
Numerical	integration

N
um

er
ic

al
 M

et
ho

ds
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• Function f : R --> R, continuous on an interval [a, b], then its 

definite integral is 

• Interpretation: it is the area under the curve 

• Extends to higher dimensions: a double definite integral -> 
volume

N
um

er
ic

al
 M

et
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ds
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Recall:	some	facts	on	integrals

f (x)dx = lim
n→∞a

b

∫ f (xk )Δx
k=1

n

∑    with   Δx = b − a
n

 a  b
Δx

f (x)



• Allows us to compute the definite integral without needing to 

derive the analytical expression!

• Very practical way to compute the definite integrals when the 

integrands are very complex or for functions whose primitives 

cannot be expressed in closed form

•  When it is needed to compute the integrals (areas, volumes, 

etc.) for a given set of tabulated data (we have pairs (xi, yi) for 

i=1,…,n)

N
um

er
ic

al
 M

et
ho

ds
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Why	numerical	integration?



• Idea: replace f(x) or tabulated data by simple functions that are 

easy to integrate.

• In the Newton-Cotes scheme  f(x) is approximated by a nth order 

polynomial

• We will discuss at this course:

• Order 1 (linear approximation), Trapezoid rule, error O(h2)

• Order 2 (quadratic approximation), Simpson’s 1/3  rule, error O(h4)

• Order 3 (cubic approximation), Simpson’s 3/8  rule, error O(h4)

N
um
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ds
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Newton-Cotes	integration

I = f x( )dx
a

b

∫ ≈ pn x( )dx
a

b

∫
pn x( ) = a0 + a1x + ....+ anxn



• The area under the curve f(x)

N
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Trapezoid	rule

I = f x( )dx
a

b

∫ ≈ a0 + a1x( )dx
a

b

∫

a0 + a1x = f (a)+ f (b)− f (a)
b − a

(x − a)

 a  b

f (b)
f (a)

( ) ( ) ( )[ ]bfafabI +
-

»
2

  

 a  b

f (b)
f (a)

Split in more intervals
⇐

is approximated by a 1st order 
polynomial



• Improve the accuracy by splitting the integration interval in n 

equal subintervals, i.e.,

• From

• and 

• we obtain
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Composite	trapezoid	rule

f x( )dx
a+(i−1)h

a+ih

∫ ≈  a + ih − a − (i −1)h( )
2

f a + ih( ) + f a + (i −1)h( )⎡⎣ ⎤⎦

h =  b − a( )
n

I = f x( )dx
a

a+h

∫ + f x( )dx
a+h

a+2h

∫ + ...+ f x( )dx
b−h

b

∫ = f x( )dx
a+(i−1)h

a+ih

∫
i=1

n

∑

Ih =
h
2

f a( ) + 2 f a + ih( )
i=1

n−1

∑ + f b( )⎡
⎣⎢

⎤
⎦⎥

h 2

 
I ≈ Ih =

h
2

f a + h( ) + f a( ) + f a + 2h( ) + f a + h( ) +!+ f b( )⎡⎣ ⎤⎦



• It can be shown that the error of this rule is

   for some ηi in the intervals [a+ih, a+(i-1)h]. This can be expressed as

• If f(x) is linear, then this error is zero! 

• 𝑂 ℎ! → if h is halved, then this error is quartered!

• It depends on the width of the integrated area

N
um
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al
 M
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ds
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Composite	trapezoid	rule	error

%
"
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𝑓 𝑥 𝑑𝑥 − 𝐼$ = −
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#

𝑓 𝑥 𝑑𝑥 − 𝐼$ = −
ℎ! 𝑏 − 𝑎
12	𝑛

.
&'(

)

𝑓** 𝜂& =−
ℎ! 𝑏 − 𝑎

12
𝑓**(𝜇)



