Linear systems of equations

Motivating example:
Chemical reaction network

* We know:

A E
* initial concentrations of all
k21 k13 k45 k56
tsA~. B~. C,. D,. E,. F k, ks ks, kes
components A,, By, Cy, Dy, Ey, Fo
B ke C___l_‘“_> ke
- - D a— F
k23 k34 k46

* kinetic rate constants of reactions

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

k k Constantinides & Mostoufi, Numerical methods for
127 ==+ 65 Chemical Engineers with MATLAB applications, p 139

* We want to compute

 steady-state concentrations of all

components A, B, C, D, E, F

* We model all reaction rates as 1¢t

order kinetics

Chemical reaction network: equations

* Mass balances:

dB/dt = k21A + k23C - klZB - kng

dC/dt = k31A + k3zB + k34D - k13C' k23C' k43C K K
k32 C = k43

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

B = : D e _—_—™F
dE/dt = k54D + k56F - k45E = k65E kas
Constantinides & Mostoufi, Numerical methods for
dF/dt - k65E + k64D - k46F - k56F Chemical Engineers with MATLAB applications, p 139

* Conservation of the species:
dA/dt+dB/dt+dC/dt+dD/dt+dE/dt+dF/dt = 0
A+B+C+D+E+F=const

* The data
Ap,=1,B,=0,Cy=0,;,D,=0; Ey=1;F,=0;
k,;=0.2; k;;=0.1; k3,=0.1; k3,=0.1; ks,=0.05;
ke, =0.2; kes=0.1; k;,=0.1; k;3=0.05; k,;=0.05;
k,3=0.2; k;s=0.1; k;s=0.2; ks =0.1; ;

Chemical reaction network: steady state

A E
ky, ki ks ks
k12 k31 k54 k65
k32 I k43 k64
k23 k34 k46

Constantinides & Mostoufi, Numerical methods for
Chemical Engineers with MATLAB applications, p 139

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

* At the steady state, the studied system of ODE equations reduces to :
A +B +C +D+ E +F =2
0.2A -0.2B+0.05C =0
0.1A+0.1B-0.3C +0.1D =0
0.2C-035D+0.1E+0.2F = 0O
0.05D-0.2E +0.1F = 0

0.2D+0.1E -0.3F =0

Another motivating example:
Radiosity methods

Solve the diffusion of light for a room
The radiosity of a pixel i, B; can be computed as a
solution of the following linear system of n

equations for a given 3D model with n pixels:

(%2)
©
(@)
<
+—
()
=
“©
(@)
-
()
£
>
=

Bi = Ei + plz B]Fl’]
j

where: B, is radiosity of pixel i, E; is the emission

of pixel i, p; is the reflectivity of pixel i, and F;; is
the fraction of energy leaving pixel i arriving

directly at j

Linear systems of equations (LSE)

* Linear systems of equations are ubiquitous in other
numerical problems:

* Interpolation (e.g., construction of the cubic spline
interpolant)

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

* Boundary value problems (BVP) of ordinary differential
equations (ODE)

* Partial differential equations (PDE)

https://vimeo.com/160322285

https://vimeo.com/160322285

Linear systems of equations (LSE)

* Find:
* vector x €R" such that it satisfies Ax=0>b

where:

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

* System matrix A € R™" with coefficients a;, [,j=1..n

* Right hand side vector (RHS) b € R" with coefficients b,
j=1..n

* System matrix A can be:
* Full matrix

* Sparse matrix, that can have a sparsity pattern

Diagonal, tridiagonal, band-matrix, block-diagonal

Linear systems of equations (LSE)

* Solution methods:
* Direct methods

provide the exact solution in a finite number of
operations (Gauss elimination, etc.)

