

Membrane processes

Marina Micari

Lecture 12

21.05.2025

Question 1

<https://forms.gle/wuA56tTr8HgGRZkJ6>

The flux through the membrane in a gas separation process is driven by the gradient in:

- a. Chemical potential
- b. Total pressure
- c. Partial pressure
- d. Concentration

More than one can be correct!

Question 2

Cross-current flow arrangement is characterized by the fact that:

- a. Driving force is very high
- b. There is no mixing in the permeate channel
- c. Pressure drops are negligible
- d. Process is isothermal

Question 3

The configuration that reduces the membrane area for a given separation is:

- a. Cross-current flow
- b. Co-current flow
- c. Counter-current flow
- d. They have the same area

Question 4

A recycle loop in the double-stage process is used to:

- a. Increase feed pressure
- b. Increase feed concentration in the first stage
- c. Increase feed concentration in the second stage
- d. Increase product purity

Question 5

The parameters used to model the behavior of a membrane material are:

- a. Membrane thickness
- b. Membrane permeance
- c. Membrane selectivity
- d. Membrane density

More than one can be correct!

Question 6

The CO₂ recovery of the membrane process is:

- a. The ratio between CO₂ flow in the permeate and CO₂ flow in the feed
- b. The ratio between CO₂ flow in the retentate and CO₂ flow in the feed
- c. The ratio between CO₂ flow in the permeate and CO₂ flow in the retentate
- d. The fraction of CO₂ in the permeate

Question 7

If a membrane has CO_2/N_2 selectivity of 30, we should expect:

- a. A CO_2 concentration in the retentate higher than in the feed
- b. A CO_2 concentration in the permeate higher than in the feed
- c. Same CO_2 concentration in the feed and in the permeate
- d. CO_2 concentration in the permeate cannot be higher than in the feed

In-class exercise

- A gas permeation module with cross-current flow arrangement is separating CO₂ from N₂ using a membrane with a CO₂/N₂ selectivity of 16.9 and CO₂ permeability of 3.3×10^{-14} mole m⁻¹ s⁻¹ Pa⁻¹. Feed to the membrane contains 20 mol% CO₂. Feed and retentate pressure are 5.5 bar and permeate pressure is 1 bar. Membrane thickness is 1.0 μm.
- Membrane area is 60 m² and Q_{feed} is 1 mol/s. Calculate the outlet purity and recovery.

➤ Area of the discretization element: 1 m²

First element:

dA	Area	Xf	Qf	Xperm	J CO2	J N2	J tot	Qr	Xr
1	1	0.2	1	calc	calc	calc	calc	calc	calc
1	2	Xr	Qr	calc	calc	calc	calc	calc	calc
...	...								
1	60	Xr	Qr	calc	calc	calc	calc	calc	calc

$$X_{\text{CO}_2,\text{perm}} = \frac{1 + (16.9 - 1) \left(\frac{1}{5.5} + 0.2 \right) - \sqrt{\left[1 + (16.9 - 1) \left(\frac{1}{5.5} + 0.2 \right) \right]^2 - 4 \times 16.9 \times \frac{1}{5.5} (16.9 - 1) 0.2}}{2 \frac{1}{5.5} (16.9 - 1)} = 0.65$$

$$J_{CO_2} = 3.3 \times 10^{-8} (5.5 \times 0.2 - 1 \times 0.65) \times 10^5 = 1.48 \times 10^{-3} \text{ mol/m}^2\text{s}$$

$$\begin{aligned} J_{N_2} &= \frac{3.3 \times 10^{-8}}{16.9} (5.5 \times (1 - 0.2) - 1 \times (1 - 0.65)) \times 10^5 \\ &= 7.9 \times 10^{-4} \text{ mol/m}^2\text{s} \end{aligned}$$

$$J_{tot} = J_{CO_2} + J_{N_2} = 2.27 \times 10^{-3} \text{ mol/m}^2\text{s}$$

$$Q_r = 1 - 2.27 \times 10^{-3} \times 1 = 0.99 \text{ mol/s}$$

$$X_{CO_2,r} = \frac{0.2 \times 1 - 1.48 \times 10^{-3} \times 1}{0.99} = 0.199$$

