques for LSE (Relaxation methods)

• Jacobi method

• Gauss-Seidel method

• Successive Over Relaxation (SOR) method

• One iteration step typically costs ~n arithmetic operations in case of

a sparse matrix

• The cost depends on how many iteration steps are required to

obtain a certain accuracy.

N
u

m
e

ri
ca

l M
et

h
o

d
s

40

Jacobi method

• Needs an initial solution vector

• Compute new values of solution, x(k), using the values from the

previous iteration, x(k-1)

() () ()

() () ()

() () ()

33

31
2

33

321
1

33

31
3

22

21
3

22

231
1

22

21
2

11

11
3

11

131
2

11

12
1

a

b
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

a

b
x

a

a
x

a

a
x

kkk

kkk

kkk

+−−=

+−−=

+−−=

−−

−−

−−

N
u

m
e

ri
ca

l M
et

h
o

d
s

41

Jacobi method: example

• Apply the Jacobi method to solve the system:

• we got

• if we take the starting point (x1, x2)=(0, 0) and perform iterations

5x1 - x2 = -7

x1 + 4x2 = 7

x1

(k) = -
a12

a11

x2

(k-1) +
b1

a11

=
1

5
x2

(k-1) -
7

5

x2

(k) = -
a21

a22

x1

(k-1) +
b2

a22

= -
1

4
x1

(k-1) +
7

4

x1

(1) =
1

5
×0 -

7

5
= -

7

5

x2

(1) = -
1

4
×0 +

7

4
=

7

4

x1

(2) =
1

5
×
7

4
-

7

5
= -

21

20

x2

(2) = -
1

4
×-

7

5
+

7

4
=

42

20

x1

(6) = -1.0001

x2

(6) = 2.0002
. . .

x1

k() = -
a12

a11

x2

k-1() -
a13

a11

x3

k-1() +
b1

a11

x2

k() = -
a21

a22

x1

k() -
a23

a22

x3

k-1() +
b2

a22

x3

k() = -
a31

a33

x1

k() -
a32

a33

x2

k() +
b3

a33

N
u

m
e

ri
ca

l M
et

h
o

d
s

42

Gauss-Seidel method

• As soon as an element

from x is updated,

 it is used subsequently

• Typically converges more rapidly than the Jacobi method

• More difficult to parallelize

N
u

m
e

ri
ca

l M
et

h
o

d
s

43

Gauss-Seidel method: example

• System:

• Gauss-Seidel iteration:

• if we take the starting point (x1, x2)=(0, 0) and perform iterations:

x1

(1) =
1

5
×0 -

7

5
= -

7

5

x2

(1) = -
1

4
×-

7

5
+

7

4
=

21

10

x1

(2) =
1

5
×
21

10
-

7

5
= -

49

50

x2

(2) = -
1

4
×-

49

50
+

7

4
=

399

200

x1

(3) =
1

5
×
399

200
-

7

5
= -1.001

x2

(3) = -
1

4
×-1.001+

7

4
= 2.0001

x1

(4) =
1

5
×
8001

4000
-

7

5
= 0.99995

x2

(4) = -
1

4
×-0.99995+

7

4
=1.99999

5x1 - x2 = -7

x1 + 4x2 = 7

x1

(k) = -
a12

a11

x2

(k-1) +
b1

a11

=
1

5
x2

(k-1) -
7

5

x2

(k) = -
a21

a22

x1

(k) +
b2

a22

= -
1

4
x1

(k) +
7

4

x1

(6) = -1.0001

x2

(6) = 2.0002
Compared to Jacobi:

N
u

m
e

ri
ca

l M
et

h
o

d
s

44

Successive Over Relaxation (SOR)

• Can be derived by multiplying the decomposed system obtained

from the Gauss-Seidel method by the relaxation parameter ω

• The iterative parameter ω should always be chosen such that

0 < ω < 2 (1< ω < 2 – over-relaxation, 0 < ω < 1 – dampening)

• Number of iterations to reach desired accuracy depends on ω

x1

k() = (1-w)x1

k-1() +
w

a11

(b1 - a12x2

k-1() - a13x3

k-1())

x2

k() = (1-w)x2

k-1() +
w

a22

(b2 - a21x1

k() - a23x3

k-1())

x3

k() = (1-w)x3

k-1() +
w

a33

(b3 - a31x1

k() - a32x2

k())

• A necessary and sufficient condition for convergence of these methods:

the magnitude of the largest eigenvalue of C should be smaller than 1

• If A is diagonally dominant matrix (i.e., the size of the diagonal element

is larger than the sum of the moduli of the other elements in the row -

|aii|>|ai1|+|ai2|+…+|aii-1|+|aii+1|+…+|ain|) then Jacobi and Gauss-

Seidel converge (sufficient condition)

• If A is symmetric and positive definite, then Gauss-Seidel converges

(Jacobi not necessarily) (sufficient condition)

• A necessary condition for convergence of SOR is 0 <ω < 2. If, in

addition, A is symmetric and positive definite, then this condition is

also sufficient

N
u

m
e

ri
ca

l M
et

h
o

d
s

On convergence of iterative methods

45

N
u

m
e

ri
ca

l M
et

h
o

d
s

46

Recapitulation on iterative solution methods

• Starting from an initial solution x0, the solution vector x is

iteratively computed: xk+1 = xk + w(b - Axk), w≠0

• Number of iterations (and therefore elementary operations) is

apriori unknown

• May not converge

• Jacobi method, Gauss-Seidel method, Succesive Over Relaxation

(SOR)

• There exist other methods that solve linear systems by

minimizing the residual of the equation: rk = (b - Axk) – see

Krylov subspace methods

N
u

m
e

ri
ca

l M
et

h
o

d
s

47

Sensitivity of linear systems

• For a given system Ax=b, the exact solution is given by x*=A-1b

• In many real world applications A and b are known only

approximately -> which might prevent us to find x*

• Assume that we know the exact A but not b (we know ෠𝑏)

• Q: how sensitive is our solution with respect to uncertainty in b?