(%2)
©
o
<
i
(]
=
“©
(@)
=
(]
£
>
=

* |terative methods

start with an approximate (guess) solution and
iterate to approach to the exact solution

* In all methods, we assume that matrix A is :

* regular/invertible <-> full column rank <-> full row
rank <-> non-zero determinant

Gauss elimination method

* LSE of n equations and n unknowns

all ali aln ‘xl bl "
. . . ©
o
=
Ax=bh & a;, a; a, X; = bl %
: : : S
anl anl ann xn bn g
L dL - _ - >
=
* Phase 1: transform to a upper triangular LSE
xl bl
x, |=| b/
X, b,

* Phase 2: solve using the back substitution method

Phase 1: forward elimination

pivotal
element
* LSE
G
o
=
2x, - X, + X5 + 2x, = 1 I T
p=
8
:
X3 + 4x, + 2X; -4x, = -2 =
3X1 + Xz - X3 - 1OX4 = 5

* LSE

Phase 1: forward elimination

2X1 'X2

Eliminated
elements

pivotal
element "
©
2
+ X3 + 2x, 1 -
=
E
+ 1.5X3 - 5X4 '2.5 x '1/3 2
%-5/9
-2.5x; -13x, 35 +
= 1.5X3 = 7X4 2.5 +

Phase 1: forward elimination

* LSE
G
2
2x, - X, + X5 + 2x, = pivotal g
element G
:
0 + 4.5x, + 1.5x; -2.5 =
0 0 ”-31/3x3| - 10% x, = 48/9|X_3/5
0 0 = 2X3 - 5% X4 = 3% +
Eliminated

elements

* LSE

2x,

Phase 1: forward elimination

'X2 +X3 +2X4

+ 4.5x, + 1.5x; - 5x,

-10% x,

0 0 0.8 x,

Eliminated
elements

(%2)
©
(@)
<
+—
()
=
“©
(@)
-
()
£
>
=

4%

0.4

Forward elimination: algorithm

(M (1))

a, 4 Ay
3 d

0

0

0 0 0

0 0 0

(1)
li

Eliminated in
previous /-1 steps

Elements
to eliminate

/

Element
to compute

pivotal
element

foriin range(n - 1): # Pivoting rows
forjinrange(i+ 1, n):
elFact = -a[j, i] / a[i, i]
for k in range(i, n):
alj, k] +=elFact * ali, k]
b[j] += elFact * b[i]
return a, b

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

Phase 2: back substitution

* LSE

G
£
2X; - X, + X5 + 2x, = 1 o
=
S
0 + 4.5x, + 1.5x; - 5x, = -2.5 =

0 0 -3%x; -10%x, = 48

0 0 0 0.8 x, = 0.4

Phase 2: back substitution

* LSE

G
£
2X1 'X2 +X3 = O "q"_,
=
3
+ 4.5x, + 1.5x; = 0 =

- 3% x; = 10

0.8 x, = 0.4

Phase 2: back substitution

* LSE

G
2
2X1 'X2 = 3 "q-j
p=
S
5
£
+ 4.5X2 = 4.5 2

- 3% X; = 10

0.8 X, = 0.4

Phase 2: back substitution

* LSE

+ 4.5x, = 4.5

(%2)
©
(@)
<
+—
()
=
“©
(@)
-
()
£
>
=

- 3% x, = 10

0.8 x, = 0.4

Back substitution: algorithm

(1) (1) (1) (1) [1 [1)
dyy 4 A ay, X, b,
(2) (2) (2) (2)
0 a;, ay e a,, X, b,
(3) (3) (3)
0 0 aj; ds, X3 | b,
(n-1) (n-1) (n-1)
0 0 0 an—ln—l an—ln xn_l bn—l
(n) X (n)
0 0 0 0 a, n b,
(n)
X = b,
n (n)
ann
—_ 1 'b(n—l) _ o (n-1) \
xn—l - (n-1) 8 n-1 an—ln an
n-1n-1
1

X = ——=
I (i)
a. k=i+1

b= alx, | i=n-1Ln-2,..

