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• We know:

• initial concentrations of all 

components A0 , B0 , C0 , D0 , E0 , F0

• kinetic rate constants of reactions  

k12 , …, k65 

• We want to compute

• steady-state concentrations of all 

components  A, B, C, D, E, F

• We model all reaction rates as 1st 

order kinetics
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Motivating example:
Chemical reaction network

Constantinides & Mostoufi, Numerical methods for 
Chemical Engineers with MATLAB applications, p 139



• Mass balances:

dA/dt = k12B + k13C  - k21A - k31A

dB/dt = k21A + k23C  - k12B - k32B

dC/dt = k31A + k32B + k34D - k13C- k23C- k43C

dD/dt = k43C + k45E + k46F - k34D - k54D - k64D

dE/dt = k54D + k56F  - k45E - k65E

dF/dt = k65E + k64D  - k46F - k56F

• Conservation of the species:

dA/dt+dB/dt+dC/dt+dD/dt+dE/dt+dF/dt = 0

A + B + C + D + E + F = const

• The data

A0 =1 ; B0 =0 ; C0 =0 ; D0 =0 ; E0 =1 ; F0 =0 ;

k21 =0.2 ; k31 =0.1 ; k32 =0.1 ; k34 =0.1 ; k54 =0.05 ;

k64 =0.2 ; k65 =0.1 ; k12 =0.1 ; k13 =0.05 ; k23 =0.05 ; 
k43 =0.2 ; k45 =0.1 ; k46 =0.2 ; k56 =0.1 ; ;
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Chemical reaction network: equations

Constantinides & Mostoufi, Numerical methods for 
Chemical Engineers with MATLAB applications, p 139



• At the steady state, the studied system of ODE equations reduces to :

A       +   B     +   C      +   D   +   E    +   F     =   2

0.2A  - 0.2B + 0.05C                                    =  0

0.1A + 0.1B - 0.3C  + 0.1D                          =  0

                        0.2C - 0.35D + 0.1E + 0.2F  =  0

                                   0.05D - 0.2E  + 0.1F  =  0

                                    0.2D + 0.1E  - 0.3F   =  0
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Chemical reaction network: steady state

Constantinides & Mostoufi, Numerical methods for 
Chemical Engineers with MATLAB applications, p 139
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Another motivating example:
Radiosity methods

• Solve the diffusion of light for a room

• The radiosity of a pixel i, Bi, can be computed as a 

solution of the following linear system of n 

equations for a given 3D model with n pixels:

Bi = Ei + ρi ෍

j

BjFi,j

where: Bi is radiosity of pixel i, E𝑖 is the emission 

of pixel i, ρi is the reflectivity of pixel i, and Fi,j is 

the fraction of energy leaving pixel i arriving 

directly at j



• Linear systems of equations are ubiquitous in other 
numerical problems:

• Interpolation (e.g., construction of the cubic spline 
interpolant)

• Boundary value problems (BVP) of ordinary differential 
equations (ODE)

• Partial differential equations (PDE)

• …
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Linear systems of equations (LSE)

https://vimeo.com/160322285

https://vimeo.com/160322285


• Find:

• vector x ∈ Rn such that it satisfies  Ax = b

    where:

• System matrix  A ∈ Rn,n  with coefficients aij, i,j=1..n

• Right hand side vector (RHS)  b ∈ Rn with coefficients bj, 
j=1..n

• System matrix  A can be:

• Full matrix

• Sparse matrix, that can have a sparsity pattern

• Diagonal, tridiagonal, band-matrix, block-diagonal
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Linear systems of equations (LSE)



• Solution methods:

• Direct methods

• provide the exact solution in a finite number of 
operations (Gauss elimination, etc.)  

• Iterative methods

• start with an approximate (guess) solution and 
iterate to approach to the exact solution

• In all methods, we assume that matrix A is :

• regular/invertible <-> full column rank <-> full row 
rank <-> non-zero determinant
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Linear systems of equations (LSE)
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Gauss elimination method
• LSE of n equations and n unknowns

• Phase 1: transform to a upper triangular LSE

• Phase 2: solve using the back substitution method
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• LSE