N
u

m
e

ri
ca

l M
et

h
o

d
s

48

Motivational example: deblurring images

• Images blurred: the lens out of focus, defects in lens or

optical system, turbulence…

• Frequent problem in astronomy (e.g., Hubble)

• Linear system Ax=b:

• A – blurring matrix

• x – sharp image

• b – blurred image

taken from L. Vandenberghe

N
u

m
e

ri
ca

l M
et

h
o

d
s

49

Deblurring images

Blurred image (b) Blurred image + noise
 (jitter in b)

taken from L. Vandenberghe

N
u

m
e

ri
ca

l M
et

h
o

d
s

50

• Solve the system for the two blurred images

𝐴−1 ෠𝑏𝐴−1𝑏

taken from L. Vandenberghe

Deblurring images

What happened here???

N
u

m
e

ri
ca

l M
et

h
o

d
s

51

Sensitivity of linear systems

• For a given system Ax=b, the exact solution is given by x*=A-1b

• In many real world applications A and b are known only

approximately -> which might prevent us to find x*

• Assume that we know the exact A but not b (we know ෠𝑏)

• Q: how sensitive is our solution with respect to uncertainty in b?

• If we denote ො𝑥 = 𝐴−1 ෠𝑏, we can define

• Deviation: e = 𝑥∗ − ො𝑥

• Residual: r = 𝑏 − 𝐴 ො𝑥 = 𝐴𝑒

• We need residual to be small in some sense -> we need a

distance measure in the vector space

N
u

m
e

ri
ca

l M
et

h
o

d
s

52

Vector norms

• It is a mapping Rn -> R satisfying

• 𝑥 > 0, 𝑥 = 0 iff 𝑥 = 0 – positivity

• 𝑎𝑥 = 𝑎 𝑥 - homogeneity

• 𝑥 + 𝑦 ≤ 𝑥 + 𝑦 - triangle inequality

• P-norm

• 𝑥 𝑝 = 𝑥1
𝑝 + 𝑥2

𝑝 + ⋯ + 𝑥𝑛
𝑝 1/𝑝

• Manhattan norm (1 norm) : 𝑝 = 1

• Euclidian norm (2 norm): 𝑝 = 2

• Maximum norm (∞ norm): 𝑥 ∞ = 𝑚𝑎𝑥1≤i≤n 𝑥𝑖

N
u

m
e

ri
ca

l M
et

h
o

d
s

53

Matrix norms

• It is a mapping Rmxn -> R satisfying the three properties presented

for the vector norms. A matrix p-norm can additionally be

• 𝐴𝑥 ≤ 𝐴 𝑥 - consistent

• 𝐴𝐵 ≤ 𝐴 𝐵 - submultiplicative

• 2-norm

• 𝐴 2 = 𝜆𝑚𝑎𝑥(𝐴𝑇𝐴)

N
u

m
e

ri
ca

l M
et

h
o

d
s

54

Condition number
• Relates relative errors in the inputs (b) to relative errors in

solutions:

 𝛿𝑥 =
𝑥∗− ො𝑥

𝑥∗ ∝ 𝛿𝑏 =
𝑏∗− ෠𝑏

𝑏∗

𝛿𝑥 =
𝑥∗ − ො𝑥

𝑥∗
=

𝐴−1(𝑏∗−෠𝑏)

𝑥∗
≤

𝐴−1 (𝑏∗−෠𝑏)

𝑥∗

𝑏∗

𝑏∗

 𝛿𝑥 ≤
𝐴−1

𝑥∗ 𝑏∗ 𝛿𝑏 =
𝐴−1

𝑥∗ 𝐴𝑥∗ 𝛿𝑏 ≤ 𝐴−1 𝐴 𝛿𝑏

• Condition number: 𝐴−1 𝐴

• For 2- norm (𝐴 2 = 𝜆𝑚𝑎𝑥(𝐴𝑇𝐴)), the condition number is equal

to the ratio of the largest and smallest eigenvalue

N
u

m
e

ri
ca

l M
et

h
o

d
s

55

Condition number

• Some properties

• Scale-invariant cond(aA)=cond(A), for all a

• It is norm dependent

• In general, cond(A) >> 1 system is highly sensitive:
• a small jitter in RHS (𝛿𝑏) results in big errors in solutions

(𝛿𝑥)

• ill-conditioned systems (otherwise well-conditioned

systems)

• When there is uncertainty in A
 𝛿𝑥 ≤ 𝑐𝑜𝑛𝑑(𝐴)(𝛿𝐴 + 𝛿𝑏)

N
u

m
e

ri
ca

l M
et

h
o

d
s

56

Deblurring images

• A is nonsingular with condition number ~109

taken from L. Vandenberghe

𝛿𝑥 ≤ 𝐴−1 𝐴 𝛿𝑏

𝐴−1 ෠𝑏𝐴−1𝑏

	Slide 1: Linear systems of equations
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

