Numerical differentiation

Recall: derivatives

* Functionf:R-->R, x, ER

s = g L=

* Interpretation: it is the slope of the tangent line at x,

[%2]
©
o
L=
o+
[}
=
©
O
=
(]
S
>
2

Why do we need numerical derivatives?

* Basic operation in other numerical problems:

* Solving differential equations (both ODEs and PDEs)

* Numerical optimization

[%2]
©
o
L=
o+
[}
=
©
O
=
(]
S
>
2

* We need to compute

° Gradientof f: g; = aa;
a .
* Jacobianof f: [, = %
k

0% f

* Hessianof f: Hjy

ax]axk

What we care about when computing derivatives
numerically?

* Accuracy of our numerical estimate, and how we

can improve it

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

* Computational complexity (how many times our
function f needs to be evaluated to obtain the

derivative with a desired accuracy)

Forward differences (FDF)

h) —
s =i L=

* Numerical differentiation: the limit cannot be achieved, so we
have to approximate: h>0 is fixed (and small)

I

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

J (x5 +)= f(x)
h

Estimate /'(x,) =

X, x0+h

* This natural approximation is called Forward Differences (FDF)

Interpretations of finite differences

* Mean-value theorem: if a function f: R --> R is continuous on

[a, b], and differentiable on (a, b), then there exists c& (a, b)

such that: _
£(c) = f(b)-f(a)
b-a

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

* Another interpretation: since

R -—em == ==
»
+
Ny

f(B)-f(@)= [f'(x)dx o

* in the case of FDF we have b=x,+h, a=x,, and if we divide by h

Gy +1)=1) %f £1(x)dx

* i.e. our estimate is the average value of f’ over (x,, x,+h)

Forward differences (FDF)

* Smaller h ---> better approximation

[%2]
©
o
L=
o+
[}
=
©
O
=
(]
S
>
2

Estimate /'(x,) = ST h}z -/ (x)

x,th, h<h

Forward differences: example

* Let us test this: for f(x)=e®*™ compute numerically the value

of the first derivative at x, = 0.2 using different values of h:

E
=
h df/dx Error =
1.0e-01 17.63407 4.04266328 T§
1.0e-02 13.93693 0.34551982 g
1.0e-03 13.62544 0.03403522 >
1.0e-04 13.59481 0.00339842
1.0e-05 13.59175 0.00033979
1.0e-06 13.59144 0.00003398
1.0e-07 13.59141 0.00000340
1.0e-08 13.59141 0.00000037
1.0e-09 13.59141 0.00000026
1.0e-10 13.59141 0.00000114
1.0e-11 13.59139 0.00001447
1.0e-12 13.59091 0.00050296

How fast FDF approaches f'(x,)?
f(x() + h)_ f(x())
h

Truncation HACAE =0(?h)

error

[%2]
©
o
L=
o+
[}
=
©
O
=
(]
S
>
2

Reminder: big O notation

For f, g : R-->R we can write:

f(x)=0(g(x)) as x—>oo
if and only if (iff) there exist positive C and x, such that

f(x)|<Clg(x)| for Vx2x,

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

Similarly, we can write

f(x)= O(g(x)) as X —a
iff there exist there exist positive C and e such that

|f(x)‘ SC‘g(x)‘ for |x—a| <e

Taylor series:

£, +h) = F(x)+ f(x h+ L DaOh” SR oo

2! 3!

n

Q=0h")y=dCER, : h

Q|sC

How fast FDF approaches f'(x,)?
f(x() + h)_ f(xo)
h

Truncation f'(x)—
error > ’

=0(?h)

* We assume that f: R -->Ris C?, i.e., 2x continuously
differentiable function, x, €R, h>0, and h<C,

* using Taylor expansion we get

f(xo+h)=f(x0)+f’(x0)h+f”(€j)}2l—!,xo <E<x,+h

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

How fast FDF approaches f'(x,)?

Truncation ‘ f'(xo) f(x +h) f(x)

error

O(?h)

* We assume that f: R -->Ris C?, i.e., 2x continuously
differentiable function, x, €R, h>0, and h<C,

* using Taylor expansion we get
’ 144 h2
Jf(xy+h)=f(x)+ f(x)h+ f (5)5»% SESx,+h

¢ SO

h
() - LRI Y
* and
h) —
f'(xo)_f(xo-l- 2 f(x) gmax f”(x)‘
° l.e.
f,(xo)_ f(x0+hh)_f(xo) <Ch

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

Forward differences: example
* Therefore:

£(x,) - S (x, +h]/)l - J (x,) — O(h) < 10x smaller h -> the

FDF error 10x smaller

©
* Let us test this: for f(x)=e®*™ compute numerically the value %
=
of the first derivative at x, = 0.2 using different values of h: E
:
h df/dx Error z
1.0e-01 17.63407 4.04266328
1.0e-02 13.93693 0.34551982
1.0e-03 13.62544 0.03403522
1.0e-04 13.59481 0.00339842
1.0e-05 13.59175 0.00033979 Round-off
1.0e-06 13.59144 0.00003398 error
1.0e-07 13.59141 0.00000340
1.0e-08 13.59141 0.00000037
1.0e-09 13.59141 0.00000026
1.0e-10 13.59141 0.00000114
1.0e-11 13.59139 0.00001447
1.0e-12 13.59091 0.00050296

Round-off error

* Round-off error occurs due to a finite machine precision

* Matlab uses IEEE double precision standard -> the numbers are

represented by 52 floating binary digits (or 15 floating decimal E
digits) iy
* Test this in Matlab: S
© >> (285241 - 2752 h Error £
1.0e-01 \ 4.04266328 =

o >> (2A53+1) - 2753 1.0e-02

. . . 1.0e-04
* Using a finer grid (smaller h) reduces the | _
truncation error 1.0e-06

* |t also increases the round-off error

* There is a trade-off between these two -
errors ! 1.0e-10

Backward differences (BDF)

* Use instead the point on the left-hand side

S () =S (x,=h)

' P~
f(x0)~ h §
<
[<
o 5
=
e

xo—hxo

* BDF has similar properties to FDF as h gets smaller, i.e.

fv(xo)_ f(‘xo)_]/fl(x() _h)

=O0(h)

Central differences (CDF)

J’l_\‘_—_'

4

S

f(x0+%h)—f(xo—%h)

J'(x,) = p

* How fast CDF approaches the actual derivative as h gets

smaller?

f(x0+§h>—f<xo —%h)

J (%) = p

- 0(?h)

[%2]
©
o
L=
o+
[}
=
©
O
=
(]
S
>
2

Central differences (CDF): truncation error
* We assume that f: R-->Ris C3, x, €R, 0<h<C,, and we apply

Taylor’s expansion:

f(x, + §> - f(x,)+ f'(xo)g ; f”(xo)% +f(E)

h ;x<§<x+ﬁ
g-31° 0T 09

0 0

£(x, —§>=f<x0>—f'<x0>§+f"<x0>%2—f"'<0>

* subtract two expressions:

3
h , x—ﬁsﬁsx
8- 3! 2

]’l h ' m h3 m h3
f(x0+§)—f(xo—§)=f(xo)h+(f R O
* Subsequently, we get
' 1 1 m h2 m h2
f(xo)—(f(x0+2h)—f(x0—2h))/h =" E g+ O,

U
, 1 1 h?
f(xo)—(f(xo+2h)—f(xo—2h))/h <33 Mmax

Xo— h/2sxsxO+Ch/2

/()

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

Central differences (CDF): example

f<x0+%h>—f<xo—§h>
h

S'(x)) - =0(h?)

* 10x smaller h -> the error of CDF becomes 100x smaller

* Numerical test for f(x)=e(>*™ at x,= 0.2

h df/dx Error

1.0e-01 13.73343 0.14202027
1.0e-02 13.59282 0.00141582
1.0e-03 13.59142 0.00001416
1.0e-04 13.59141 0.00000014
1.0e-05 13.59141 0.00000000
1.0e-06 13.59141 0.00000000
1.0e-07 13.59141 0.00000000
1.0e-08 13.59141 0.00000003
1.0e-09 13.59141 0.00000063
1.0e-10 13.59141 0.00000330
1.0e-11 13.59139 0.00001447
1.0e-12 13.59091 0.00050296

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

Second derivatives

* Function f:R-->RisC?and x, ER
G+ W)= 1, - 1)
h

* using CDF to estimate the 15t derivatives, i.e.,

f'(x0+%)=f(xo+%+%);f(xo+%_%)=f(x0+h2_f(x0)

f,(x()_%)=f(xo"%+%);f(xo—%—%) =f(x0)—£(x0—h)

f”(xo) =lim

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

* We finally get:

SO+) =21 (x)+f(x,=h)

J(x,) = .

Partial derivatives

* Function f:R?-->RisCland x,, y, ER

I I g
VL e L i L
ax U070~ i :
1 1
X,y +=h|-flx,y ——h
%(x)Nf(oyo 2)f(0y0 2)
0y 0> Yo h

* Exactly the same properties as CDF, i.e., no particularities

Improving estimates

* Several ways to improve the accuracy of the estimates:

* Decrease the step size

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

* Use higher-order expressions employing more points

* Use FDF, BDF, CDF or other derivative estimates for two

different h to compute a more accurate approximation

Richardson extrapolation

Richardson extrapolation

* The Taylor expansions (assuming that higher derivatives exist):

h _ ' ﬁ " h_2 " h_3 (4) (5)
f(x0+5)-f(xo)+f(xo)2+f(xo)8+f(x0) AR)384 /e)3840

_ﬁ — _ ! ﬁ " h_z_ " 4) (5) %

S (x, 2) S (x,) f(x0)2+f(xo)8 f(xo) +/ 7 (x)384 S (x)3840 %

* if we subtract these two expressions, we get é

h h , flll(x) 2
f(x0+5)—f(xo—5)=f(xo)h+ 240 B v (X)1920

* Therefore

h h
f(xo +—)—f(x0 -) f'"(xo)