2x1 - x2 + x3 + 2x4 = 1

x1 + 2x3 - 4x4 = -2

3x1 + x2 - x3 - 10x4 = 5

x1 + x2 - x3 - 6x4 = 3

+ 4x2

Phase 1: forward elimination

pivotal
element

× -0.5

+

× -1.5

+

× -0.5

+
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• LSE

2x1 - x2 + x3 + 2x4 = 1

+ 1.5x3 - 5x4 = -2.5

+ 2.5x2 - 2.5x3 - 13x4 = 3.5

+ 1.5x2 - 1.5x3 - 7x4 = 2.5

+ 4.5x2 × -1/3

+

×-5/9 

+

Phase 1: forward elimination

0

0

0

Eliminated
elements

pivotal
element
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• LSE

2x1 - x2 + x3 + 2x4 = 1

+ 1.5x3 - 5x4 = -2.5

- 3⅓ x3 - 102⁄9  x4 = 4 8⁄9

- 2x3 - 5⅓ x4 = 3⅓

+ 4.5x2

Phase 1: forward elimination

0

0

0

0

0

Eliminated
elements

pivotal
element

×-3/5 

+
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• LSE

2x1 - x2 + x3 + 2x4 = 1

+ 1.5x3 - 5x4 = -2.5

- 3⅓ x3 - 102⁄9  x4 = 4 8⁄9

0.8 x4 = 0.4

+ 4.5x2

Phase 1: forward elimination

0

0

0

0

0

0

Eliminated
elements
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Forward elimination: algorithm

Eliminated in 
previous i-1 steps

pivotal
element

Elements
to eliminate

Element
to compute

for i in range(n - 1): # Pivoting rows
  for j in range(i + 1, n):
  elFact = -a[j, i] / a[i, i]
  for k in range(i, n): 
   a[j, k] += elFact * a[i, k]
  b[j] += elFact * b[i]
 return a, b 
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• LSE

2x1 - x2 + x3 + 2x4 = 1

+ 1.5x3 - 5x4 = -2.5

- 3⅓ x3 - 102⁄9  x4 = 4 8⁄9

0.8 x4 = 0.4

+ 4.5x2

Phase 2: back substitution

x4 = 0.5

0

0

0

0

0

0
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• LSE

2x1 - x2 + x3 = 0

+ 1.5x3 = 0

- 3⅓ x3 = 10

0.8 x4 = 0.4

+ 4.5x2

Phase 2: back substitution

x3 = -3
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• LSE

2x1 - x2 = 3

= 4.5

- 3⅓ x3 = 10

0.8 x4 = 0.4

+ 4.5x2

Phase 2: back substitution

x2 = 1
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• LSE

2x1 = 4

= 4.5

- 3⅓ x3 = 10

0.8 x4 = 0.4

+ 4.5x2

Phase 2: back substitution

x1 = 2
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Back substitution: algorithm

 

xi =
1

aii
(i )
bi

(i ) - aik
(i )xk

k=i+1

n

å
é

ë
ê

ù

û
ú i = n-1,n - 2,…,1

xn-1 =
1

an-1n-1

(n-1)
bn-1

(n-1) - an-1n

(n-1)xn
é
ë

ù
û

xn =
bn

(n)

ann
(n)



N
u

m
e

ri
ca

l M
et

h
o

d
s

22

Gauss elimination algorithm: cost

• No of arithmetic operations required to solve the LSE

• Additions + subtractions:

• Multiplications + divisions

• The total cost is around

• Compare with Cramer’s rule (n!): 

• on a gigaFLOPS machine, and n=50 we need to run for 1046 years

• in comparison, Gauss elimination requires 8.3*10-5 secs

n(n-1)(2n + 5)

6

n(n2 + 3n -1)

3

2

3
n3



• A simple example:

• Assume now that we are using 4-digit arithmetic
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Pivoting
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Pivoting
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• Pivoting (swapping the rows)

• Assume now that we are using 4-digit arithmetic
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Partial (row)  pivoting

Swap 
these rows

Largest in
magnitude

• Swapping rows only changes the order of equations
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Full pivoting

Swap 
these rows

Largest in
magnitude

Swap these columns

• When swapping columns, remember to swap the solution vector, i.e., xp becomes xi  and 
vice versa!



• Errors due to finite-precision arithmetic are introduced in each 

arithmetic operation

• Introduced errors propagate 

• When the pivotal element, a(i,i), is very small, the multiplying 

factor in the process of elimination, elFact=a(j,i)/a(i,i), will be 

very large

• In a limiting case, when a(i,i) is zero, one has to perform 

division by zero! 

