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1. Statement of purpose 

Your employer, the Bergquist Company, supplies thermal materials for electronic applications 

and has recently developed two new alloys with different thermal characteristics. Your boss has 

asked you to fully characterize the thermal properties of these new alloys for the engineers who 

design heat sinks. Your task is to find the thermal conductivity, thermal diffusivity and heat 

capacity of the two alloys. 

2. Theoretical basis. 

Heat transfer through solids and stationary fluids occurs by conduction. The equation that 

quantifies the process of heat transfer by conduction is known as Fourier's Law.  

𝑞 = −𝑘∇𝑇 

Where q is the heat flux density [W m–2], k is the thermal conductivity of the material 

[W m-1 K-1], and ∇𝑇 is the temperature gradient.

In the one-dimensional case and in a state of equilibrium, the heat flow through in the direction 

x through a material with two ends (or sides, e.g. a wall) is given by the following expression: 

𝑄 = −𝑘𝐴 
(T2−T1)

𝑥
(eq. 1) 

 where Q is the heat flow [W], x is the thickness of the material [m] in the direction of interest, 

T2 is the temperature of the cold end of the material [K], T1 is the temperature of the hot end of 

the material [K], and A is the area perpendicular to the direction of heat flow [m2]. 

2.1 Thermal Resistance 

Thermal resistance is a key concept in the evaluation of heat transfer. In heat transfer, we can 

consider the thermal resistance is: 

𝑅𝑇 =
(T1 − T2)

𝑄

Where (T1 - T2) is the temperature difference and Q is the heat flow. From equation 1, the heat 

conduction resistance can be determined according to: 

𝑅𝑇,𝑐𝑜𝑛𝑑 =
𝑥

𝑘𝐴

at the interface between two materials: The mode of heat transfer between two materials, which 

are at different temperatures, can be by various mechanisms (conduction or convection). For 

the interface between the two solids, the physical contact between the two materials can vary 

depending on the roughness of the surface. This is shown in Figure 1. 



Figure 1. Through the interface between the two contact faces there are two modes of heat transfer. The 

first is conduction through solid to solid contact points (Qconduction) which is very efficient. The second is 

conduction through the gap-filling gas (Qgap) which, due to the low thermal conductivity of the gas, can be 

very low. 

Independently of the overall heat transfer mechanism at the interface, a heat transfer 

coefficient can be defined which is expressed as follows:  

𝑄 = 𝐴 ℎ𝑟   (T𝐴 − T𝐵) (eq. 2) 

Where, Q is the heat transfer rate [W], hr is the heat transfer coefficient [W m-2 K-1], A is the

exchange surface [m2], TA is the temperature at the first surface [K], TB is the temperature at 

the second surface [K]. Therefore, we can write an expression for resistance to heat transfer on 

contact: 

𝑅𝑇,𝑐𝑜𝑛𝑡 =
1

ℎ𝑟𝐴

Convection: The mode of heat transfer between a surface and a moving fluid, which are at 

different temperatures, is called convection. It is the result of the superposition of two physical 

phenomena: the energy transported by the random motion of the molecules (diffusion) and the 

energy transported by the fluid flow (macroscopic motion: advection). Convective heat transfer 

can be classified as forced or natural convection. Forced convection occurs when external 

means (a fan, pump or atmospheric wind) cause a flow or current. Natural convection occurs 

when the flow is induced by buoyant forces, which are the result of density differences caused 

by changes in fluid temperature.  

Irrespective of whether convection can be forced or natural, the convective heat flow between 

a surface and a fluid is given by Newton's law of cooling, which is expressed as follows:  

𝑄 = 𝐴 ℎ𝑐   (T𝑠 − T∞) (eq. 3) 

Where Q is the heat transfer rate [W], hc is the (convective) heat transfer coefficient 

[W m-2 K-1], A is the heat exchange surface [m2], Ts is the surface temperature [K], T∞ is the



temperature of the fluid far away from the surface [K]. Therefore, we can write an expression 

for resistance to convection heat transfer. 

