

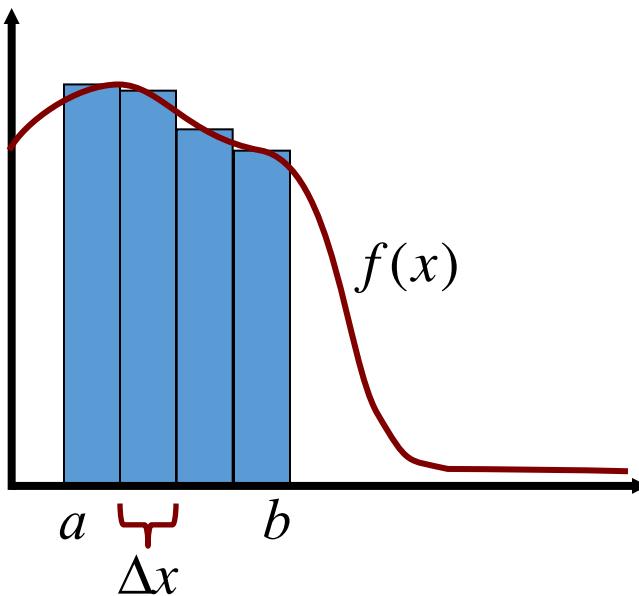
Numerical integration

Recall: some facts on integrals

- Function $f: R \rightarrow R$, continuous on an interval $[a, b]$, then its definite integral is

$$\int_a^b f(x)dx = \lim_{n \rightarrow \infty} \sum_{k=1}^n f(x_k) \Delta x \quad \text{with} \quad \Delta x = \frac{b-a}{n}$$

- Interpretation: it is the area under the curve



- Extends to higher dimensions: a double definite integral \rightarrow volume

Why numerical integration?

- Allows us to compute the definite integral without needing to derive the analytical expression!
- Very practical way to compute the definite integrals when the integrands are very complex or for functions whose primitives cannot be expressed in closed form
- When it is needed to compute the integrals (areas, volumes, etc.) for a given set of tabulated data (we have pairs (x_i, y_i) for $i=1, \dots, n$)

Newton-Cotes integration

- Idea: replace $f(x)$ or tabulated data by simple functions that are easy to integrate.
- In the Newton-Cotes scheme $f(x)$ is approximated by a n^{th} order polynomial

$$I = \int_a^b f(x) dx \approx \int_a^b p_n(x) dx$$

$$p_n(x) = a_0 + a_1 x + \dots + a_n x^n$$

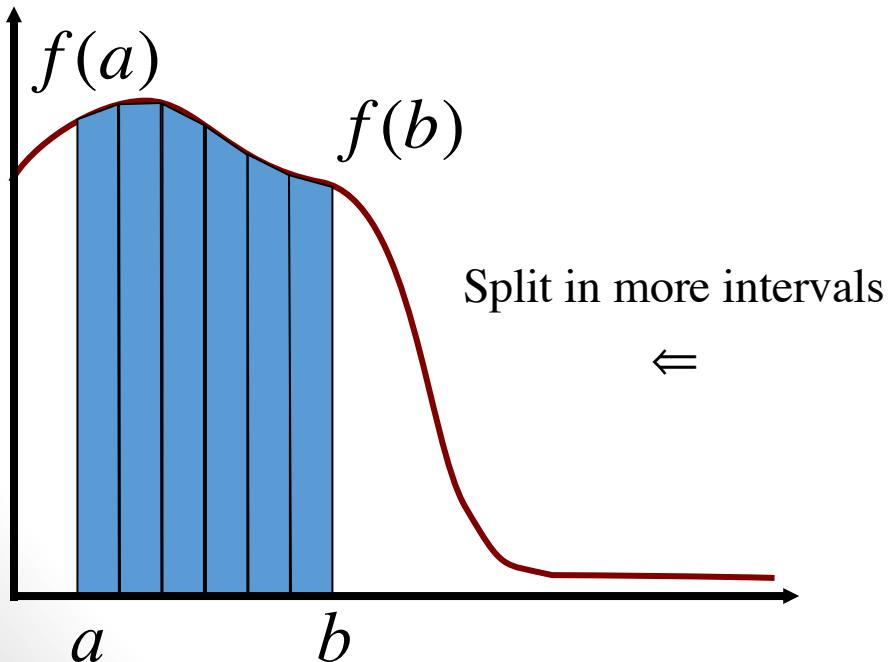
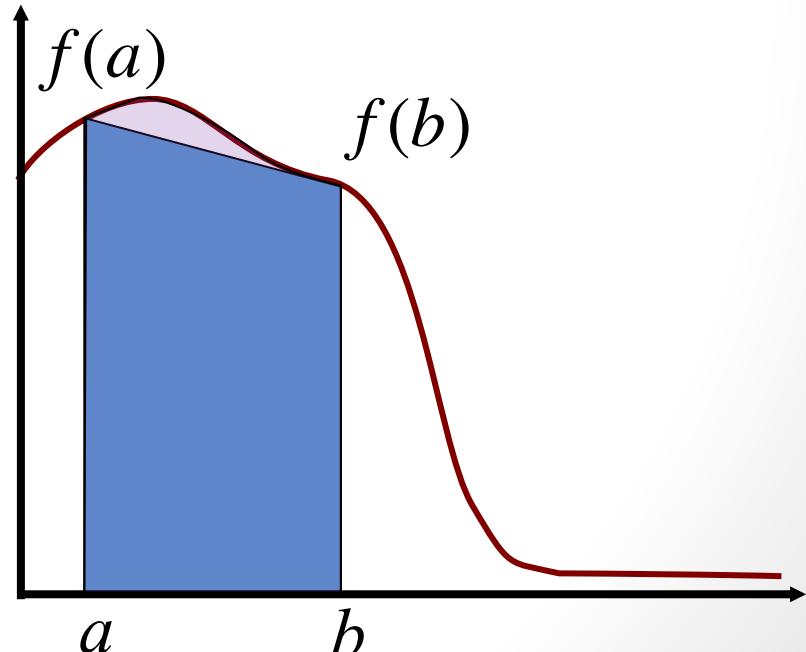
- We will discuss at this course:
 - Order 1 (linear approximation), Trapezoid rule, error $O(h^2)$
 - Order 2 (quadratic approximation), Simpson's 1/3 rule, error $O(h^4)$
 - Order 3 (cubic approximation), Simpson's 3/8 rule, error $O(h^4)$