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

Gauss elimination algorithm: cost

* N° of arithmetic operations required to solve the LSE
n(n-21)(2n+5)

* Additions + subtractions:

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

6
2
* Multiplications + divisions n{n +33”_1)
* The total cost is around 2,3

3
* Compare with Cramer’s rule (n/):

on a gigaFLOPS machine, and n=50 we need to run for 10%*® years

in comparison, Gauss elimination requires 8.3*10~ secs

Pivoting

* A simple example:
0001 1 || X |_| 1 | X-1000
1 14 x 2 + D
0001 1 | [o1
0 -999 | x, ~998
[%,] 1000(1-998/999) | mmn | 10004,
= —>
Y2 998/999 99%99
* Assume now that we are using 4-digit arithmetic

x, | | 1000(1-0998) | [2
X, | 0.998 | 0.998

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

Pivoting
* Pivoting (swapping the rows)
1 1| % |_| 2 X-0.001
0001 1 || x, 1 + D
11 nol_| 2
0 0999 | x, 0.998
X, 2-998/999 | e | 1950
= —_—>
X 992%999 99%99

* Assume now that we are using 4-digit arithmetic

Y |_| 2-0998 |_| 1.002
X, 0.998 0.998

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

(1)
a

0
0

(1)
a,

(2)
a,

0

Partial (row) pivoting

(1)
a;s

(2)
s

(3)
2%

(M)

® ... ,0

alz al] aln
(2) (2) (2)
dy; d,; a,,
(3) (3) (3)
a3, as; ds,
(i) (1) (1)

d;; d; d;,
(1)

ajn

(i) (1)

anj oo ann

Largest in
magnitude

Swapping rows only changes the order of equations

(%2)
©
(@)
<
+—
()
=
“©
(@)
-
()
£
>
=

(1)
a

0
0

* When swapping columns, remember to swap the solution vector, i.e., x, becomes x; and

vice versa!

(1)
a,

(2)
a,

0

(1)
a;s

(2)
s

(3)
2%

Full pivoting

(1) (1) (1)
a; - 4y a,
2) 2) 2) "
dy oy a,, E
(3) (3) (3) o
Ayt Ay s, =
: S
. . . N E
(i) (i) (i)
i | Gy @in \ Swap 2
: Y O / these rows
(i)) (&) (@)
dji <| Ajp |) Gin
. S
aO o a? |] a? N\ .
1 Largest in
\ / magnitude

Swap these columns

Pivoting recapitulation

* Errors due to finite-precision arithmetic are introduced in each

arithmetic operation

* Introduced errors propagate

(%2)
©
o
<
i
(]
=
“©
(@)
=
(]
£
>
=

* When the pivotal element, af(i,i), is very small, the multiplying
factor in the process of elimination, elFact=a(j,i)/a(i,i), will be
very large

* In a limiting case, when a(i,i) is zero, one has to perform

division by zero!

* Solution: swap rows/columns or both rows and columns to use

a pivotal element with the largest magnitude

LU decomposition

) a; a, Ly 1 U, U,
: ; : : 0 : :
diy d; a, |=| I L 1 u,
: : : : : 0 :
an 1 ani ann lnl lni lnn 1
J \] |\
| | |
A L U
Ax = _ .

thus, we are Ly=b -forward substitution
LUx = — . .
- solvinginstead: r = y - back substitution

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

LU decomposition

: example

1] wy, g,
0 1 |u,
L 0 O 1)

h=a, ly=a, l,;=a,

a
_ _ 4y
hi,=a, P u,-=
11
a
_ _ g3
Lhi,=a; P u,=
11

Ly + L,y + 13 = ag,
3

g = Qg = [ty = L3yl

L, 1, =a, B L,=ay,-Lu,

lau, 1, =a, P [;,=a,-Lu,

Ayy = Lyl

L ¥ Ly =ay;, B Uy, =
22

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

LU decomposition: algorithm

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

o Compute 1st column of Las: |, =a;,

_
9 Compute 1strowof Uas: U =1

Ill

9 Compute sequentially columns of L and rows of U as:

j-1
Iij:aij_zlikukj J<1, 1=12,...,n
k=1

i-1
a. -3 .U
U =— lekl'k 9 <), j=23,...,n

LU decomposition: remarks

* Solving a LSE using LU decomposition requires

—

 factorization of A as LU

N 2 :
» forward substitution — §n3+n2+n2 total operations

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

° backward substitution __

* For any number of RHS vectors (vectors b) we need to perform

LU decomposition only once!

LU decomposition: remarks

Solving a LSE using LU decomposition requires
* factorizationof Aas LU

e 2 :
» forward substitution — §n3+n2+n2 total operations

° backward substitution __

For any number of RHS vectors (vectors b) we need to perform

LU decomposition only once!