𝑅𝑇,𝑐𝑜𝑛𝑣 =
1

ℎ𝑐𝐴

In general, the heat flow can be calculated by adding up all the thermal resistances: 

𝑄 =
∆T

∑ 𝑅𝑇

2.2 Dimensionless numbers for heat transfer 

Dimensionless numbers are very important for heat transfer. They can quantify and compare 

transport phenomena to determine which ones are important and which ones can be neglected. 

The two most important numbers are the Nusselt number and the Biot number. 

The Nusselt number (Nu) represents the ratio between total heat transfer and conduction 

transfer between two bodies or materials. If conduction is the main mode of transfer, then the 

Nusselt number will be of the order of the unit. In the case of convection (e.g. due to the 

displacement of a fluid in turbulent conditions), the heat transfer will take place mainly by 

displacement of the fluid and as a result the Nusselt number will tend towards ∞. It is defined 

as follows: 

𝑁𝑢 =
ℎ𝑐𝐿𝑐

𝑘

Where hc is the heat transfer coefficient, Lc is the characteristic length, and k is the thermal 

conductivity.  

The Biot number (Bi) compares the heat transfer resistances inside and on the surface of a body. 

A Biot number value greater than 1 means that the conduction of heat inside the body is slower 

than at its surface, and that temperature gradients within the body are non-negligible. If the Biot 

number of a system is smaller than 1 (often Bi < 0.1 is used), it means that the internal resistance 

to heat transfer is negligible and therefore the temperature can be considered as uniform inside 

the body. It is defined as follows: 

𝐵𝑖 =
ℎ 𝐿𝑐

𝑘

with h as the overall heat transfer coefficient, Lc is the characteristic length, and k is the 

thermal conductivity.  

Although these two dimensionless numbers seem to be defined in the same way, there is an 

important difference between them. (what is it?) 



2.3 Transient heat transfer 

While the above relationships are valid for most solids under imaginable conditions at steady 

state, sometimes in thermal systems temperatures change significantly with time. To understand 

how heat is conducted in non-isothermal systems as a function of time, we need to look at the 

general energy equation. For solids, the general equation of energy when combined with 

Fourier's Law of heat conduction becomes: 

𝜌𝑐𝑝
𝜕𝑇

𝜕𝑡
= (∇ ∙ 𝑘∇𝑇)          (eq. 4) 

where 𝑐𝑝 is the heat capacity of the material per unit mass (the specific heat). If we can assume 

that thermal conductivity, k, density and heat capacity are independent of temperature and 

position, then we can simplify by: 

𝜕𝑇

𝜕𝑡
= α∇2𝑇 (eq. 5) 

where α = 𝑘/ 𝜌𝑐𝑝 is known as thermal diffusivity. This value is a very important material 

property for the design of heat sinks and heat exchangers that have to cope with large transient 

disturbances. It can be estimated if the material of an ideal geometric shape (e.g. a long cylinder 

or a sphere) is subjected to a known temperature variation. Then equation 5 can be solved. To 

solve this equation for T as a function of position and time is possible in this case 1D (using the 

method of separation of variables), but analytical solutions involve infinite series and implicit 

equations, which are difficult to evaluate. Consequently, simplified solutions have been 

prepared in tabular form. A commonly used ideal case is that of a sphere first at a temperature 

of Ti, and then quickly placed in an environment at a temperature of T∞ (with h as the heat 

transfer coefficient between the sphere and the environment), as shown in Figure 2 below. 

Figure 2. Diagram in our case of transient heat transfer. 

In this case the exact solution for T(r,t) is: 

𝑇 − 𝑇𝑖
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where λn are the roots of 1 − 𝜆𝑛 cot 𝜆𝑛 = 𝐵𝑖, Bi = hr0/k (the Biot number) and τ = αt/𝑟0
2(the

Fourier number). The terms in this infinite series will quickly become smaller as n becomes 

large. The limit of τ > 0.2 is used to define cases where only the first term is calculated because 

the error obtained is less than 2 percent. Thus, the following solution is simply used as an 

approximation to define the temperature in the center of the sphere as a function of time: 

Center of the sphere (r = 0):  
𝑇−𝑇∞

𝑇𝑖−𝑇∞
= 𝐴1𝑒−𝜆1

2𝜏   (eq. 6) 

(Note the change on the left side of the equation from the previous equation) Where the terms 

A1 and λ1 are available according to the number of Biot Bi = hr0/k by interpolation from the 

table below: 

To calculate thermal diffusivity, the experimental data for temperature versus time can be in 

the form of equation 6 using the appropriate values of A1 and 𝜆1.  