Trapezoid rule

- The area under the curve $f(x)$ is approximated by a *1st order polynomial*

$$I = \int_a^b f(x)dx \approx \int_a^b (a_0 + a_1 x)dx$$
$$a_0 + a_1 x = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$

$$I \approx \frac{(b-a)}{2} [f(a) + f(b)]$$



Composite trapezoid rule

- Improve the accuracy by splitting the integration interval in n

equal subintervals, i.e.,
$$h = \frac{(b-a)}{n}$$

- From

$$I = \int_a^{a+h} f(x)dx + \int_{a+h}^{a+2h} f(x)dx + \dots + \int_{b-h}^b f(x)dx = \sum_{i=1}^n \int_{a+(i-1)h}^{a+ih} f(x)dx$$

- and

$$\int_{a+(i-1)h}^{a+ih} f(x)dx \approx \underbrace{\frac{(a+ih - a - (i-1)h)}{2}}_{h/2} [f(a+ih) + f(a+(i-1)h)]$$

- we obtain

$$I \approx I_h = \frac{h}{2} [f(a+h) + f(a) + f(a+2h) + f(a+3h) + \dots + f(b)]$$

$$I_h = \frac{h}{2} \left[f(a) + 2 \sum_{i=1}^{n-1} f(a+ih) + f(b) \right]$$

Composite trapezoid rule error

- It can be shown that the error of this rule is

$$\int_a^b f(x)dx - I_h = -\frac{h^3}{12} \sum_{i=1}^n f''(\eta_i)$$

for some η_i in the intervals $[a+ih, a+(i-1)h]$. This can be expressed as

$$\int_a^b f(x)dx - I_h = -\frac{h^2(b-a)}{12n} \sum_{i=1}^n f''(\eta_i) = -\frac{h^2(b-a)}{12} f''(\mu)$$

- If $f(x)$ is linear, then this error is zero!
- $O(h^2) \rightarrow$ if h is halved, then this error is quartered!
- It depends on the width of the integrated area

Romberg integration

- Recall Richardson extrapolation: use two estimates (in this case of an integral) for two h to compute a third more accurate approximation
- We have seen that

$$\int_a^b f(x)dx - I_h = Ch^2 + O(h^4)$$

- If we compute an approximation for $h/2$ we obtain

$$\int_a^b f(x)dx - I_{h/2} = C\left(\frac{h}{2}\right)^2 + O(h^4)$$

- Cancelling h^2 terms we have

$$\int_a^b f(x)dx = \frac{4}{3}I_{h/2} - \frac{1}{3}I_h + O(h^4)$$

Romberg integration

- So, we have obtained an $O(h^4)$ estimate

$$\int_a^b f(x)dx \approx \frac{4}{3}I_{h/2} - \frac{1}{3}I_h = \frac{4I_{h/2} - I_h}{4^1 - 1} = I_{h/2} + \frac{I_{h/2} - I_h}{4^1 - 1}$$

