
 

Introduction to Transport Phenomena: Solutions Module 1 

 

 

Solution Exercise 1.1 

We start by writing the Bernoulli’s equation between point 1 and point 2 

𝑝1 + 𝜌𝑔 ℎ1 +  
1

2
𝜌𝑣1

2 = 𝑝2 + 𝜌𝑔 ℎ2 +  
1

2
𝜌𝑣2

2 

 
We have P1, h1, h2 ; we have to find a way to extract the velocities from the data we have. 
 

Inlet velocity: 𝑣1 =
𝑄

𝐴1
=

0.035
𝑚3

𝑠

0.0314𝑚2 = 1.114
𝑚

𝑠
 

 

Inlet area: 𝐴1 =
𝜋

4
(0.2𝑚)2 = 0.0314𝑚2 

 

Outlet velocity: 𝜗2 =
𝑄𝑉

𝐴2
=

0.035
𝑚3

𝑠

0.00785𝑚2 = 4.456
𝑚

𝑠
 

 

Outlet area: 𝐴2 =
𝜋

4
(0.1𝑚)2 = 0.00785𝑚2 

 

Inlet pressure in 𝑃𝑎: 𝑝1 = 39.24
𝑁

𝑐𝑚2 = 39.24
104 𝑃𝑎

𝑁/𝑐𝑚2 = 39.24 ∗ 104 𝑃𝑎  

  
Input all the numbers to Bernoulli equation and solve the equation for the outlet pressure:  

𝑝2 = 𝑝1 + 𝜌𝑔(ℎ1 − ℎ2) +
1

2
𝜌(𝑣1

2 − 𝑣2
2) = 𝟒. 𝟎𝟐𝟕𝒃𝒂𝒓 

 

******* 

Solution Exercise 1.2 

𝑡𝑖𝑚𝑒 =
𝑚𝑎𝑠𝑠

𝑚̇
    [1]                                            

a) If we assume a constant average velocity, we can write: 

𝑚̇ = 𝜌𝐴2 𝑣2  

Since 𝐴1 ≫ 𝐴2, 

We may apply Torricelli’s theorem, 

𝑣2 = √2𝑔ℎ0 

As for the mass to be drained:                         𝑚𝑎𝑠𝑠 = 𝜌𝐴1ℎ0                   

Substituting in [1]                            𝑡 =  
𝜌𝐴1ℎ0

 𝜌𝐴2𝑣2
 =  

𝐴1ℎ0

√2𝑔ℎ0.𝐴2
= 13.3 𝑚𝑖𝑛   [2] 

 

 

1 

2 



 

b) If we consider that the level of water drops over time, we need to consider h as a function of t,  
h(t). The total mass of liquid to be drained does not change, instead the velocity becomes 
function of time 

𝑣2 = −
𝑑ℎ

𝑑𝑡

𝐴1

𝐴2
= √2𝑔ℎ(𝑡) 

The “minus” sign is there because the height of the liquid is decreasing over time.   

As a result of this time dependence, we will integrate [2] 

Integration limits for time (t): 0 to t (draining time) 

Integration limits for height (h): ho to 0. 

∫ 𝑑𝑡 = −
𝐴1

√2𝑔. 𝐴2

∫
𝑑ℎ

√ℎ

0

ℎ0

𝑡

0

 

𝑡 =  
𝐴1

√2𝑔. 𝐴2 

× 2√ℎ𝑜 

 𝑡 = 26.6 𝑚𝑖𝑛 

******* 

Solution Exercise 1.3 

𝑃𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑄𝜌 𝑔𝑯𝒑 

 
However, because we are given that the mechanical efficiency is  80%, we have to consider that the power 
input that we need to operate the pump will be given by  

 

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 =
𝑄𝜌 𝑔𝑯𝒑

80
× 100 

 
 
 
We write the Bernoulli’s equation in head terms: 
 

𝑃1

𝜌𝑔 
+ ℎ1 +  

𝑣1
2

2𝑔
+ 𝑯𝒑 =

𝑃2

𝜌𝑔 
+ ℎ2 +  

𝑣2
2

2𝑔
 

 
Velocities: 

𝑣1 =
𝑄

𝐴1
=

0.15

0.32𝜋

4

= 2.12
𝑚

𝑠
  

 

𝑣2 =
𝑄

𝐴2
=

0.15

0.22 𝜋
4

= 4.78
𝑚

𝑠
 

 

where 𝑄 =
9𝑚3

𝑚𝑖𝑛
= 0.15 

𝑚3

𝑠
 

 
Heights: 



We take ℎ1 = 0 (reference), thus ℎ2 = 1.22 𝑚 
 
 
Pressures: 
𝑃1 = 𝑝𝑎𝑡𝑚 − 2.63 ∗ 104 𝑃𝑎 
𝑃2 = 𝑝𝑎𝑡𝑚 + 0.7 ∗ 105 𝑃𝑎 
 
 
We can then calculate 𝑯𝒑 

 