Next element:

$$Q_f[1] = Q_r[0] = 0.99 \text{ mol/s}$$

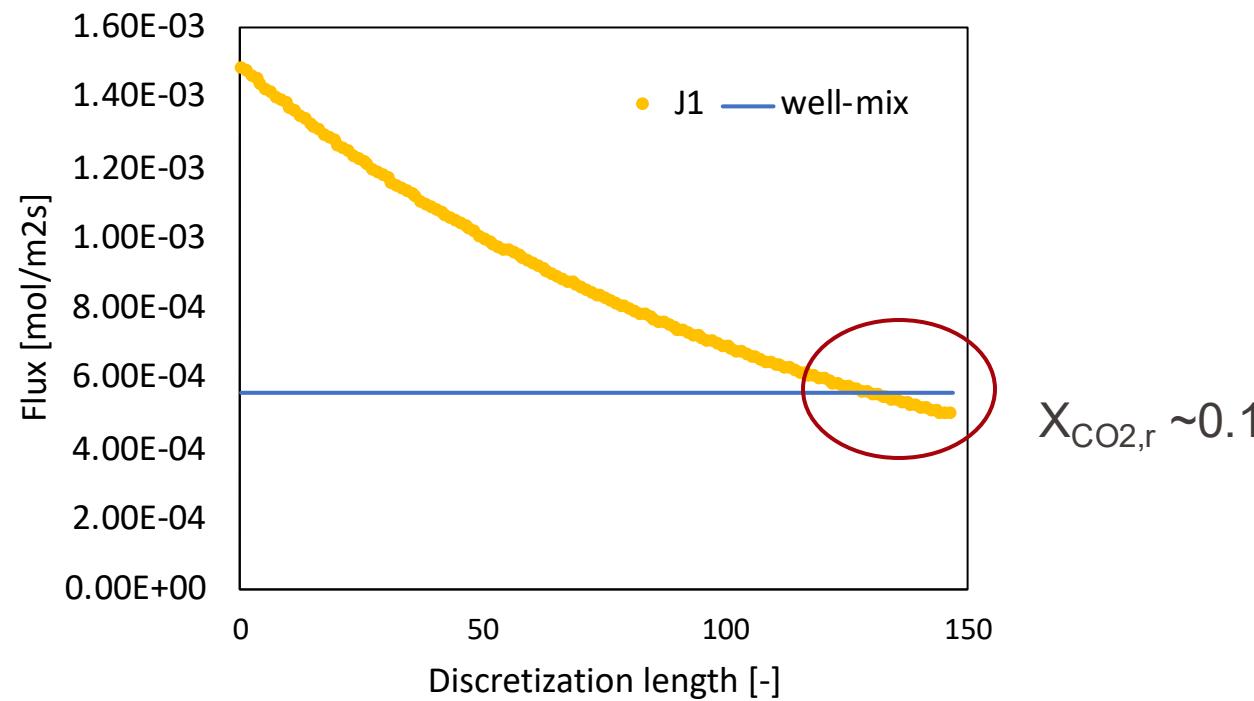
same calculations as in the first element

$$X_{CO_2,f}[1] = X_{CO_2,r}[0] = 0.199 \text{ mol/s}$$

- Equations applied for each element until the end of the area (60 elements)

$$Q_{p,out} = 1 - 0.88 = 0.12 \text{ mol/s}$$

$$X_{CO2,p,out} = \frac{0.2 \times 1 - 0.15 \times 0.88}{0.12} = 0.59$$


$$Recovery = \frac{0.12 \times 0.59}{1 \times 0.2} = 0.35$$

- Which is the area needed to produce 65% recovery?

$$Area = 147 \text{ m}^2$$

Comparison with the well-mixed case

- Target: 65% recovery

