
Numerical	differentiation

N
um

er
ic

al
 M

et
ho

ds

1



• Function f : R --> R, x0 ∈ R 

• Interpretation: it is the slope of the tangent line at x0
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Recall:	derivatives

f '(x0 ) =
h→0
lim

f (x0 + h)− f (x0 )
h

  x0



• Basic operation in other numerical problems:

• Solving differential equations (both ODEs and PDEs)

• Numerical optimization

• We need to compute

• Gradient of f :    𝑔! =
"#
"$!

  

• Jacobian of f :  𝐽%! =
"#"
"$!

• Hessian of f : 𝐻%! =
"##

"$""$!
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Why	do	we	need	numerical	derivatives?



• Accuracy of our numerical estimate, and how we 

can improve it

• Computational complexity (how many times our 

function f needs to be evaluated to obtain the 

derivative with a desired accuracy) 

N
um

er
ic

al
 M

et
ho

ds

4

What	we	care	about	when	computing	derivatives	
numerically?



• Numerical differentiation: the limit cannot be achieved, so we 
have to approximate: h>0 is fixed (and small)

• This natural approximation is called Forward Differences (FDF)
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  x0  x0   x0+h

Estimate f '(x0 ) ≈  
f (x0 + h)− f (x0 )

h

Forward	differences	(FDF)
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f '(x0 ) =
h→0
lim

f (x0 + h)− f (x0 )
h



• Mean-value theorem: if a function f : R --> R is continuous on 

[a, b], and differentiable on (a, b), then there exists c∈ (a, b) 

such that: 

• Another interpretation: since

• in the case of FDF we have b=x0+h, a=x0, and if we divide by h

• i.e. our estimate is the average value of  f ’ over (x0 , x0+h)
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Interpretations	of	finite	differences

f '(c) = f (b)− f (a)
b− a

f (b)− f (a) = f '(x)dx
a

b

∫

f (x0 + h)− f (x0 )
h

=
1
h

f '(x)dx
x0

x0+h

∫

  x0   x0+h



  x0   x0+h

  x0+h1, h1 < h
  x0   x0+h

• Smaller h  ---> better approximation
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Forward	differences	(FDF)

Estimate f '(x0 ) ≈  
f (x0 + h)− f (x0 )

h



• Let us test this: for f(x)=e(5*x)  compute numerically the value 

of the first derivative at x0 = 0.2 using different values of h:
  

h df/dx Error 
1.0e-01 17.63407 4.04266328 
1.0e-02 13.93693 0.34551982 
1.0e-03 13.62544 0.03403522 
1.0e-04 13.59481 0.00339842 
1.0e-05 13.59175 0.00033979 
1.0e-06 13.59144 0.00003398 
1.0e-07 13.59141 0.00000340 
1.0e-08 13.59141 0.00000037 
1.0e-09 13.59141 0.00000026 
1.0e-10 13.59141 0.00000114 
1.0e-11 13.59139 0.00001447 
1.0e-12 13.59091 0.00050296
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Forward	differences:	example
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f '(x0 )−

f (x0 + h)− f (x0 )
h

= O(?h)

How	fast	FDF	approaches	f	‘(x0)?

Truncation
error



For  f, g : R --> R we can write:

if and only if (iff) there exist positive C and x0  such that

Similarly, we can write

iff there exist there exist positive C and e  such that
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Reminder:	big	O	notation

  f (x) = O g(x)( ) as x →∞

  f (x) ≤ C g(x) for ∀x ≥ x0

  f (x) = O g(x)( ) as x → a

  f (x) ≤ C g(x) for x − a < e

f (x0 + h) = f (x0 )+ f '(x0 )h+
f (2)(x0 )h

2

2!
+
f (3)(x0 )h

3

3!
+!+O(hn )

Ω =O(hn )⇒∃C ∈ R, : Ω ≤C h n

Taylor series:



• We assume that f : R --> R is C2, i.e., 2x continuously 
differentiable function, x0 ∈ R, h>0, and h<Ch

• using Taylor expansion we get
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f '(x0 )−

f (x0 + h)− f (x0 )
h

= O(?h)

  
f (x0 + h) = f (x0 )+ ′f (x0 )h+ ′′f (ξ ) h2

2!
, x0 ≤ ξ ≤ x0 + h

How	fast	FDF	approaches	f	‘(x0)?

