Numerical integration




Recall: some facts on integrals

* Function f: R --> R, continuous on an interval [a, b], then its

definite integral is

["fdx=limY f(x)Av with Ar= b-a
a n—eot

n

* Interpretation: it is the area under the curve

a Y b
Ax

* Extends to higher dimensions: a double definite integral ->
volume
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Why numerical integration?

* Allows us to compute the definite integral without needing to

derive the analytical expression!

* Very practical way to compute the definite integrals when the
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integrands are very complex or for functions whose primitives

cannot be expressed in closed form

* When it is needed to compute the integrals (areas, volumes,
etc.) for a given set of tabulated data (we have pairs (x; y;) for

i=1,...,n)




Newton-Cotes integration

* ldea: replace f(x) or tabulated data by simple functions that are

easy to integrate.

* In the Newton-Cotes scheme f{x) is approximated by a nt" order

polynomial ;

1= [ F()de= [ p,(x)d

a
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p,(x)=a,+ax+..+ax"

* We will discuss at this course:
* Order 1 (linear approximation), Trapezoid rule, error O(h?)
* Order 2 (quadratic approximation), Simpson’s 1/3 rule, error O(h?)

* Order 3 (cubic approximation), Simpson’s 3/8 rule, error O(h?)




Trapezoid rule

* The area under the curve f(x) is approximated by a 1st order

polynomial
b b

[ = Jf(x)dx ~ j(ao +a1x)dx

S =) o)
f(®)-f(a)

(x—a)

a,+ax=f(a)+
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b—a

[ f(a) [ f(a)

J(b) J(b)

Split in more intervals

—




Composite trapezoid rule

Improve the accuracy by splitting the integration interval in n

equal subintervals, i.e, , _ (b—a)

" £
From =
a+2h %\ patih 5
I= j f(x)de+|" " f(x)de+..+ j =21. L(,-_l)h f()ax
and =
asil _ (a+ih—a—(@i—1h) . .
L+<,-_1>h £(x)dx = ‘ , ’[f(a+zh)+ fla+G-1h)]
we obtain h/'2

~1, =g[f(a+h)+f(a)+f(a+2h)+f(a+h)+---+f(b)]

n—1

=2 7(a)s 28 plav i)+ 1 0)|

i=1




Composite trapezoid rule error

* |t can be shown that the error of this rule is

b n
h3 . i
ff(x)dx—1h=——2f (m:) B
12 ¢ >
a =1 ©
for some n, in the intervals [a+ih, a+(i-1)h]. This can be expressed as g
b n :
h2(b —a)C ., h’(b—-a) ,
| Fodx =1 = - D ) ==
a =

* If f(x) is linear, then this error is zero!
» 0(h?) - if his halved, then this error is quartered!

* It depends on the width of the integrated area




Romberg integration

Recall Richardson extrapolation: use two estimates (in this case
of an integral) for two h to compute a third more accurate

approximation

We have seen that
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b
[ £(x)ax—1,=cr* +0n*)
If we compute an approximation for h/2 we obtain
b
1 —c(h/Y 4
{f(x)dx 1%_(:(/2) +O0(h")
Cancelling h? terms we have

b 4 1 )
[ £(x)ax= Sy =51+ OhY)




Romberg integration
* So, we have obtained an O(h?) estimate
41, ~1, =1,
Jf % §Ih: do1 T

* Notation: I(1,1)=1,, 1(2,1)=1,,

—1
Dyl 12,)-1(11)
byt = [[GD+———=1@22)

-----
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I(1,1)=1,
i h2 o H21)=l, > 1(2,2)
j=3 h/4 1(3,1)=1,,
j=4 h/8 1(4,1)=1/s
Error 5
order O(h°)




Romberg integration
* So, we have obtained an O(h?) estimate
41, ~1, =1,
Jf % §Ih: do1 T

* Notation: I(1,1)=1,, 1(2,1)=1,,

—1
I+ = I+ = = 12.2)

-----

I(1,1)=1,
i h2 o H21)=l, >‘» 1(2,2)
j=3 h/4 I(3,1)=1,4 >‘> 1(3,2)
i=4 h/8 1(4,1)=1, 5 ™~ 1(4,2)
Error 5 ;
order O(h) O(h’)
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Romberg integration

* Following a similar logic, we can combine two O(h?) estimates to

obtain an O(h®) estimate:

1(j,2)-1(j—1,2
1G.3)=1(j.2)+ 1Y )42_(f )

=34,
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----

I(1,1)=1,
j=2 W2 2 122
j=3 h/4 1(3,1)=1,, >:I(E)’,Z) >:/(.5’,5)’)
j=4 h/8 1(4,1)=1, 5 ~ 1(4,2) ~ I(4,3)
ST o) ohY)  ofh)




Romberg integration

* To obtain an O(h8) estimate:

1G,4)=1(j,3)+ 1(1’3)_1(1_1’3), i=4.5,..

431
----
I(1,1)=1,
j=2 h/2 1(2,1)=1,, >‘» 1(2,2)
j=3 h/4 1(3,1)=1,,/4 >‘> 1(3,2) )/(3,3)

N\ N\ N\

=4 h/8 I(4,1)=l,,s — 1(4,2) —1(4,3) —I(4,4)

Error
order

O(h?) O(h?) O(h®) O(h8)

(%)
©
o
<
o+
()
=
“©
O
=
(]
S
>
=




Romberg integration

* From this (and previous) estimate(s)

1(j,3)-1(j—1,3)
4°—1

1(j,4)=1(j,3)+ , j=4.5....