- Notation: $I(1,1)=I_h$, $I(2,1)=I_{h/2}$

$$I_{h/2} + \frac{I_{h/2} - I_h}{4^1 - 1} \Rightarrow I(2,1) + \frac{I(2,1) - I(1,1)}{4^1 - 1} = I(2,2)$$

		k=1	k=2		
j=1	h	$I(1,1)=I_h$			
j=2	$h/2$	$I(2,1)=I_{h/2}$	\rightarrow	$I(2,2)$	
j=3	$h/4$	$I(3,1)=I_{h/4}$			
j=4	$h/8$	$I(4,1)=I_{h/8}$			
	Error order	$O(h^2)$			

Romberg integration

- So, we have obtained an $O(h^4)$ estimate

$$\int_a^b f(x)dx \approx \frac{4}{3}I_{h/2} - \frac{1}{3}I_h = \frac{4I_{h/2} - I_h}{4^1 - 1} = I_{h/2} + \frac{I_{h/2} - I_h}{4^1 - 1}$$

- Notation: $I(1,1)=I_h$, $I(2,1)=I_{h/2}$

$$I_{h/2} + \frac{I_{h/2} - I_h}{4^1 - 1} \Rightarrow I(2,1) + \frac{I(2,1) - I(1,1)}{4^1 - 1} = I(2,2)$$

		k=1	k=2		
j=1	h	$I(1,1)=I_h$			
j=2	$h/2$	$I(2,1)=I_{h/2}$		$I(2,2)$	
j=3	$h/4$	$I(3,1)=I_{h/4}$		$I(3,2)$	
j=4	$h/8$	$I(4,1)=I_{h/8}$		$I(4,2)$	
	Error order	$O(h^2)$	$O(h^4)$		

Romberg integration

- Following a similar logic, we can combine two $O(h^4)$ estimates to obtain an $O(h^6)$ estimate:

$$I(j,3) = I(j,2) + \frac{I(j,2) - I(j-1,2)}{4^2 - 1}, \quad j = 3, 4, \dots$$

		k=1	k=2	k=3	
j=1	h	$I(1,1) = I_h$			
j=2	$h/2$	$I(2,1) = I_{h/2}$	$I(2,2)$		
j=3	$h/4$	$I(3,1) = I_{h/4}$	$I(3,2)$	$I(3,3)$	
j=4	$h/8$	$I(4,1) = I_{h/8}$	$I(4,2)$	$I(4,3)$	
	Error order	$O(h^2)$	$O(h^4)$	$O(h^6)$	

Romberg integration

- To obtain an $O(h^8)$ estimate:

$$I(j,4) = I(j,3) + \frac{I(j,3) - I(j-1,3)}{4^3 - 1}, \quad j = 4, 5, \dots$$

		$k=1$	$k=2$	$k=3$	$k=4$
j=1	h	$I(1,1) = I_h$			
j=2	$h/2$	$I(2,1) = I_{h/2}$	$I(2,2)$		
j=3	$h/4$	$I(3,1) = I_{h/4}$	$I(3,2)$	$I(3,3)$	
j=4	$h/8$	$I(4,1) = I_{h/8}$	$I(4,2)$	$I(4,3)$	$I(4,4)$
	Error order	$O(h^2)$	$O(h^4)$	$O(h^6)$	$O(h^8)$

Romberg integration

- From this (and previous) estimate(s)

$$I(j,4) = I(j,3) + \frac{I(j,3) - I(j-1,3)}{4^3 - 1}, \quad j = 4, 5, \dots$$

- we deduce a general recursive scheme:

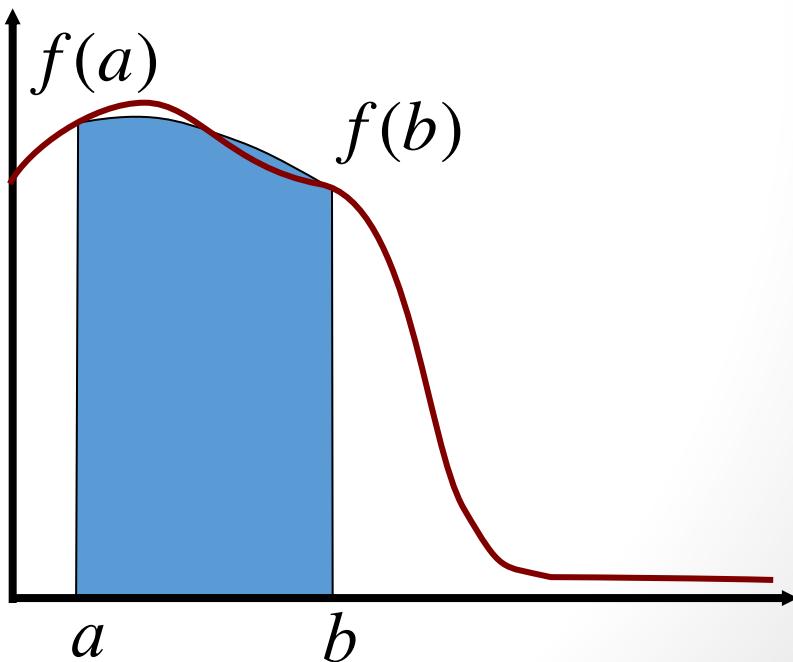
$$I(j,k+1) = I(j,k) + \frac{I(j,k) - I(j-1,k)}{4^k - 1}$$