Truncation
error



• We assume that f : R --> R is C2, i.e., 2x continuously 
differentiable function, x0 ∈ R, h>0, and h<Ch

• using Taylor expansion we get

• so

• and

• i.e. 
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f '(x0 )−

f (x0 + h)− f (x0 )
h

= O(?h)

f '(x0 )−
f (x0 + h)− f (x0 )

h
≤
h
2 x0≤x≤x0+Ch
max ʹ́f (x)

  
f '(x0 )−

f (x0 + h)− f (x0 )
h

= h
2

′′f (ξ )

  
f (x0 + h) = f (x0 )+ ′f (x0 )h+ ′′f (ξ ) h2

2!
, x0 ≤ ξ ≤ x0 + h

  
f '(x0 )−

f (x0 + h)− f (x0 )
h

≤ Ch

How	fast	FDF	approaches	f	‘(x0)?

Truncation
error



• Therefore:

• Let us test this: for f(x)=e(5*x)  compute numerically the value 

of the first derivative at x0 = 0.2 using different values of h:
  

h df/dx Error 
1.0e-01 17.63407 4.04266328 
1.0e-02 13.93693 0.34551982 
1.0e-03 13.62544 0.03403522 
1.0e-04 13.59481 0.00339842 
1.0e-05 13.59175 0.00033979 
1.0e-06 13.59144 0.00003398 
1.0e-07 13.59141 0.00000340 
1.0e-08 13.59141 0.00000037 
1.0e-09 13.59141 0.00000026 
1.0e-10 13.59141 0.00000114 
1.0e-11 13.59139 0.00001447 
1.0e-12 13.59091 0.00050296
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f '(x0 )−
f (x0 + h)− f (x0 )

h
=O(h)

Round-off
error

Forward	differences:	example

10x smaller h -> the 
FDF error 10x smaller



h Error 
1.0e-01 4.04266328 
1.0e-02 0.34551982 
1.0e-03 0.03403522 
1.0e-04 0.00339842 
1.0e-05 0.00033979 
1.0e-06 0.00003398 
1.0e-07 0.00000340 
1.0e-08 0.00000037 
1.0e-09 0.00000026 
1.0e-10 0.00000114 
1.0e-11 0.00001447 
1.0e-12 0.00050296 

• Round-off error occurs due to a finite machine precision

• Matlab uses IEEE double precision standard -> the numbers are 
represented by 52 floating binary digits (or 15 floating decimal 
digits)
• Test this in Matlab:
• >> (2^52+1) - 2^52
• >> (2^53+1) - 2^53
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Round-off	error

• Using a finer grid (smaller h) reduces the 
truncation error

• It also increases the round-off error
• There is a trade-off between these two 

errors !

 



• Use instead the point on the left-hand side

• BDF has similar properties to FDF as h gets smaller, i.e.
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Backward	differences	(BDF)

 f '(x0 ) ≈
f (x0 )− f (x0 − h)

h

  x0x0−h

f '(x0 )−
f (x0 )− f (x0 − h)

h
=O(h)



• How fast CDF approaches the actual derivative as h gets 

smaller?
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Central	differences	(CDF)

x0 +
h
2x0−

h
2

f '(x0 )−
f (x0 +

1
2
h)− f (x0 −

1
2
h)

h
=O(?h)

 f '(x0 ) ≈
f (x0 +

1
2
h)− f (x0 −

1
2
h)

h



• We assume that f : R --> R is C3, x0 ∈ R, 0<h<Ch, and we apply 

Taylor’s expansion:

• subtract two expressions:

• Subsequently, we get
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Central	differences	(CDF):	truncation	error

f '(x0 )− f (x0 +
1
2
h)− f (x0 −

1
2
h)

!

"
#

$

%
& h = !!!f (ξ ) h

2

8 ⋅3!
+ """f (θ ) h

2

8 ⋅3!

f (x0 +
h
2
) = f (x0 )+ !f (x0 )

h
2
+ !!f (x0 )

h2

8
+ !!!f (ξ ) h

3

8 ⋅3!
, x0 ≤ ξ ≤ x0 +

h
2

f (x0 −
h
2
) = f (x0 )− "f (x0 )

h
2
+ !!f (x0 )

h2

8
− """f (θ ) h

3

8 ⋅3!
, x0 −

h
2
≤θ ≤ x0

f (x0 +
h
2
)− f (x0 −

h
2
) = "f (x0 )h+ """f (ξ ) h

3

8 ⋅3!
+ """f (θ ) h

3

8 ⋅3!