* we deduce a general recursive scheme:
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I(j.k)=1(j—1k)
45 —1

1(,k+D)=1(j.k)+

* Stopping condition

° Stopif [ I(jj)-1(,j-1) | <€

* Stop after pre-specified k steps




Increasing the order of polynomial

* Romberg integration: to increase the accuracy we have applied

recursively the Richardson extrapolation over the 15t order

polynomial approximations g
* Instead, we might increase the order of polynomial é
=
[F(v)de=]| f(@
=] f(x)dx=|a,+ax+a,x’dx a
y y f(b)




How to determine coefficients a,, a,, and a,?

* For each interval, we have to find the coefficients of the 2nd-

order polynomial (ag, a1, and a,) that passes through the

points yo = f (%), Y1 = f(x1), and y, = f(x2)..
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* A solution -> Lagrange interpolating polynomials

Yo = f(xo)

y1 = f(x1)
vz = f(x3)

ap + a;x + a,x?




Lagrange interpolating polynomial

* Consider the 2"9-order Lagrange polynomial

(x—x)(x—x,) N Ly(x,)=1;
(x()_x1)(xo_x2) Ly(x)=0; L)(x,)=0;

L() (X) —
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YoLy(x)




Lagrange interpolating polynomial

* Consider the 2"9-order Lagrange polynomial

(x—x)(x—x,) N Ly(x,)=1;
(x()_x1)(xo_x2) Ly(x)=0; L)(x,)=0;

L() (X) —

L (x,)=0;

L(x)= (x—xo)(x—xz) = L(x)=1;
(=% ) (2, = x,) L(x)=0:
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YoLy(x)




Lagrange interpolating polynomial

* Consider the 2"9-order Lagrange polynomial

— — L =1;
(x xl)(x xz) N 0(Xp)

LO(X):(xo_xl)(xo_x2) Ly () =05 Ly (%) =0;

Ly(x,)=0;
L(x)= o)) L(x)=1;
(=% ) (2, = x,) L(x)=0:
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L,(x,)=0;

PP CRE ) Catl) B
(xz_xo)(xz_xl) I (x ):1.

JxX)=yoLy(x)+y, L, (x)+y,L,(x)




Lagrange interpolating polynomial

2"d-order polynomial passing through y,, y1, and y,
is computed as
a weighted sum of three Lagrange polynomials!
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JxX)=yoLy(x)+y, L, (x)+y,L,(x)




Simpson’s 1/3 Rule

* Simpson’s 1/3 rule uses a 2"%-order Lagrange polynomial

Xy 2 — X. 2 Xy — X.
=1 3 AT = 3 ) [ T2 L
i j=0 ;(J) J i | Jj=0 I ;9 J i

withx, =a, x, =b,x,=(a+b)/2.Since x, —x, = x, — x, = h, we get
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sz(xo)J-xx2 (x_xo_h)(x_xo_zh)dx—f(xl)ﬁ (x—xo)(x—x0—2h)

dx
: 2h ; h*
R

substitute t = x —x, and integrate to finally obtain

1=+ 47 () £(x)]




Composite Simpson’s 1/3 Rule

* Improve the accuracy by splitting the integration interval in n equal

subintervals, i.e., - (b-a)
n
* Since Simpson’s 1/3 rule needs 3 points (2 intervals) -> divide the

integration interval in an even number of parts:
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I zjxxzf(x)dx+jxx4f(x)dx+...+J‘xxn_ f(x)dx

x)+4 3 f(x)+2 S f(x)e s ()

J ~ (b _ a) i=13,5 j=2,4.,6
3n




Composite Simpson’s 1/3 rule error

* |t can be shown that the error of this rule is

\ (4)
h4(b_a)2f (1)

! = O(h*
180 n )

jf(x)dx—lz—

for some n; in the intervals [a+ih, a+(i-1)h]
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* If f(x) is cubic, then this error is zero!
* If his halved, then the error is reduced by factor of 16!

* It depends on the width of the integrated area




Simpson’s 3/8 rule

» 3d-order Lagrange polynomial is used -> Simpson’s 3/8 rule

I = %h[f(xo)+ 3(x, )+ 3/ (x,)+ £ ()]

* Distance between points h=(b-a)/3 (equidistant)
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* Error is of the same order as 1/3 -> O(h?%)




Gauss quadrature

* Trapezoid rule: I~ (b;a)[f(a)-l- /()]

* ldea: what if we “optimize” the points where is the function is

evaluated, and the corresponding weights?

J(x)
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* So:
=] fode=Y o, fx)

* w;—weights

* x;— points of evaluation




Two points Gauss-Legendre formula

* Consider only two points:

=20, f(x)=0 f(x)+, f(x,)

* we have to find w,, w,, x; and x,
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* |dea: assume that formula fits J(x)

well the integrals of :

constant

linear function

quadratic function

cubic function




Two points Gauss-Legendre formula

* This way we have a nonlinear system of 4 equations and 4

unknowns :
=2 o sleres) oo,
:_llxdx =0 =0, f(x)+to, f(x,) =ox+o,x, g
[ia =2 =0 f(x)+o,f(5) —ox 0. -
._11x3 dx =0 =, f(x)+0, f(x,) =0ox’+oyx,




Two points Gauss-Legendre formula

L

* This formula gives exact solution for all polynomials up to the

ones with a cubic dependency

* Practical issue: it is derived for the interval (-1,1). In a general

case, make a change of variables as follows:

(b—a)x+b+a
2 2

* So:

b _b=a)p ((b—-a) b+a
Lf(y)dy— 5 Lf( S )dx
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