- Stopping condition
 - Stop if $| I(j,j) - I(j,j-1) | < \varepsilon$
 - Stop after pre-specified k steps

Increasing the order of polynomial

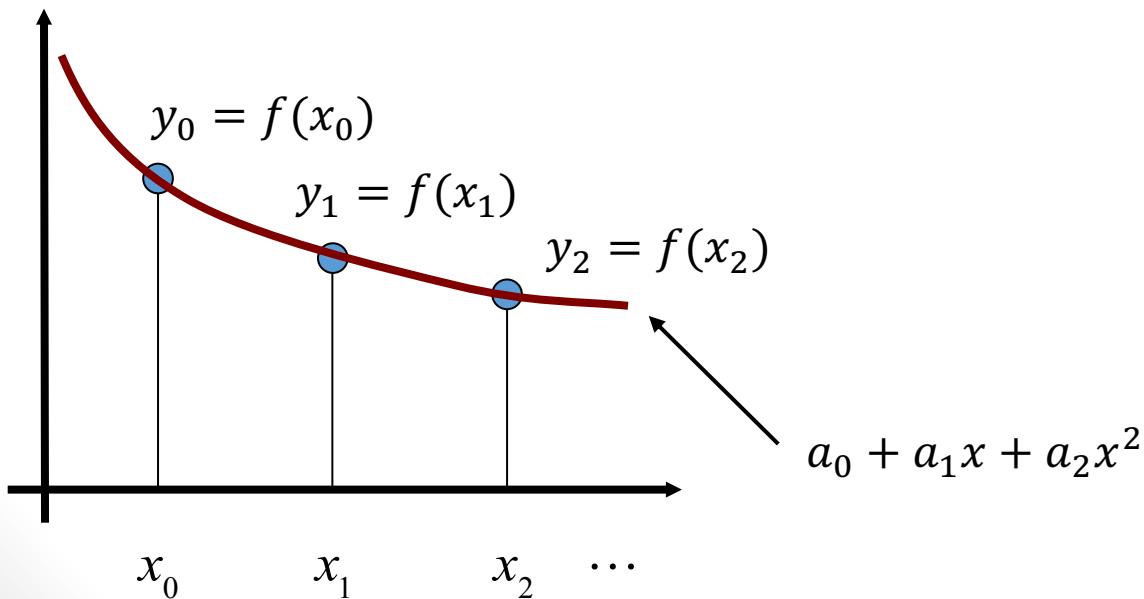
- Romberg integration: to increase the accuracy we have applied recursively the Richardson extrapolation over the 1st order polynomial approximations
- Instead, we might increase the order of polynomial

$$I = \int_a^b f(x) dx \approx \int_a^b a_0 + a_1 x + a_2 x^2 dx$$



How to determine coefficients a_0, a_1 , and a_2 ?

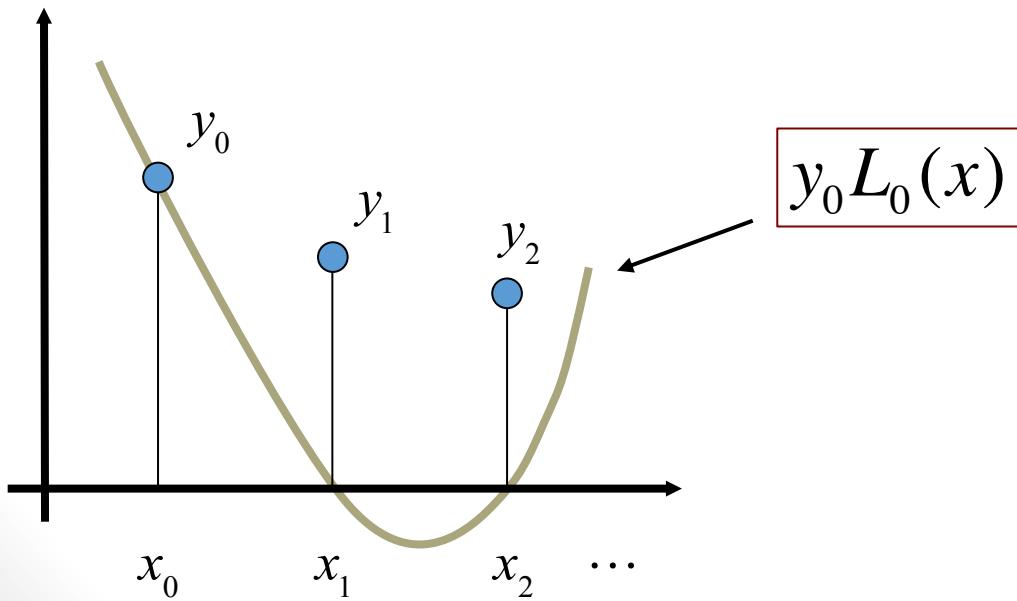
- For each interval, we have to find the coefficients of the 2nd-order polynomial (a_0, a_1 , and a_2) that passes through the points $y_0 = f(x_0)$, $y_1 = f(x_1)$, and $y_2 = f(x_2)$...
- A solution -> Lagrange interpolating polynomials