Each element of A matrix is used only once to compute the
corresponding element of L or U matrix—>so L and U can be

stored in A

Partial pivoting is sufficient, and widely implemented

(%2)
©
o
<
i
(]
=
“©
(@)
=
(]
£
>
=

Cholesky decomposition

* For symmetric matrices, we can use the following decomposition:

a‘ll a12 a13 Ill O O Ill I21 |31
a12 a'22 a23 = |21 |22 O O |22 |32

a13 a'23 a33 |31 |32 |33 0 0 |33_

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

Since A=LL", i.e. U=L", we need to compute only L

Half as many operations as LU

A must be symmetric, positive definite, i.e., x’Ax > 0, for all x#0

Recommended method for solving symmetric positive definite

systems

Cholesky decomposition: example

a‘il a12 a13 Ill O 0 Ill |21
a12 a'22 a'23 = |21 |22 O O |22

a13 a'2 a33 __|31 |32 |33_ 0 0

1112 =a;, P ;= \/6711

111121 =a, P 121 -
11
a
_ _ Ay
lly=a, P [;=—
11

2 2 _ _ 2
Ly tl,,"=a,, P 122_\/a22_121

b 1,= Uys = Ily

Lylyy + 10l = ay,
22

2 2 2 _ _ 2 2
[," 1, =a,, P 133_\/a33'131 -1,

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

Cholesky decomposition: algorithm

ail a12 a13 Ill O 0 Ill |21 |31
a:I.2 a'22 a'23 = I21 |22 O O I22 |32

a13 a23 a33 |31 |32 |33 0 0 |33_

ly = ay i1
— 272 _
L, =ay, - L, — P [= \/aﬁ -al, i=1l..n
k=1

[y = \/a33 - 1312 - 1322

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

= il
by = ay, /1, aij - alikljk
by = ayy /11y — P Zji: A=l]:l'l'll’l
Ly = (a3 = ks)/ 1y lii

=

* The algorithm would fail if it would be required to take the square
root of a negative number

* Therefore, another condition on A -> positive definiteness

Recapitulation on direct methods

* Idea: transform the original LSE into a simpler,

equivalent LSE that is ‘easier’ to solve

* Easy to solve LSE: diagonal, upper or lower triangular

* Finitely many elementary operations — number

(%2)
©
o
<
i
(]
=
“©
(@)
=
(]
£
>
=

depending onn

* Gauss elimination methods, LU decomposition,

Cholesky decomposition

* Some well-known methods such as the Cramer’s rule or
the explicit computation of the inverse of A are
computationally prohibitive.

Sparse systems
* For sparse systems 0

a, 0 a; a,
0O a, 0 a, O

a31 O a‘33 O a'35
a'41 a42 O a44 O
0 0 a; 0 ag)
* During the process of forward elimination there is a fill-in effect

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

d, 0 d; dy 0 non-zero, fill-in, terms
!

O a'22 a'23 a24 O
0 0 ay |3, | as
0 0 0 a, |ag
0 0 0 0 ag)]

* Fill-in terms can considerably increase storage requirements

* For large and sparse systems - use iterative methods instead, or

direct methods adapted for sparse systems

Iterative methods - Main idea

* The original system q,.x, +a,x, + a,x, = b,
Xy F AypX, + Ay = by

Ay X, + AgpX, T AzeX; = Dy
* Convertto

b a a —
_ 1 12 13
X, = — -—=x, -—Xx,
a,), a,
b a a
_ 2 21 23
x,= — -—4=x -—=x
Ay ay, a,,
b a a
_ 3 31 32
X, = —= -—-—=X, -—=X,
(33 33 (33

- (Cx+d

* Solve iteratively

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

Iterative methods for solving LSE

If LSE are of a very large size, the computational efforts required for

applying direct methods are prohibitively expensive

lterative techniques for LSE (Relaxation methods)

* Jacobi method

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

* Gauss-Seidel method
* Successive Over Relaxation (SOR) method
One iteration step typically costs ~n arithmetic operations in case of

a sparse matrix

The cost depends on how many iteration steps are required to

obtain a certain accuracy.