$

%
&

'

(
)

⇓

f '(x0 )− f (x0 +
1
2
h)− f (x0 −

1
2
h)

#

$
%

&

'
( h ≤ h

2

8 ⋅3 x0−Ch 2≤x≤x0+Ch 2
max +++f (x)



• 10x smaller h -> the error of CDF becomes 100x smaller

• Numerical test for f(x)=e(5*x) at x0 = 0.2
h df/dx Error 
1.0e-01 13.73343 0.14202027 
1.0e-02 13.59282 0.00141582 
1.0e-03 13.59142 0.00001416 
1.0e-04 13.59141 0.00000014 
1.0e-05 13.59141 0.00000000 
1.0e-06 13.59141 0.00000000 
1.0e-07 13.59141 0.00000000 
1.0e-08 13.59141 0.00000003 
1.0e-09 13.59141 0.00000063 
1.0e-10 13.59141 0.00000330 
1.0e-11 13.59139 0.00001447 
1.0e-12 13.59091 0.00050296 
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Central	differences	(CDF):	example

f '(x0 )−
f (x0 +

1
2
h)− f (x0 −

1
2
h)

h
=O(h2 )



• Function f : R --> R is C2 and  x0 ∈ R

• using CDF to estimate the 1st derivatives, i.e.,

• We finally get:
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Second	derivatives

  
′′f (x0 ) =

h→0
lim

′f (x0 + h
2 )− ′f (x0 − h

2 )

h

!f (x0 + h 2
) =
f (x0 + h2

+ h
2
)− f (x0 + h2

− h
2
)

h
=
f (x0 + h)− f (x0 )

h

!f (x0 − h 2
) =
f (x0 − h2

+ h
2
)− f (x0 − h2

− h
2
)

h
=
f (x0 )− f (x0 − h)

h

!!f (x0 ) ≈
f (x0 + h)− 2 f (x0 )+ f (x0 − h)

h2



• Function f : R2 --> R is C1 and  x0 , y0 ∈ R

• Exactly the same properties as CDF, i.e., no particularities

N
um

er
ic

al
 M

et
ho

ds

21

Partial	derivatives

∂f
∂x

x0 , y0( ) ≈
f x0 +

1
2
h, y0

"

#
$

%

&
'− f x0 −

1
2
h, y0

"

#
$

%

&
'

h

∂f
∂y

x0 , y0( ) ≈
f x0 , y0 +

1
2
h

"

#
$

%

&
'− f x0 , y0 −

1
2
h

"

#
$

%

&
'

h



• Several ways to improve the accuracy of the estimates:

• Decrease the step size

• Use higher-order expressions employing more points

• Use FDF, BDF, CDF or other derivative estimates for two 

different h to compute a more accurate approximation

• Richardson extrapolation
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Improving	estimates



• The Taylor expansions (assuming that higher derivatives exist):

•  if we subtract these two expressions, we get

• Therefore
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Richardson	extrapolation

f (x0 +
h
2
) = f (x0 )+ !f (x0 )

h
2
+ !!f (x0 )

h2

8
+ !!!f (x0 )

h3

48
+ f (4) (x0 )

h4

384
+ f (5) (x0 )

h5

3840
+!

f (x0 −
h
2
) = f (x0 )− "f (x0 )

h
2
+ !!f (x0 )

h2

8
− """f (x0 )

h3

48
+ f (4) (x0 )

h4

384
− f (5) (x0 )

h5

3840
+!

f (x0 +
h
2
)− f (x0 −

h
2
) = !f (x0 )h+

!!!f (x0 )
24

h3 + f 5( )(x0 )
h5

1920
+!

!f (x0 ) =
f (x0 +

h
2
)− f (x0 −

h
2
)

h
−

"""f (x0 )
24

h2 − f 5( )(x0 )
h4

1920
−!

  

⇓

′f (x0 ) =
f (x0 +

h
2

)− f (x0 −
h
2

)

h
− a2h

2 − a4h
4 − R

ϕ(h)
Remainder

CDF



• Idea: get rid of

• For h/2 we can write

• We obtain

• wherefrom we get

• So 2x smaller h -> the error becomes 16x smaller
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Richardson	extrapolation

!f (x0 ) =ϕ(h)− a2h
2 − a4h

4 − R(h)

!f (x0 ) =ϕ
h
2
"

#
$
%

&
'− a2

h
2
"

#
$
%

&
'

2

− a4
h
2
"

#
$
%

&
'

4

− R h
2
"

#
$
%

&
'

+

X -4

−3 "f (x0 ) =ϕ h( )− 4ϕ h
2
#

$
%
&

'
(−
3
4
a4h

4 + 4R h
2
#

$
%
&

'
(− R(h)

!f (x0 ) =
4
3
ϕ
h
2
!