Lagrange interpolating polynomial

- Consider the 2nd-order Lagrange polynomial

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \Rightarrow L_0(x_0) = 1; \\ L_0(x_1) = 0; \quad L_0(x_2) = 0;$$

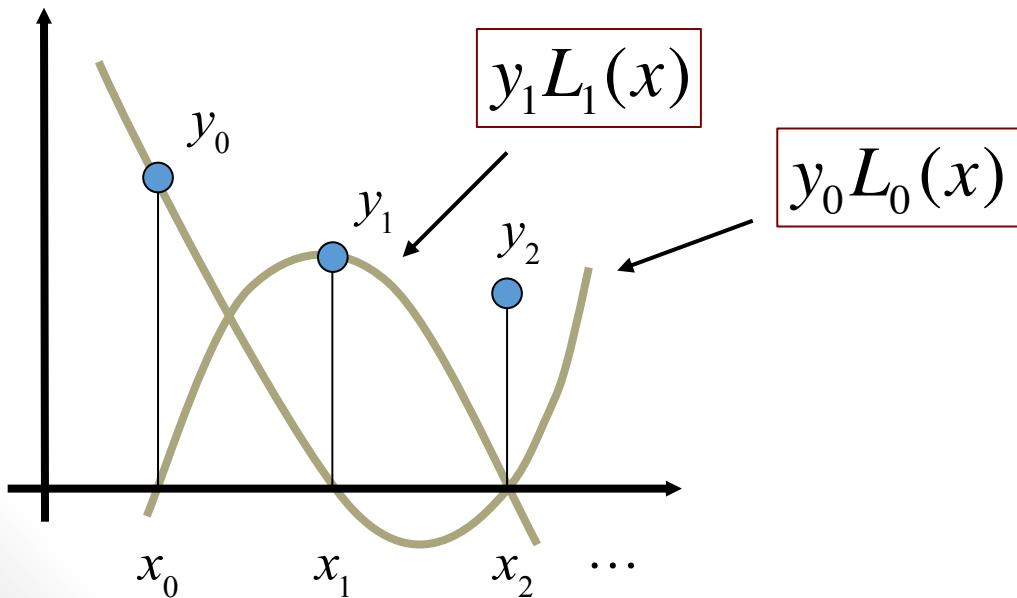


Lagrange interpolating polynomial

- Consider the 2nd-order Lagrange polynomial

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \Rightarrow L_0(x_0) = 1; \\ L_0(x_1) = 0; \quad L_0(x_2) = 0;$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \Rightarrow L_1(x_0) = 0; \\ L_1(x_1) = 1; \quad L_1(x_2) = 0;$$



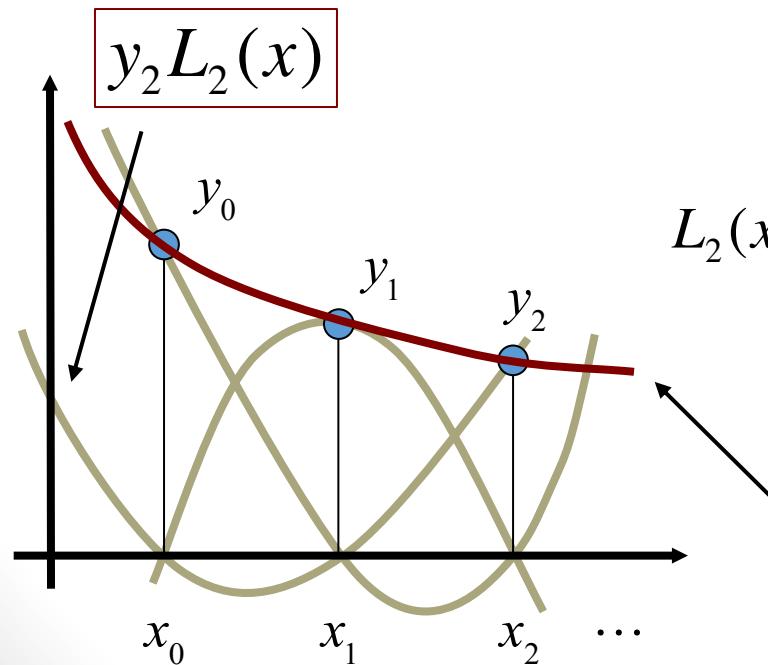
Lagrange interpolating polynomial

- Consider the 2nd-order Lagrange polynomial

$$L_0(x) = \frac{(x - x_1)(x - x_2)}{(x_0 - x_1)(x_0 - x_2)} \Rightarrow L_0(x_0) = 1; \\ L_0(x_1) = 0; \quad L_0(x_2) = 0;$$