• Solution: swap rows/columns or both rows and columns to use 

a pivotal element with the largest magnitude
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Pivoting recapitulation
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LU decomposition

A L U

Ux = y
LUx = b

y

thus, we are
solving instead:

Ly = b
Ax = b - forward substitution

- back substitution
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LU decomposition: example

a11 a12 a13

a21 a22 a23

a31 a32 a33

é
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ú
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Þ

l11 0 0

l21 l22 0

l31 l32 l33
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ê
ê
ê

ù

û

ú
ú
ú

1 u12 u13

0 1 u23

0 0 1

é

ë

ê
ê
ê
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û

ú
ú
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l11 = a11 l21 = a21 l31 = a31

l11u12 = a12 Þ u12 =
a12

l11

l11u13 = a13 Þ u13 =
a13

l11

l21u12 + l22 = a22 Þ l22 = a22 - l21u12

l31u12 + l32 = a32 Þ l32 = a32 - l31u12

l21u13 + l22u23 = a23 Þ u23 =
a23 - l21u13

l22

l31u13 + l32u23 + l33 = a33

ß

l33 = a33 - l31u13 - l32u23
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LU decomposition: algorithm

1 Compute 1st column of L as: 11 ii al =

2 Compute 1st row of U as: 
11

1

1
l

a
u

j

j =

njji
l

ula
u

niijulal

ii

i

k kjikij

ij

j

k

kjikijij

,,3,2,

,,2,1,

1

1

1

1





=
−

=

=−=




−

=

−

=

3 Compute sequentially columns of L and rows of U as: 
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LU decomposition: remarks

• Solving a LSE using LU decomposition requires

• factorization of A as LU

• forward substitution

• backward substitution

• For any number of RHS vectors (vectors b) we need to perform 

LU decomposition only once!

2

3
n3 + n2 + n2 total operations
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LU decomposition: remarks

• Solving a LSE using LU decomposition requires

• factorization of A as LU

• forward substitution

• backward substitution

• For any number of RHS vectors (vectors b) we need to perform 

LU decomposition only once!

• Each element of A matrix is used only once to compute the

corresponding element of L or U matrix –> so L and U can be 

stored in A

• Partial pivoting is sufficient, and widely implemented

2

3
n3 + n2 + n2 total operations
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Cholesky decomposition

• For symmetric matrices, we can use the following decomposition:

• Since A=LLT, i.e. U=LT, we need to compute only L

• Half as many operations as LU

• A must be symmetric, positive definite, i.e., xTAx > 0, for all x≠0 

• Recommended method for solving symmetric positive definite 

systems
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Cholesky decomposition: example
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• The algorithm would fail if it would be required to take the square 
root of a negative number

• Therefore, another condition on A -> positive definiteness
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Cholesky decomposition: algorithm
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Þ lii = aii - lik
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å i = 1…n
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l22 = a22 - l21

2
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2 - l32

2
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Recapitulation on direct methods

• Idea: transform the original LSE into a simpler, 

equivalent LSE that is ‘easier’ to solve 

• Easy to solve LSE: diagonal, upper or lower triangular

• Finitely many elementary operations – number

depending on n

• Gauss elimination methods, LU decomposition, 

Cholesky decomposition

• Some well-known methods such as the Cramer’s rule or 

the explicit computation of the inverse of A are 

computationally prohibitive.
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Sparse systems
• For sparse systems

• During the process of forward elimination there is a fill-in effect

• Fill-in terms can considerably increase storage requirements

• For large and sparse systems - use iterative methods instead, or

direct methods adapted for sparse systems
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Iterative methods - Main idea

• The original system

• Convert to

• Solve iteratively

a11x1 + a12x2 + a13x3 = b1

a21x1 + a22x2 + a23x3 = b2

a31x1 + a32x2 + a33x3 = b3

x1 =
b1

a11

-
a12

a11

x2 -
a13

a11

x3

x2 =
b2

a22

-
a21

a22

x1 -
a23

a22

x3

x3 =
b3

a33

-
a31

a33

x1 -
a32

a33

x2

Cx + d

dCxx kk += − )1()(
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Iterative methods for solving LSE

• If LSE are of a very large size, the computational efforts required for 

applying direct methods are prohibitively expensive

• Iterative techniques for LSE (Relaxation methods)

• Jacobi method

• Gauss-Seidel method

• Successive Over Relaxation (SOR) method

• One iteration step typically costs ~n arithmetic operations in case of 

a sparse matrix

• The cost depends on how many iteration steps are required to 

obtain a certain accuracy.
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Jacobi method

• Needs an initial solution vector 

• Compute new values of solution, x(k), using the values from the 

previous iteration, x(k-1)
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Jacobi method: example

• Apply the Jacobi method to solve the system:

• we got 

• if we take the starting point (x1, x2)=(0, 0) and perform iterations  

5x1 - x2 = -7

x1 + 4x2 = 7

x1

(k ) = -
a12

a11

x2

(k-1) +
b1

a11

=
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5
x2

(k-1) -
7

5

x2

(k ) = -
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a22

x1

(k-1) +
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a22

= -
1

4
x1

(k-1) +
7

4

x1

(1) =
1

5
×0 -

7

5
= -

7

5

x2

(1) = -
1

4
×0 +

7

4
=

7

4

x1

(2) =
1

5
×
7

4
-

7

5
= -

21

20

x2

(2) = -
1

4
×-

7

5
+

7

4
=

42

20

x1

(6) = -1.0001

x2

(6) = 2.0002
. . .



x1

k( ) = -
a12

a11

x2

k-1( ) -
a13

a11

x3

k-1( ) +
b1

a11

x2

k( ) = -
a21

a22

x1

k( ) -
a23

a22

x3

k-1( ) +
b2

a22

x3

k( ) = -
a31

a33

x1

k( ) -
a32

a33

x2

k( ) +
b3

a33

N
u

m
e

ri
ca

l M
et

h
o

d
s

42

Gauss-Seidel method

• As soon as an element 

from x is updated,

    it is used subsequently

• Typically converges more rapidly than the Jacobi method

• More difficult to parallelize
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Gauss-Seidel method: example

• System:

• Gauss-Seidel iteration:

• if we take the starting point (x1, x2)=(0, 0) and perform iterations:  

x1

(1) =
1

5
×0 -

7

5
= -

7

5

x2

(1) = -
1

4
×-

7

5
+

7

4
=

21

10

x1

(2) =
1

5
×
21

10
-

7

5
= -

49

50

x2

(2) = -
1

4
×-

49

50
+

7

4
=

399

200

x1

(3) =
1

5
×
399

200
-

7

5
= -1.001

x2

(3) = -
1

4
×-1.001+

7

4
= 2.0001

x1

(4) =
1

5
×
8001

4000
-

7

5
= 0.99995

x2

(4) = -
1

4
×-0.99995+

7

4
=1.99999

5x1 - x2 = -7

x1 + 4x2 = 7

x1

(k ) = -
a12

a11

x2

(k-1) +
b1

a11

=
1

5
x2

(k-1) -
7

5

x2

(k ) = -
a21

a22

x1

(k ) +
b2

a22

= -
1

4
x1

(k ) +
7

4

x1

(6) = -1.0001

x2

(6) = 2.0002
Compared to Jacobi:
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Successive Over Relaxation (SOR)

• Can be derived by multiplying the decomposed system obtained 

from the Gauss-Seidel method by the relaxation parameter ω

• The iterative parameter ω should always be chosen such  that 

0 < ω < 2 (1< ω < 2 – over-relaxation,  0 < ω < 1 – dampening)

• Number of iterations to reach desired accuracy depends on ω

x1

k( ) = (1-w )x1

k-1( ) +
w

a11

(b1 - a12x2

k-1( ) - a13x3

k-1( ) )

x2

k( ) = (1-w )x2

k-1( ) +
w

a22

(b2 - a21x1

k( ) - a23x3

k-1( ) )

x3

k( ) = (1-w )x3

k-1( ) +
w

a33

(b3 - a31x1

k( ) - a32x2

k( ) )



• A necessary and sufficient condition for convergence of these methods: 

the magnitude of the largest eigenvalue of C should be smaller than 1

• If A is diagonally dominant matrix (i.e., the size of the diagonal element 

is larger than the sum of the moduli of the other elements in the row - 

|aii|>|ai1|+|ai2|+…+|aii-1|+|aii+1|+…+|ain|) then Jacobi and Gauss-

Seidel converge (sufficient condition)

• If A is symmetric and positive definite, then Gauss-Seidel converges 

(Jacobi not necessarily) (sufficient condition)

• A necessary condition for convergence of SOR is 0 <ω < 2. If, in 

addition, A is symmetric and positive definite, then this condition is 

also sufficient
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Recapitulation on iterative solution methods

• Starting from an initial solution x0, the solution vector x is 

iteratively computed:  xk+1  =  xk + w(b - Axk), w≠0

• Number of iterations (and therefore elementary operations) is 

apriori unknown

• May not converge

• Jacobi method, Gauss-Seidel method, Succesive Over Relaxation 

(SOR)

• There exist other methods that solve linear systems by 

minimizing the residual of the equation: rk  =  (b - Axk) – see 

Krylov subspace methods
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Sensitivity of linear systems