Jacobi method

X" =——=%X, ——==Xg + —=
g A g *
3
(k) _ 81 (k-1)_ 83 (k-1), b =
X, = ——52 Xy —=2 X, + —< -
a2 A2 A7 =
©
« (k) _ @31 X (k-1) Qg N (k-1) N bs 2
3 T X — X3 —]
a33 a33 a33 =
=2

* Needs an initial solution vector

» Compute new values of solution, x*/, using the values from the

previous iteration, xk

Jacobi method: example

* Apply the Jacobi method to solve the system:

_ D
o
* we got 5
&
a . b 1 _ { =
0= 2y 0y B2 2y e L =
a;, a, 5 5

a _ b 1 . 7

w0 = fay oy B2 o 2y L

a,, Ay, 4 4

 if we take the starting point (x1, x2)=(0, 0) and perform iterations

x(l):lxo—zz Z x(z)zlxz_Z:_é (6)_

5 5 5 " 545 20 o % =-10001

<1>__1XO+Z ! W=t 1,7 4 x,® =2.0002
4 4 4 4 5 4 20

Gauss-Seidel method

* As soon as an element 3. (0= . 3 (1) _ @x (k-1) ﬂ

/ . a ; a ’ a 3
. (@)
from x is updated, - 1 1 E
T~ [W= _ G 0] G 1), B >
it is used subsequently S I A = N 8
dy, dy, dy) E
(0 = _ Ga| o|_ sl |, bs 2

Xy == x| —

U3z U3z U3z

* Typically converges more rapidly than the Jacobi method

* More difficult to parallelize

Gauss-Seidel method: example

* System: bx,-x, = -7

x,t4x, = T 3
£
()
° Gauss-Seidel iteration: x :_@xék-lu b _1 X ! =
dyy dyy 5 5 S
()
a b 1 14 £
x =Ty 22 =204 E

Ay, Ay, 4 4

* if we take the starting point (x1, x2)=(0, 0) and perform iterations:

xl(l):lx —Z:_Z xl(z):le_Z:_ig x1(3):1x@—12—1.001
5 5 5 - 510 5 50 - 5 200 5
xgl)—_l fr.a gZ)__E 4_9+Z_@ x§3):_£x_1.001+1:2.0001
4 5 4 10 4 50 4 200 4 4
x®=1,8001 7 _ 499995 x,® = -1.0001
5 4000 5 Compared to Jacobi: msp (6)
; x,¥ = 2.0002

@ =_1, 099995+ =1.99999
: 4 4

Successive Over Relaxation (SOR)

xl(k) =(1-w)xl(k_l) * aﬂ (b, - alzxz(k_l) - a13x3(k_1))
11

xz(k) =1-w)xz(k_l) + aﬂ(bz - a21x1(k) - a23x3(k_1))
22

xs(k) =(1-w)xa(k_l) + aﬂ(b:; - a31x1(k) - a32x2(k))
33

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

* Can be derived by multiplying the decomposed system obtained

from the Gauss-Seidel method by the relaxation parameter w

* The iterative parameter w should always be chosen such that

O<w<2(I<w< 2-over-relaxation, 0 <w <1 —-dampening)

* Number of iterations to reach desired accuracy depends on w

On convergence of iterative methods

A necessary and sufficient condition for convergence of these methods:

the magnitude of the largest eigenvalue of C should be smaller than 1

If A is diagonally dominant matrix (i.e., the size of the diagonal element
is larger than the sum of the moduli of the other elements in the row -
la;[>]a;[+]a,[+..+]a;,][+]a;.[+..+]a;,]) then Jacobi and Gauss-
Seidel converge (sufficient condition)

If A is symmetric and positive definite, then Gauss-Seidel converges

(Jacobi not necessarily) (sufficient condition)

A necessary condition for convergence of SOR is 0 <w < 2. If, in
addition, A is symmetric and positive definite, then this condition is

also sufficient

(%2)
©
o
<
i
(]
=
“©
(@)
=
(]
£
>
=

Recapitulation on iterative solution methods

* Starting from an initial solution x, the solution vector x is

iteratively computed: x,,, = x,.+ w(b - Ax,), wz0

* Number of iterations (and therefore elementary operations) is

(%2)
©
o
<
i
(]
=
“©
(@)
=
(]
£
>
=

apriori unknown
* May not converge

* Jacobi method, Gauss-Seidel method, Succesive Over Relaxation
(SOR)