$$L_1(x) = \frac{(x - x_0)(x - x_2)}{(x_1 - x_0)(x_1 - x_2)} \Rightarrow L_1(x_0) = 0; \\ L_1(x_1) = 1; \quad L_1(x_2) = 0;$$

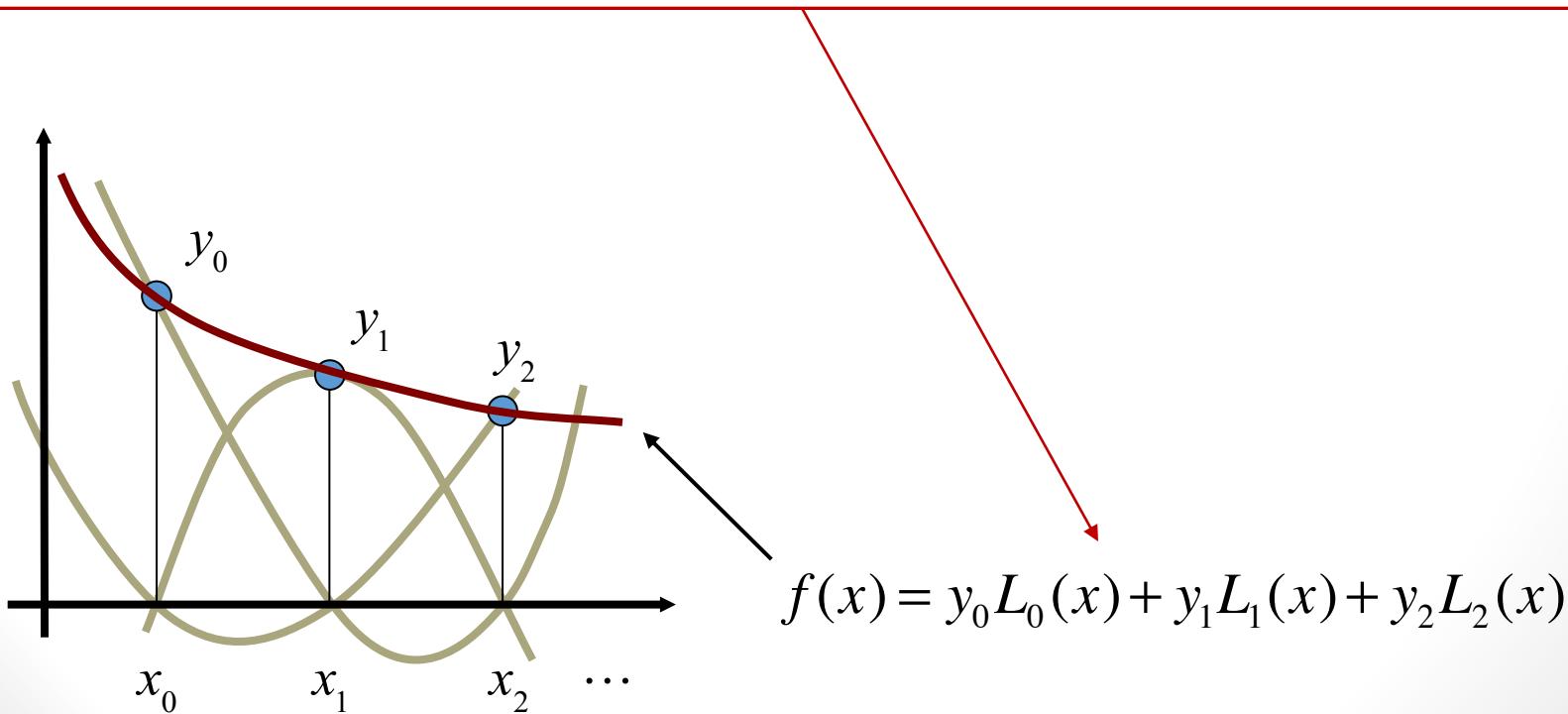
$$L_2(x) = \frac{(x - x_0)(x - x_1)}{(x_2 - x_0)(x_2 - x_1)} \Rightarrow L_2(x_0) = 0; \\ L_2(x_1) = 0; \quad L_2(x_2) = 1;$$



$$f(x) = y_0 L_0(x) + y_1 L_1(x) + y_2 L_2(x)$$

Lagrange interpolating polynomial

2nd-order polynomial passing through y_0 , y_1 , and y_2
is computed as
a weighted sum of three Lagrange polynomials!