• Recall Richardson extrapolation: use two estimates (in this case 

of an integral) for two h to compute a third more accurate 

approximation 

• We have seen that

• If we compute an approximation for h/2 we obtain

• Cancelling  h2 terms we have 
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Romberg	integration

f x( )dx
a

b

∫ − Ih = Ch
2 +O(h4 )

f x( )dx
a

b

∫ − Ih
2
= C h

2( )2 +O(h4 )

f x( )dx
a

b

∫ = 4
3
Ih
2
− 1
3
Ih +O(h

4 )



• So, we have obtained an O(h4) estimate

• Notation: I(1,1)=Ih , I(2,1)=Ih/2 
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Romberg	integration

f x( )dx
a

b

∫ ≈ 4
3
Ih
2
− 1
3
Ih =

4Ih
2
− Ih

41 −1
= Ih

2
+
Ih
2
− Ih

41 −1

k=1 k=2

j=1 h I(1,1)=Ih

j=2 h/2 I(2,1)=Ih/2 I(2,2)

j=3 h/4 I(3,1)=Ih/4

j=4 h/8 I(4,1)=Ih/8

Error
order O(h2)

Ih
2
+
Ih
2
− Ih

41 −1
⇒ I(2,1)+ I(2,1)− I(1,1)

41 −1
= I(2,2)



• So, we have obtained an O(h4) estimate

• Notation: I(1,1)=Ih , I(2,1)=Ih/2 

N
um

er
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ds
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Romberg	integration

f x( )dx
a

b

∫ ≈ 4
3
Ih
2
− 1
3
Ih =

4Ih
2
− Ih

41 −1
= Ih

2
+
Ih
2
− Ih

41 −1

k=1 k=2

j=1 h I(1,1)=Ih

j=2 h/2 I(2,1)=Ih/2 I(2,2)

j=3 h/4 I(3,1)=Ih/4 I(3,2)

j=4 h/8 I(4,1)=Ih/8 I(4,2)

Error
order O(h2) O(h4)

Ih
2
+
Ih
2
− Ih

41 −1
⇒ I(2,1)+ I(2,1)− I(1,1)

41 −1
= I(2,2)



• Following a similar logic, we can combine two O(h4) estimates to 

obtain an O(h6) estimate:
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Romberg	integration

 
I( j, 3) = I j,2( ) + I j,2( )− I j −1,2( )

42 −1
,   j = 3,4,…

k=1 k=2 k=3

j=1 h I(1,1)=Ih

j=2 h/2 I(2,1)=Ih/2 I(2,2)

j=3 h/4 I(3,1)=Ih/4 I(3,2) I(3,3)

j=4 h/8 I(4,1)=Ih/8 I(4,2) I(4,3)

Error
order O(h2) O(h4) O(h6)



• To obtain an O(h8) estimate:

 

N
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Romberg	integration

 
I( j, 4) = I j, 3( ) + I j, 3( )− I j −1,3( )

43 −1
,   j = 4,5,…

k=1 k=2 k=3 k=4

j=1 h I(1,1)=Ih

j=2 h/2 I(2,1)=Ih/2 I(2,2)

j=3 h/4 I(3,1)=Ih/4 I(3,2) I(3,3)

j=4 h/8 I(4,1)=Ih/8 I(4,2) I(4,3) I(4,4)

Error
order O(h2) O(h4) O(h6) O(h8)



• From this (and previous) estimate(s)

• we deduce a general recursive scheme: 

• Stopping condition

• Stop if  | I(j,j) - I(j,j-1) | < ε 

• Stop after pre-specified k steps

N
um

er
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al
 M

et
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ds
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Romberg	integration

 
I( j, 4) = I j, 3( ) + I j, 3( )− I j −1,3( )

43 −1
,   j = 4,5,…

I( j,k +1) = I j,k( ) + I j,k( )− I j −1,k( )
4 k −1



• Romberg integration: to increase the accuracy we have applied 

recursively the Richardson extrapolation over the 1st order 

polynomial approximations

• Instead, we might increase the order of polynomial

N
um

er
ic

al
 M

et
ho

ds
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Increasing	the	order	of	polynomial

I = f x( )dx
a

b

∫ ≈ a0 + a1x + a2x
2 dx

a

b

∫

 a  b

f (b)
f (a)



• For each interval, we have to find the coefficients of the 2nd-

order polynomial (𝑎+, 𝑎(, and 𝑎!) that passes through the 

points 𝑦+ = 𝑓(𝑥+), 𝑦( = 𝑓(𝑥(), and 𝑦! = 𝑓(𝑥!)…

• A solution -> Lagrange interpolating polynomials N
um

er
ic

al
 M

et
ho

ds
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How	to	determine	coefficients	𝑎&,	𝑎',	and	𝑎(?	

  x0   x1    x2 !

