

# Exercises

Tuesday, 18 March 2025

# Exercise 4 - Coding

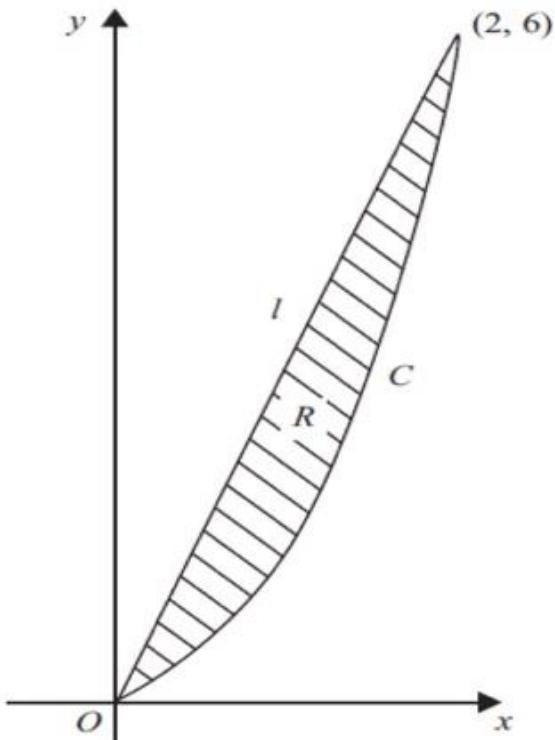
a) A space shuttle reentering the earth atmosphere decelerates in one hour from its orbital speed (7360.56 m/s) to its touchdown speed (96.11 m/s). The following table contains data of its measured velocity. Use the *scipy.integrate.cumtrapz()* and *scipy.integrate.trapz()* to measure the distance covered at each measuring point and over the whole 3600 seconds.

| Time (s)       | -3600   | -3200   | -2800   | -2400   | -2000   | -1600   | -1200   | -800    | -400    | 0     |
|----------------|---------|---------|---------|---------|---------|---------|---------|---------|---------|-------|
| Velocity (m/s) | 7360.56 | 7314.81 | 7274.32 | 7245.61 | 7134.59 | 6974.67 | 6722.22 | 5618.97 | 3236.74 | 96.11 |

# Exercise 4 - Coding

b) Create a function that computes numerically the integral of a single argument function over the given *interval (a,b)* using the composite Simpson 1/3 rule. The function should be called as follows:

*[intF]=compSimp13(f, interval, n)* where *f* is the function handle and *n* represents the number of subintervals of the integration interval.


c) Using the function created in a), compute numerically the value of the integral of *f(x)=0.25+4x+x<sup>2</sup>+6x<sup>3</sup>+x<sup>4</sup>* from *a = 0* to *b=0.75* using the values of *n=[4,8,...,100]*. Compute the error of integration\* and see if the error convergence matches the theoretical estimates.

\*- integration error we define as the difference between the values that are calculated by your *compSimp13()* function and Python's *scipy.integrate.quad()* function.

# Exercise 4 - Handwritten

A boat builder needs to compute the surface of the sail,  $R$ , to estimate the aerodynamic forces acting on the boat. The contour of the sail is defined by the linear segment  $l$ , which joins the origin  $(0,0)$  and the point  $(2,6)$ , and the curve  $C$ , which is described by the equation

$$y = x\sqrt{x^3 + 1}, \quad 0 \leq x \leq 2$$



# Exercise 4 - Handwritten

a) Complete the table below that provides values of  $y$  on the curve C.

|     |   |      |     |      |       |      |     |      |   |
|-----|---|------|-----|------|-------|------|-----|------|---|
| $x$ | 0 | 0.25 | 0.5 | 0.75 | 1     | 1.25 | 1.5 | 1.75 | 2 |
| $y$ | 0 |      |     |      | 1.414 |      |     |      | 6 |

b) Compute the integral  $\int_0^2 x\sqrt{x^3 + 1} dx$  using the most appropriate composite rule with the values from the table in a).

c) Use your answer calculated in b) to approximate the surface of the sail,  $R$ . Provide your solution with three significant digits.

d) Compute the surface of the sail,  $R$ , using the two points Gauss-Legendre formula and compare the result with c).