𝐻𝑝 = (ℎ2 − ℎ1) +
𝑃2 − 𝑃1

𝜌𝑔
+

(𝑣2
2 − 𝑣1

2 )

2𝑔
= 1.22 +

9.63 ∗ 104 𝑃𝑎

103 𝑘𝑔
𝑚3 ∗ 9.81

𝑚
𝑠2

+
(4.78

𝑚
𝑠

)
2

 − (2.12
𝑚
𝑠

)
2

 

2 ∗ 9.81
𝑚
𝑠2

= 12𝑚 

 
 
We substitute in: 
 

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 =
𝑄𝜌 𝑔𝑯𝒑

80
× 100 =

12𝑚 ∗ 103 𝑘𝑔
𝑚3 ∗ 9.81

𝑚
𝑠2 ∗ 0.15

𝑚
𝑠

 
0.8

= 2.2 ∗ 104𝑊 = 𝟐𝟐𝒌𝑾 

 
 

******* 

  



Solution Exercise 1.4 

 
 
 
 
 
 
 
 
 
 
 
Applying Bernoulli’s equation between point 0 and 1: 

𝑃0 + 𝜌𝑔 ℎ1 +  
1

2
𝜌𝑣1

2 + 𝑃𝑝𝑢𝑚𝑝 = 𝑃1 + 𝜌𝑔 ℎ1 +  
1

2
𝜌𝑣1

2    [1] 

Considering that the diameter before and after the pump is the same, 
We get: 

𝑃0 + 𝑃𝑝𝑢𝑚𝑝 = 𝑃1 

We apply the Bernoulli’s equation between point 1 and point 2: 
 

𝑃1 + 𝜌𝑔 ℎ1 +  
1

2
𝜌𝑣1

2 + 𝑃𝑝𝑢𝑚𝑝 = 𝑃2 + 𝜌𝑔 ℎ2 +  
1

2
𝜌𝑣2

2    [2] 

 
Pressures: 
𝑃0 = 𝑃2 = 𝑃𝑎𝑡𝑚 = 1𝑎𝑡𝑚 
 
Heights: 
ℎ1 = 0; ℎ2 = ℎ𝑝 = 3.14 𝑚 

 
Velocities: 

From the continuity equation 𝐴1𝑣1 = 𝐴2𝑣2, we can write that 𝑣1 =
𝐴2

𝐴1
𝑣2 =

𝑑𝑛
2

𝑑𝑝
2 𝑣2 

 
We can now apply the Bernoulli’s equation between point 2 and point 3 
 

𝑃2 + 𝜌𝑔 ℎ2 +  
1

2
𝜌𝑣2

2 = 𝑃3 + 𝜌𝑔 ℎ3 +  
1

2
𝜌𝑣3

2     [3] 

Pressures: 
𝑃2 = 𝑃3 = 𝑃𝑎𝑡𝑚 = 1𝑎𝑡𝑚 
 
Heights: 
ℎ2 = 0; ℎ3 = ℎ𝑓 = 11.1 𝑚 

 
Velocities: 
𝑣3 = 0! On top of the water jet the velocity is zero (TO REMEMBER) 
 
Thus we can calculate  

𝑣2 = √2𝑔ℎ𝑓 = 14.757
𝑚

𝑠
 

 

Knowing 𝑣2 we can calculate 𝑣1 =
𝑑𝑛

2

𝑑𝑝
2 𝑣2 and insert the value in [2] 

 

3 

2 

1 0 



𝑝𝑝𝑢𝑚𝑝 =  𝜌𝑔 ℎ𝑝 +
1

2
𝜌𝑣2

2 (1 − (
𝑑𝑛

𝑑𝑝
)

4

) = 𝟏𝟑𝟐. 𝟕𝒌𝑷𝒂 

 
 

Solution Exercise 1.5 

We apply Bernoulli’s between point 1 and point 2, with ℎ1 = 0 and ℎ2 = ℎ =
12 𝑚 
 

𝑃1 +
1

2
𝜌𝑣1

2 = 𝑃2 +  𝜌𝑔ℎ +
1

2
𝜌𝑣2

2 

 
 
 

a) If the water is not flowing, it means  𝑣 = 0 in both terms, thus 
 

 
𝑃1 = 𝑃2 +  𝜌𝑔ℎ 

 
Implying that 𝑃1 > 𝑃2 

 
However, we know both gauges read the same pressure. Hence, this hypothesis 
of stagnant water can be rejected. WATER IS FLOWING. 
 
