>
| -
o+
8y
=
(]
<
o
=
(%]
©
@)
<
s}
()
=
“©
O
-
()
=
S
P

Exercises 15t week

Tuesday, 25 February 2025




Learning outcomes

Exercise 1 (Programming):

* Understand how to use Python’s API to create vectors and arrays

* Be able to create and edit rudimentary functions

* Be able to use basic plotting tools

* Be able to see how iterative linear solvers can depend on the
tolerance parameters etc.

* Be able to use NumPy library in Python

>
| -
)
2
£
)
aG=
O
=
(%]
©
o
<=
o+
)
=
“©
O
-
(]
£
>
=

Exercise 2 (Handwritten):

* Be able to choose the appropriate method for solving a linear
system.
* Be able to apply basic linear algebraic principles




Exercise 1 (Programming)

The aim of this exercise is to get you familiar with using matrix operations.

a)

Write a function generate_tridiagonal _matrix() that takes in as input an integer n and

returns a tridiagonal matrix with -2 on the main diagonal and 1 on the upper and lower

-2 1 0 O
, I B
diagonals : A = 0 - - 1
o =~ 1 =2

Using this function, create an arbitrary linear system of size 100. Do this by first
creating the tridiagonal matrix, A = generate _tridiagonal _matrix(100). Then generate a
random vector, X. Create the vector b using Ax = b. Now attempt to recover the vector
X by using LU Decomposition. Compare the error of the recovered solution compared

to the original solution.

Hint: Use the function numpy.ones() to generate the vectors of diagonals and then the function scipy.sparse.diags() to

create the upper,lower and main diagonals before assembling the matrix.

>
| -
e
8y
£
(]
<
O
=
(V)]
©
@)
<
)
()
=
“©
O
=
()
=
S
=




c)

Exercise 1 (Programming)

Using the same A and b from the previous exercise, try to solve the system using

the Week 1 gauss seidel.py file provided to you. Edit the file to take in as input

the tolerance value and the starting vector x0. Play around with the tolerance
value and the starting vector (generated randomly here but can also be all zeroes)
to see how the number of iterations, and the accuracy of the solution, changes. If

you would like to time the function, import the time module.

Edit the function Week_1 gauss seidel.py to return the norm of the residual at

each iteration along with the final solution. Once this is done, plot the norm and
see how it evolves over the iterations. Does a normal plot show you the reduction

in the residual norm clearly? What about a log plot ?

Loading files: Load the matrix A and vector b provided in the.npy files and solve
the system using the aforementioned methods. Does the Gauss-Seidel method
work? If not, why? (check the condition for convergence of the Gauss-Seidel

method)

>
| -
e
8y
£
(]
<
O
=
(V)]
©
@)
<
)
()
=
“©
O
=
()
=
S
=




Exercise 2 (Handwritten)

A production line manufactured a large batch of cameras with faulty lenses that
produce blurry images (Figure below, left). To avoid the recall of cameras, the
company decided to upgrade the camera software and perform numerical deblurring
of the images as soon as they are captured (Figure below, right). The deblurring is
performed by solving a system of linear equations Ax = b, where A is the deblurring

matrix that captures the lens imperfections.

Blurred image (b) Deblurred iage (x = A™1b)

>
| -
)
8y
=
()
<
()
=
(%]
©
@)
<
o+
()
=
©
O
-
()
=
S
P




Exercise 2 (Handwritten)

a) Assuming that the deblurring matrix is dense and non-symmetric, propose a

method that would be the most efficient for this task. Explain your choice.

b) Apply the proposed method to compute x for

3 4 =5 1 3
6 —3 4 b1=9 and b2=5

8 9 -2 9 4

A=

>
| -
)
2
£
)
aG=
O
=
(%]
©
o
<=
o+
)
=
“©
O
-
(]
£
>
=

c) Compute the determinant of the matrix A.




	Slide 1: Exercises 1st week Tuesday, 25 February 2025 
	Slide 2: Learning outcomes
	Slide 3
	Slide 4
	Slide 5
	Slide 6