Simpson's 1/3 Rule

- Simpson's 1/3 rule uses a 2nd-order Lagrange polynomial

$$I \approx \int_{x_0}^{x_2} \left[\sum_{j=0}^2 f(x_j) \prod_{\substack{i=0 \\ i \neq j}}^2 \frac{(x - x_i)}{x_j - x_i} \right] dx = \sum_{j=0}^2 f(x_j) \int_{x_0}^{x_2} \left[\prod_{\substack{i=0 \\ i \neq j}}^2 \frac{(x - x_i)}{x_j - x_i} \right] dx$$

with $x_0 = a$, $x_2 = b$, $x_1 = (a + b) / 2$. Since $x_2 - x_1 = x_1 - x_0 = h$, we get

$$I \approx f(x_0) \int_{x_0}^{x_2} \frac{(x - x_0 - h)(x - x_0 - 2h)}{2h^2} dx + f(x_1) \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_0 - 2h)}{h^2} dx + f(x_2) \int_{x_0}^{x_2} \frac{(x - x_0)(x - x_0 - h)}{2h^2} dx$$

substitute $t = x - x_0$ and integrate to finally obtain

$$I \approx \frac{h}{3} [f(x_0) + 4f(x_1) + f(x_2)]$$

Composite Simpson's 1/3 Rule

- Improve the accuracy by splitting the integration interval in n equal subintervals, i.e.,

$$h = \frac{(b-a)}{n}$$

- Since Simpson's 1/3 rule needs 3 points (2 intervals) -> divide the integration interval in an even number of parts:

$$I \approx \int_{x_0}^{x_2} f(x)dx + \int_{x_2}^{x_4} f(x)dx + \dots + \int_{x_{n-2}}^{x_n} f(x)dx$$

$$I \approx (b-a) \frac{f(x_0) + 4 \sum_{i=1,3,5}^{n-1} f(x_i) + 2 \sum_{j=2,4,6}^{n-2} f(x_j) + f(x_n)}{3n}$$

Composite Simpson's 1/3 rule error

- It can be shown that the error of this rule is

$$\int_a^b f(x)dx - I = -\frac{h^4(b-a)}{180} \frac{\sum_{i=1}^n f^{(4)}(\eta_i)}{n} = O(h^4)$$

for some η_i in the intervals $[a+ih, a+(i-1)h]$

- If $f(x)$ is cubic, then this error is zero!
- If h is halved, then the error is reduced by factor of 16!
- It depends on the width of the integrated area

Simpson's 3/8 rule

- 3rd-order Lagrange polynomial is used -> Simpson's 3/8 rule

$$I = \frac{3}{8} h [f(x_0) + 3f(x_1) + 3f(x_2) + f(x_3)]$$

- Distance between points $h=(b-a)/3$ (equidistant)
- Error is of the same order as 1/3 -> $O(h^4)$

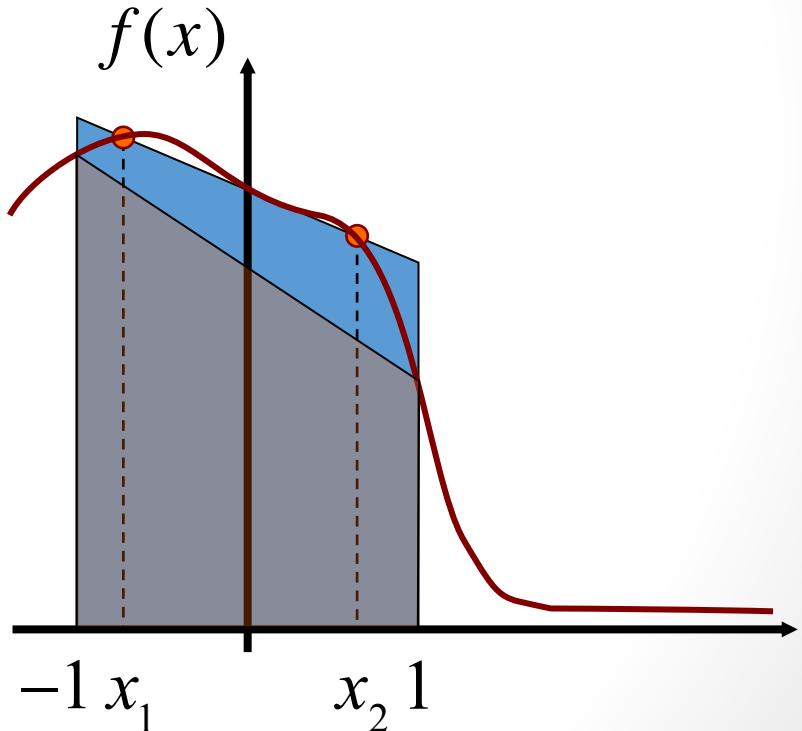
Gauss quadrature

- Trapezoid rule: $I \approx \frac{(b-a)}{2} [f(a) + f(b)]$
- Idea: what if we “optimize” the points where is the function is evaluated, and the corresponding weights?