𝑎! + 𝑎"𝑥 + 𝑎#𝑥#

𝑦! = 𝑓(𝑥!)
𝑦" = 𝑓(𝑥")

𝑦# = 𝑓(𝑥#)



• Consider the 2nd-order Lagrange polynomial

N
um

er
ic

al
 M

et
ho

ds
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Lagrange	interpolating	polynomial

  x0   x1    x2 !

  y0

  y1
  y2

L0 (x) =
x − x1( ) x − x2( )
x0 − x1( ) x0 − x2( ) ⇒

L0 (x0 ) = 1;
L0 (x1) = 0 ; L0 (x2 ) = 0 ;

y0L0 (x)



• Consider the 2nd-order Lagrange polynomial

N
um

er
ic

al
 M
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ds
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Lagrange	interpolating	polynomial

  x0   x1    x2 !

  y0

  y1
  y2

L0 (x) =
x − x1( ) x − x2( )
x0 − x1( ) x0 − x2( ) ⇒

L0 (x0 ) = 1;
L0 (x1) = 0 ; L0 (x2 ) = 0 ;

L1(x) =
x − x0( ) x − x2( )
x1 − x0( ) x1 − x2( ) ⇒

L1(x0 ) = 0 ;
L1(x1) = 1;
L1(x2 ) = 0 ;

y1L1(x)
y0L0 (x)



• Consider the 2nd-order Lagrange polynomial

N
um

er
ic

al
 M

et
ho

ds
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Lagrange	interpolating	polynomial

  x0   x1    x2 !

  y0

  y1
  y2

L0 (x) =
x − x1( ) x − x2( )
x0 − x1( ) x0 − x2( ) ⇒

L0 (x0 ) = 1;
L0 (x1) = 0 ; L0 (x2 ) = 0 ;

L1(x) =
x − x0( ) x − x2( )
x1 − x0( ) x1 − x2( ) ⇒

L1(x0 ) = 0 ;
L1(x1) = 1;
L1(x2 ) = 0 ;

L2 (x) =
x − x0( ) x − x1( )
x2 − x0( ) x2 − x1( ) ⇒

L2 (x0 ) = 0 ;
L2 (x1) = 0 ;
L2 (x2 ) = 1;

f (x) = y0L0 (x)+ y1L1(x)+ y2L2 (x)

y2L2 (x)



N
um
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et
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Lagrange	interpolating	polynomial

  x0   x1    x2 !

  y0

  y1
  y2

f (x) = y0L0 (x)+ y1L1(x)+ y2L2 (x)

2nd-order polynomial passing through 𝑦&, 𝑦',  and 𝑦(
is computed as

a weighted sum of three Lagrange polynomials! 



• Simpson’s 1/3 rule uses a 2nd-order Lagrange polynomial

N
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Simpson’s	1/3	Rule

with x0 = a, x2 = b, x1 = (a + b) / 2. Since x2 − x1 = x1 − x0 = h, we get

I ≈ f x j( )
j=0

2

∑ x − xi( )
x j − xii=0

i≠ j

2

∏
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x0

x2∫ dx = f x j( )
j=0

2

∑ x − xi( )
x j − xii=0

i≠ j

2

∏
⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

x0

x2∫ dx

  