' _ 2 2 _
S %)= h L 24 -/ (x)1920
£+ 0= £, -
S (%)= 2 P 2 —a,h’ —a,h" —(R
| | ’ Rve}wainder

@(h) <— CDF

Richardson extrapolation

Idea: get rid of \

f'(x,) = p(h) - a,h* —a,h* - R(h) +
For h/2 we can write £
B (hY(hY [=
f’(xo)=¢(5)_a2(5) —a4(5) —R(E)XA .é
We obtain =
3f'(x,) = @(h) - 49 P\t var| m)- reny
’ 2] 4°* ?
wherefrom we get
£y =g 2]-1 (h)+0")
0 3§0 7 3(P

So 2x smaller h -> the error becomes 16x smaller

Richardson extrapolation:example

* Numerical test for f(x)=e*™ at x, = 0.2

h

1.0e-01
1.0e-02
1.0e-03
1.0e-04
1.0e-05
1.0e-06
1.0e-07
1.0e-08
1.0e-09
1.0e-10
1.0e-11
1.0e-12

Error (FDF)

4.04266328
0.34551982
0.03403522
0.00339842
0.00033979
0.00003398
0.00000340
0.00000037
0.00000026
0.00000114
0.00001447
0.00050296

Error (CDF)
0.14202027
0.00141582
0.00001416
0.00000014
0.00000000
0.00000000
0.00000000
0.00000003
0.00000063
0.00000330
0.00001447
0.00050296

Error (Richardson)
-1.1081e-04
-1.1061e-08
-7.5318e-13
1.1678e-11
-2.1037e-10
1.1811e-09
-2.1171e-08
1.4462e-07
-5.5112e-07
3.2977e-06
4.4746e-05
-5.0296e-04

(%)
©
o
e
+—
()
=
©
(@)
=
()
=
-}
=2

Richardson extrapolation

Idea: get rid of \

f'(x,)=@(h)-ah’®—a,h* - R(h) +

For h/2 we can write

N A R VA AN A
ren=of)-a (3] -a[3] (3]
We obtain

“3f(x,) = qp(h) - 4cp(§) - %a4h4 + 4R(§) ~ R(h)

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

)22l L :
f(xo)—3¢(2) S@(h)+OY)

So 10x smaller h -> the error becomes 10000x smaller

* |s it possible to cancel out the h* term?

Richardson extrapolation table

D(0,0)=g(h)
D(1,0) = ¢(h/2) N D{,1)

[%2]
©
o
L=
o+
[}
=
©
O
=
(]
S
>
2

* Recall that
, 4 (h) 1 4 , h) 1 h p
f(x0)=§fp(5)—§cp(h)+0(h)=>f(xo)=¢(E)+§(¢(5)—m(h))+0(h)
\ J
/ '
(,,(h)zf oty 706 —) D(L1) = D(L,0)+— (D(1,0)- D(0,0))

h 4' -1

Richardson extrapolation table

D(0,0)=g(h)
D(.0) = g(h/2) 3 D(L1)

D(2,0) = g(h/4) \:‘D(2,1)

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

* Recall that
, 4 (h) 1 4 , h) 1 h p
f(x0)=§fp(5)—§cp(h)+0(h)=>f(xo)=¢(E)+§(¢(5)—m(h))+0(h)
\ J
/ '
(,,(h)zf oty 706 —) D(L1) = D(L,0)+— (D(1,0)- D(0,0))

h 4' -1

Richardson extrapolation table

D(0.0)= ()
DAL0) = p(h/2) X DALY <

D(2,0) = ¢(h/4)\>:1)(2,1) — ~ D2.2) ~

(%)
©
(@)
<
o+
()
>
©
O
o
(]
=
>
=

* Recall that

, 4 (h) 1 4 , h) 1 h 4
f(x0)=§fp(5)—§cp(h)+0(h)=>f(xo)=¢(E)+§(¢(5)—m(h))+0(h)

\)
/ !

h h
f+)= 10, =) L (D(10)-D(0.0))

D(,1)=D(,0) +
: (L) =D(1.0)+ ——

@(h) =

Richardson extrapolation table

D(0,0)=g(h)

DAL0) = p(h/2) X DALY <

D(2.0) = ¢(h/H) D2,

TN

1)\

~ D2.2)

D(,0)=g(h/8) —DG,

.

1) —

™~ D(3,2) ———=D(3,3)

n

[%2]
©
o
L=
o+
[}
=
©
O
=
(]
S
>
2

D(n,m) =D(n,m—-1)+

1
4" —1

| D(n,m=1)=D(n-1,m-1)]