"
#
$

%
&−
1
3
ϕ h( )+O(h4 )
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Richardson	extrapolation:example

• Numerical test for f(x)=e(5*x) at x0 = 0.2

h Error (FDF) Error (CDF) Error (Richardson)  
1.0e-01 4.04266328  0.14202027 -1.1081e-04
1.0e-02 0.34551982 0.00141582 -1.1061e-08
1.0e-03 0.03403522 0.00001416 -7.5318e-13
1.0e-04 0.00339842 0.00000014 1.1678e-11
1.0e-05 0.00033979 0.00000000 -2.1037e-10
1.0e-06 0.00003398 0.00000000 1.1811e-09
1.0e-07 0.00000340 0.00000000 -2.1171e-08
1.0e-08 0.00000037 0.00000003 1.4462e-07
1.0e-09 0.00000026 0.00000063 -5.5112e-07
1.0e-10 0.00000114 0.00000330 3.2977e-06
1.0e-11 0.00001447 0.00001447 4.4746e-05
1.0e-12 0.00050296 0.00050296 -5.0296e-04



• Idea: get rid of

• For h/2 we can write

• We obtain

• i.e.

• So 10x smaller h -> the error becomes 10000x smaller

• Is it possible to cancel out the h4 term?
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Richardson	extrapolation

!f (x0 ) =ϕ(h)− a2h
2 − a4h

4 − R(h)

!f (x0 ) =ϕ
h
2
"

#
$
%

&
'− a2

h
2
"

#
$
%

&
'

2

− a4
h
2
"

#
$
%

&
'

4

− R h
2
"

#
$
%

&
'

+

X -4

−3 "f (x0 ) =ϕ h( )− 4ϕ h
2
#

$
%
&

'
(−
3
4
a4h

4 + 4R h
2
#

$
%
&

'
(− R(h)

!f (x0 ) =
4
3
ϕ
h
2
!

"
#
$

%
&−
1
3
ϕ h( )+O(h4 )



 

 

N
um

er
ic

al
 M

et
ho

ds

27

Richardson	extrapolation	table	

D(0, 0) =ϕ(h)

D(1, 0) =ϕ(h 2)

D(2, 0) =ϕ(h 4)

D(3, 0) =ϕ(h 8)

D(1,1)

D(2,1)

D(3,1)

D(2, 2)

D(3, 2) D(3,3)

• Recall that

!f (x0 ) =
4
3
ϕ
h
2
!

"
#
$

%
&−
1
3
ϕ h( )+O(h4 )⇒ "f (x0 ) =ϕ

h
2
!

"
#
$

%
&+
1
3
ϕ
h
2
!

"
#
$

%
&−ϕ h( )

!

"
#

$

%
&+O(h4 )

D(1,1) = D(1, 0)+ 1
41 −1

D(1, 0)−D(0, 0)( )
  
ϕ(h) =

f (x0 +
h
2

)− f (x0 −
h
2

)

h
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Richardson	extrapolation	table	

D(0, 0) =ϕ(h)

D(1, 0) =ϕ(h 2)

D(2, 0) =ϕ(h 4)

D(3, 0) =ϕ(h 8)

D(1,1)

D(2,1)

D(3,1)

D(2, 2)

D(3, 2) D(3,3)

• Recall that

!f (x0 ) =
4
3
ϕ
h
2
!

"
#
$

%
&−
1
3
ϕ h( )+O(h4 )⇒ "f (x0 ) =ϕ

h
2
!

"
#
$

%
&+
1
3
ϕ
h
2
!

"
#
$

%
&−ϕ h( )

!

"
#

$

%
&+O(h4 )

D(1,1) = D(1, 0)+ 1
41 −1

D(1, 0)−D(0, 0)( )
  
ϕ(h) =

f (x0 +
h
2

)− f (x0 −
h
2

)

h
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Richardson	extrapolation	table	

D(0, 0) =ϕ(h)

D(1, 0) =ϕ(h 2)

D(2, 0) =ϕ(h 4)

D(3, 0) =ϕ(h 8)

D(1,1)

D(2,1)

D(3,1)

D(2, 2)

D(3, 2) D(3,3)

• Recall that

!f (x0 ) =
4
3
ϕ
h
2
!

"
#
$

%
&−
1
3
ϕ h( )+O(h4 )⇒ "f (x0 ) =ϕ

h
2
!

"
#
$

%
&+
1
3
ϕ
h
2
!

"
#
$

%
&−ϕ h( )

!

"
#

$

%
&+O(h4 )

D(1,1) = D(1, 0)+ 1
41 −1

D(1, 0)−D(0, 0)( )
  
ϕ(h) =

f (x0 +
h
2

)− f (x0 −
h
2

)

h
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Richardson	extrapolation	table	

( ) ( ) ( )1, ( , 1) , 1 1, 1
4 1mD n m D n m D n m D n m= - + - - - -é ùë û-

D(0, 0) =ϕ(h)

D(1, 0) =ϕ(h 2)

D(2, 0) =ϕ(h 4)

D(3, 0) =ϕ(h 8)

D(1,1)

D(2,1)

D(3,1)

D(2, 2)

D(3, 2) D(3,3)

m

n