- So:

$$I = \int_{-1}^1 f(x) dx \approx \sum_{i=1}^n \omega_i \cdot f(x_i)$$

- ω_i – weights
- x_i – points of evaluation



Two points Gauss-Legendre formula

- Consider only two points:

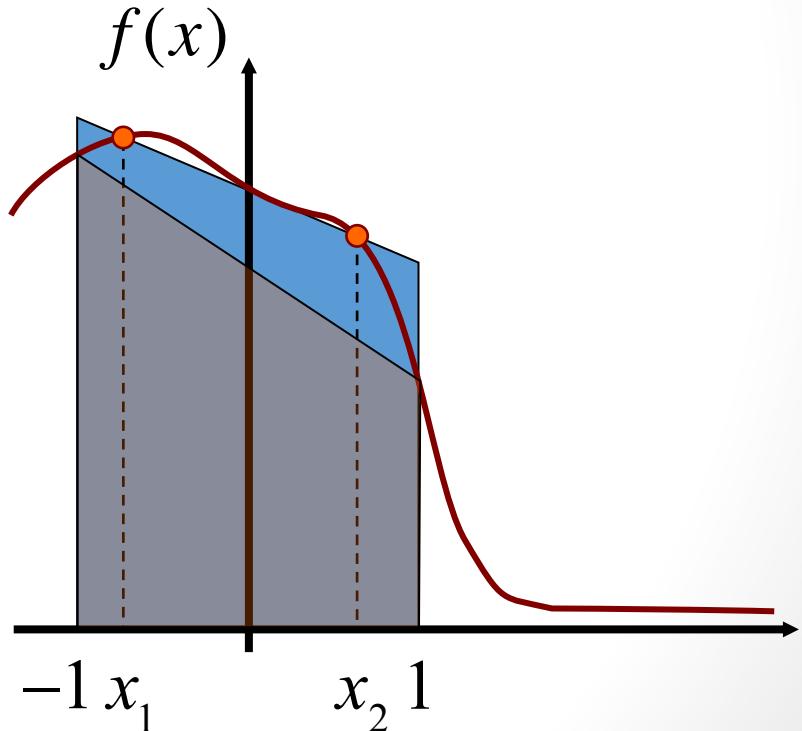
$$I \approx \sum_{i=1}^2 \omega_i \cdot f(x_i) = \omega_1 \cdot f(x_1) + \omega_2 \cdot f(x_2)$$

- we have to find ω_1 , ω_2 , x_1 and x_2

- Idea: assume that formula fits

well the integrals of :

- constant
- linear function
- quadratic function
- cubic function



Two points Gauss-Legendre formula

- This way we have a nonlinear system of 4 equations and 4 unknowns

$$\int_{-1}^1 1 dx = 2 = \omega_1 \cdot f(x_1) + \omega_2 \cdot f(x_2) = \omega_1 + \omega_2$$

$$\int_{-1}^1 x dx = 0 = \omega_1 \cdot f(x_1) + \omega_2 \cdot f(x_2) = \omega_1 x_1 + \omega_2 x_2$$

$$\int_{-1}^1 x^2 dx = \frac{2}{3} = \omega_1 \cdot f(x_1) + \omega_2 \cdot f(x_2) = \omega_1 x_1^2 + \omega_2 x_2^2$$

$$\int_{-1}^1 x^3 dx = 0 = \omega_1 \cdot f(x_1) + \omega_2 \cdot f(x_2) = \omega_1 x_1^3 + \omega_2 x_2^3$$

- Solution:

$$\omega_1 = \omega_2 = 1; \quad x_1 = -\frac{1}{\sqrt{3}} = -x_2$$

Two points Gauss-Legendre formula

$$I \approx f\left(-\frac{1}{\sqrt{3}}\right) + f\left(\frac{1}{\sqrt{3}}\right)$$

- This formula gives exact solution for all polynomials up to the ones with a cubic dependency
- Practical issue: it is derived for the interval $(-1,1)$. In a general case, make a change of variables as follows:

$$y = \frac{(b-a)}{2}x + \frac{b+a}{2}$$

- So:

$$\int_a^b f(y) dy = \frac{(b-a)}{2} \int_{-1}^1 f\left(\frac{(b-a)}{2}x + \frac{b+a}{2}\right) dx$$