3. Practical Laboratory Exercises 

3.1 Objectives 

Your objective is to find a way to measure the thermal conductivity, thermal diffusivity and 

specific heat capacity of the two unknown alloys using the steady-state and transient systems. 

3.2 Description of the systems 

To fully characterize the thermal properties of the unknown materials we will use two 

assemblies: one for steady state properties and the other for transient properties. 

The stationary state heat conduction unit consists of a heated module (electrical resistance) 

mounted on a test stand. The module consists of a cylindrical metal bar which allows the 

analysis of linear heat transfer. It also includes a series of connectors for taking temperature 

measurements along the cylinder. In order to keep the temperature gradient constant, a cooling 

system circulating water has been inserted on the right side of the module. The whole is 

insulated to minimize radial heat loss and thus promote axial heat transfer. The electrical power 

given by the heating element is controlled by a circuit which makes it possible to vary the 

maximum power with a resistance ranging from 0 to 100%. 

The module is divided into three parts, one of which is interchangeable. These three parts are 

represented by the following figure: 

Figure 3: Schematic diagram of the plant for the steady state 

They correspond to: A, the region where the resistive heater is located; B, the interchangeable 

element (unknown); C, the end of the cylinder with a water circulation cooling system that 

guarantees a constant heat gradient in the system. 

The module has a total of eleven temperature taps, each 10 mm apart, which enable an ideal 

temperature profile to be obtained for each model. 



The system for transient thermal properties consists of a bath of high-temperature water, T∞, 

which is slowly recirculated in order to maintain the homogeneous temperature in the bath. In 

this bath a sphere of the unknown material (at a lower temperature, Ti) is placed, and the 

temperature in the center of the sphere can be measured as a function of time. For geometry and 

flow in this system, the heat transfer coefficient, h, is known (ask the assistant). 

Figure 4: Installation diagram for transients 

3.2 Experimental procedure 

Steady State Conduction: 

1. In the program, select the CL module and check that the correct sensors are

connected.

2. Select the interchangeable cylinder (unknown material) to be analyzed (part B of the

module) and install it.

3. Connect the temperature sensors to this cylinder and check that all the sensors are fixed

on the module.

4. Open the water valve for cooling and check that the water flows (SC-2 flow meter > 1

L/min).

5. Set a power of ca. 20 W (SW-1) with the AR-1 controller to heat the resistor.

6. Wait until the system is in a steady state (constant temperatures, ~30-60 min).

Calculate the thermal conductivity of part B. 

Determine the heat transfer coefficient between parts A and B. How could we improve this 

value? 

Using the same method, determine the thermal conductivity of the second unknown cylinder. 



Transient Conduction: 

1. In the program, select the EI module and check that the correct sensors are connected.

2. Heat the bath to 70°C with the PID and set the water flow rate to (ask the person in

charge of the work) L/min.

3. While waiting for the bath to heat up, choose a sphere to test and attach it to the cover.

4. Place the sphere and the temperature sensor in an ice bath or cold water.

5. When the water is at 70°C, start taking values (at least every second) and place the cover

on the water bath. Check that the ball and the sensor are in the central cylinder.

6. Allow temperatures to stabilize (~5-10 min).

Using the final temperature at the center of the sphere as the infinite temperature, calculate the 

thermal diffusivity of the material used by making the necessary simplifications. 

What type(s) of approximation(s) did you make? Explain why. 

Compare your result (by calculation or graphically) with other possible approximations. 

Using the same method, determine the thermal diffusivity of the second sphere. 

Can you determine what those unknown alloys are? 

4. Characteristics 

Alloys: 

Density Alloy#1: ρ1 ~ 7.98 g/cm3

Density Alloy#2: ρ2 ~ 8.59 g/cm3 

Assembly 1: 

Cylinder diameter: d = 25 mm 

Assembly 2: 

Sphere diameter: d = 40 mm 

Coefficient of heat transfer: h = ask the person in charge of the TP 