* There exist other methods that solve linear systems by
minimizing the residual of the equation: r, = (b - Ax,) — see

Krylov subspace methods

Sensitivity of linear systems

* For a given system Ax=b, the exact solution is given by x*=A1b

* In many real world applications A and b are known only

approximately -> which might prevent us to find x*

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

- Assume that we know the exact A but not b (we know b)

* Q: how sensitive is our solution with respect to uncertainty in b?

Motivational example: deblurring images

* Images blurred: the lens out of focus, defects in lens or

optical system, turbulence...

* Frequent problem in astronomy (e.g., Hubble)

(%)
©
®)
=
+—
()
=
o
O
-
(]
£
-
P

* Linear system Ax=b:
* A —blurring matrix
* X—sharp image

* b —blurred image

taken from L. Vandenberghe

Deblurring images

(%2)
©
(@)
<
+—
()
=
“©
(@)
-
()
=
>
=

Blurred image (b) Blurred image + noise
(jitterin b)

taken from L. Vandenberghe

Deblurring images

* Solve the system for the two blurred images

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

taken from L. Vandenberghe

Sensitivity of linear systems

For a given system Ax=b, the exact solution is given by x*=A"1b

In many real world applications A and b are known only

approximately -> which might prevent us to find x*

(%2)
©
o
<
i
(]
=
“©
(@)
=
(]
£
>
=

Assume that we know the exact A but not b (we know b)
* Q: how sensitive is our solution with respect to uncertainty in b?

- If we denote & = A~1h, we can define
Deviation: e=x"—X
Residual: r=>b— AxX = Ae
We need residual to be small in some sense -> we need a

distance measure in the vector space

Vector norms

* It is @ mapping R" -> R satisfying

s
 lx]l >0, |lx]l =0iffx =0 — positivity g
* |lax|l = llallllx]| - homogeneity S
. . . £
Nlx + yll < x|l + 1yl - triangle inequality E
* P-norm

“lxlly = Uxg|P + | [P+ o+ [, [P)YP
Manhattan norm (1 norm) :p =1
Euclidian norm (2 norm): p = 2

Maximum norm (oo norm): || x||eo = max, i, |x;l

Matrix norms

* It is @ mapping R™"-> R satisfying the three properties presented ;‘f
for the vector norms. A matrix p-norm can additionally be %
° |[Ax|l < [[Alllx]] - consistent £
=
- [|AB]l < ||AlllIB]] - submultiplicative
* 2-norm

R ”AHZ = \/Amax(ATA)

Condition number
* Relates relative errors in the inputs (b) to relative errors in

solutions:

* & b*—B
s =12 o sp = 1270
|Ea| 1p*]]

(%2)
©
o
<
i
(]
=
“©
(@)
=
(]
£
>
=

Ix* =zl _ |[A7* (b =h)|] - 1A~][o*=b)|[lIp* |
[Eal [Ead | [Eal 16~]]

ox =

Jla=l
|| *|]
» Condition number: [|A7Y|||All

5 < 47!
| E

|1b*|| b = |Ax*|l 6b < ||A~HII|All 6b

* For 2- norm (|lAll; = v/ Amax (AT A)), the condition number is equal

to the ratio of the largest and smallest eigenvalue

Condition number

* Some properties

* Scale-invariant cond(aA)=cond(A), for all a
* |t is norm dependent
* In general, cond(A) >> 1 system is highly sensitive:

a small jitter in RHS (6b) results in big errors in solutions
(0x)

ill-conditioned systems (otherwise well-conditioned
systems)

* When there is uncertainty in A
0x < cond(A)(6A + 6b)

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

Deblurring images

* A is nonsingular with condition number ~10°
6x < ||A7HIIIAll 6b

(%2)
©
(@)
<
i
()
=
“©
(@)
-
()
£
>
=

i
A f A dtels
)

V=
|

it
b

taken from L. Vandenberghe

	Slide 1: Linear systems of equations
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56