I ≈ f x0( ) x − x0 − h( ) x − x0 − 2h( )
2h2 dx − f x1( ) x − x0( ) x − x0 − 2h( )

h2 dx
x0

x2∫x0

x2∫

+ f x2( ) x − x0( ) x − x0 − h( )
2h2 dx

x0

x2∫
substitute t = x − x0  and integrate to finally obtain

I ≈ h
3

f x0( ) + 4 f x1( ) + f x2( )⎡⎣ ⎤⎦



• Improve the accuracy by splitting the integration interval in n equal 

subintervals, i.e.,

• Since Simpson’s 1/3 rule needs 3 points (2 intervals) -> divide the 

integration interval in an even number of parts:

N
um
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Composite	Simpson’s	1/3	Rule

h =  b − a( )
n

I ≈ f x( )dx
x0

x2∫ + f x( )dx
x2

x4∫ + ...+ f x( )dx
xn−2

xn∫

  
I ≈ b− a( )

f x0( ) + 4 f xi( ) + 2 f x j( )
j=2,4,6

n−2

∑
i=1,3,5

n−1

∑ + f xn( )
3n



• It can be shown that the error of this rule is

   for some ηi in the intervals [a+ih, a+(i-1)h] 

• If f(x) is cubic, then this error is zero! 

• If h is halved, then the error is reduced by factor of 16!

• It depends on the width of the integrated area
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Composite	Simpson’s	1/3	rule	error

f x( )dx
a

b

∫ − I = − h
4 (b − a)
180

f (4 )(ηi )
i=1

n

∑
n

=O(h4 )



• 3rd-order Lagrange polynomial is used -> Simpson’s 3/8 rule

• Distance between points h=(b-a)/3 (equidistant) 

• Error is of the same order as 1/3 -> O(h4)

N
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Simpson’s	3/8	rule

( ) ( ) ( ) ( )[ ]3210 33
8
3 xfxfxxfhI +++=
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Gauss	quadrature
• Trapezoid rule: 

• Idea: what if we “optimize” the points where is the function is 

evaluated, and the corresponding weights?

• So:

• ωi – weights

• xi – points of evaluation

( ) ( ) ( )[ ]bfafabI +
-

»
2

  

I = f (x)dx ≈ ω i ⋅ f (xi )
i=1

n

∑−1

1

∫

  x1   x2 −1  1

f (x)
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Two	points	Gauss-Legendre	formula
• Consider only two points: 

• we have to find ω1 , ω2 , x1 and x2

 −1  1

f (x)

  x1   x2

I ≈ ω i ⋅ f (xi )
i=1

2

∑ =ω1 ⋅ f (x1)+ω 2 ⋅ f (x2 )

• Idea: assume that formula fits 

well the integrals of :
• constant

• linear function

• quadratic function

• cubic function



N
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Two	points	Gauss-Legendre	formula
• This way we have a nonlinear system of 4 equations and 4 

unknowns

• Solution:

1dx
−1

1

∫ = 2 =ω1 ⋅ f x1( ) +ω 2 ⋅ f x2( ) =ω1 +ω 2

xdx
−1

1

∫ = 0 =ω1 ⋅ f x1( ) +ω 2 ⋅ f x2( ) =ω1x1 +ω 2x2

x2 dx
−1

1

∫ = 2
3

=ω1 ⋅ f x1( ) +ω 2 ⋅ f x2( ) =ω1x1
2 +ω 2x2

2

x3 dx
−1

1

∫ = 0 =ω1 ⋅ f x1( ) +ω 2 ⋅ f x2( ) =ω1x1
3 +ω 2x2

3

ω1 =ω 2 = 1; x1 = − 1
3
= −x2
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Two	points	Gauss-Legendre	formula

• This formula gives exact solution for all polynomials up to the 

ones with a cubic dependency

• Practical issue: it is derived for the interval (-1,1). In a general 

case, make a change of variables as follows:

• So:

÷
ø

ö
ç
è

æ+÷
ø

ö
ç
è

æ-»
3
1

3
1 ffI

y = (b − a)
2

x + b + a
2

f (y)dy
a

b

∫ = (b − a)
2

f (b − a)
2

x + b + a
2

⎛
⎝⎜

⎞
⎠⎟−1

1

∫ dx