• For a given system Ax=b, the exact solution is given by x*=A-1b 

• In many real world applications A and b are known only 

approximately -> which might prevent us to find x*

• Assume that we know the exact A but not b (we know ෠𝑏)

• Q: how sensitive is our solution with respect to uncertainty in b?
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Motivational example: deblurring images

• Images blurred: the lens out of focus, defects in lens or 

optical system, turbulence…

• Frequent problem in astronomy (e.g., Hubble)

• Linear system Ax=b:

• A – blurring matrix

• x – sharp image 

• b – blurred image 

  

taken from L. Vandenberghe
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Deblurring images

Blurred image (b) Blurred image + noise
 (jitter in b)

taken from L. Vandenberghe
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• Solve the system for the two blurred images

𝐴−1 ෠𝑏𝐴−1𝑏

taken from L. Vandenberghe

Deblurring images

What happened here???
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Sensitivity of linear systems

• For a given system Ax=b, the exact solution is given by x*=A-1b 

• In many real world applications A and b are known only 

approximately -> which might prevent us to find x*

• Assume that we know the exact A but not b (we know ෠𝑏)

• Q: how sensitive is our solution with respect to uncertainty in b?

• If we denote ො𝑥 = 𝐴−1 ෠𝑏, we can define

• Deviation:  e = 𝑥∗ − ො𝑥

• Residual:  r = 𝑏 − 𝐴 ො𝑥 = 𝐴𝑒

• We need residual to be small in some sense ->  we need a 

distance measure in the vector space
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Vector norms

• It is a mapping Rn -> R satisfying

• 𝑥 > 0, 𝑥 = 0 iff 𝑥 = 0 – positivity

• 𝑎𝑥 = 𝑎 𝑥    - homogeneity

• 𝑥 + 𝑦 ≤ 𝑥 + 𝑦   - triangle inequality

• P-norm

• 𝑥 𝑝 = 𝑥1
𝑝 + 𝑥2

𝑝 + ⋯ + 𝑥𝑛
𝑝 1/𝑝

• Manhattan norm (1 norm) : 𝑝 = 1

• Euclidian norm (2 norm): 𝑝 = 2

• Maximum norm (∞ norm): 𝑥 ∞ = 𝑚𝑎𝑥1≤i≤n 𝑥𝑖
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Matrix norms

• It is a mapping Rmxn -> R satisfying the three properties presented 

for the vector norms. A matrix p-norm can additionally be

• 𝐴𝑥 ≤ 𝐴 𝑥    - consistent

• 𝐴𝐵 ≤ 𝐴 𝐵    - submultiplicative

• 2-norm

• 𝐴 2 = 𝜆𝑚𝑎𝑥(𝐴𝑇𝐴)
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Condition number
• Relates relative errors in the inputs (b) to relative errors in 

solutions:  

  𝛿𝑥 =
𝑥∗− ො𝑥

𝑥∗ ∝ 𝛿𝑏 =
𝑏∗− ෠𝑏

𝑏∗

  

𝛿𝑥 =
𝑥∗ − ො𝑥

𝑥∗
=

𝐴−1(𝑏∗−෠𝑏)

𝑥∗
≤

𝐴−1 (𝑏∗−෠𝑏)

𝑥∗

𝑏∗

𝑏∗

         𝛿𝑥 ≤
𝐴−1

𝑥∗ 𝑏∗  𝛿𝑏 =
𝐴−1

𝑥∗ 𝐴𝑥∗  𝛿𝑏 ≤ 𝐴−1 𝐴  𝛿𝑏

• Condition number: 𝐴−1 𝐴

• For 2- norm ( 𝐴 2 = 𝜆𝑚𝑎𝑥(𝐴𝑇𝐴)), the condition number is equal 

to the ratio of the largest and smallest eigenvalue
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Condition number

• Some properties

• Scale-invariant cond(aA)=cond(A), for all a  

• It is norm dependent

• In general, cond(A) >> 1 system is highly sensitive:
•  a small jitter in RHS (𝛿𝑏) results in big errors in solutions 

(𝛿𝑥)

• ill-conditioned systems (otherwise well-conditioned 

systems)

• When there is uncertainty in A
  𝛿𝑥 ≤ 𝑐𝑜𝑛𝑑(𝐴)(𝛿𝐴 + 𝛿𝑏)
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Deblurring images

• A is nonsingular with condition number ~109

taken from L. Vandenberghe

𝛿𝑥 ≤ 𝐴−1 𝐴  𝛿𝑏

𝐴−1 ෠𝑏𝐴−1𝑏
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