 

b) We go back to the Bernoulli’s equation between point 1 and point 2, with 
ℎ1 = 0 and ℎ2 = ℎ = 12𝑚 

 

𝑃1 +
1

2
𝜌𝑣1

2 = 𝑃2 +  𝜌𝑔ℎ +
1

2
𝜌𝑣2

2 

 
Because the diameter of the pipe is constant, for the continuity equation, 𝑣1 =
𝑣2, so we obtain again 

𝑃1 = 𝑃2 +  𝜌𝑔ℎ 
 
Once again implying that the pressure in the bottom gauge should be higher. 
But we know that in fact P1 = P2.  
 
What are we missing? FRICTION LOSSES 
 

𝑃1 = 𝑃2 +  𝜌𝑔ℎ +  ∆𝑃𝑓 

 
The condition P1 = P2 requires that 
 

−𝜌𝑔ℎ =  ∆𝑃𝑓 

 
Remember that friction opposes the movement of a fluid, friction having the 
opposite sign of gravity means that the fluid is flowing downwards  
 
 

 

1 

2 

12 m 



 

 

 

 

Solution 1.6 

 

We apply the Bernoulli’s equation between point 1 and 2, including friction: 
 

𝑝1 +
𝜌𝑣2

2
+ 𝜌𝑔ℎ1 = 𝑝2 +

𝜌𝑣2

2
+ 𝜌𝑔ℎ2 +

1

2
𝜌𝑣𝑎𝑣𝑔

2 4
𝑓𝑓

𝑑
𝐿  

 
Applying continuity equation at point 1 and 2, 𝐴1𝑣1 = 𝐴2𝑣2 
Since 𝐴1 = 𝐴2, 𝑣1 = 𝑣2 

𝑝1 +
𝜌𝑣2

2
+ 𝜌𝑔ℎ1 = 𝑝2 +

𝜌𝑣2

2
+ 𝜌𝑔ℎ2 +

1

2
𝜌𝑣𝑎𝑣𝑔

2 4
𝑓𝑓

𝑑
𝐿 

 
The pressure drop can be expressed as:  
 

𝒑𝟏 − 𝒑𝟐 =
𝟏

𝟐
𝝆𝒗𝒂𝒗𝒈

𝟐 𝟒
𝒇𝒇

𝒅
𝑳 + 𝝆𝒈(𝒉𝟐 − 𝒉𝟏). 

 
In this equation, everything is known except the term 𝑓𝑓. To get this value from Moody’s chart, we need to 

know if the flow is turbulent or laminar. 
 
To know this, we need the Re number.  
The flowrate through the pipe is given as Q 

𝑣𝑎𝑣𝑔 =
𝑄

𝐴2
=

4𝑄

𝜋𝐷2
= 6.36

𝑚

𝑠
 

 

𝑅𝑒 =
𝜌𝑣𝑎𝑣𝑔𝐷

𝜇
=

𝑣𝑎𝑣𝑔𝐷

𝑣
= 1.3 ∗ 105 

 
From the Reynolds number it follows that we are in the turbulent regime (Re>2000)  
 

The pipe is from cast-iron and the roughness factor 𝜀 ≈ 0.5 ∗ 10−3𝑚. Therefore 
𝜀

𝐷
= 0.0025. 

 
From the Moody diagram we get:  

𝑓𝑓 ≈ 0.0065 

The height ℎ1 can be calculated from: 
ℎ1 = 𝐿 sin 𝛼 = 86.8𝑚 

 
ℎ2 − ℎ1 =  −86.8𝑚 

This gives a pressure drop of:  



𝜌𝑔(ℎ2 − ℎ1) =  −765.5 𝑘𝑃𝑎 
 

1

2
𝜌𝑣𝑎𝑣𝑔

2 4
𝑓𝑓

𝑑
𝐿 = 1183.15 𝑘𝑃𝑎 

 
 

𝒑𝟏 − 𝒑𝟐 = 𝟒𝟏𝟕. 𝟔𝟓 𝒌𝑷𝒂 
  



Solution 1.7 

 

 

 

 

 

 

 

a) To calculate the pressure 𝑝3 at the pump outlet we apply the Bernoulli’s equation between point 

(3) and point (2) 

Please note that (3) is after the pump inlet and (3’) is before the pump inlet. 

𝑝3 + 𝜌𝑔ℎ3 +
1

2
𝜌𝑣𝑎𝑣𝑔

2 = 𝑝2 + 𝜌𝑔ℎ2 +
1

2
𝜌𝑣𝑎𝑣𝑔

2 +
1

2
𝜌𝑣𝑎𝑣𝑔

2 (
4𝑓𝑓

𝐷
∑ 𝐿𝑖

2

𝑖=1

+ ∑ 𝐾𝐿𝑗

3

𝑗=1

) 

𝑝3 − 𝑝2 =
1

2
𝜌𝑣𝑎𝑣𝑔

2 (
4𝑓𝑓

𝐷
∑ 𝐿𝑖

2

𝑖=1

+ ∑ 𝐾𝐿𝑗

3

𝑗=1

) + 𝜌𝑔(ℎ2 − ℎ3) 

We have  

∑ 𝐿𝑖

2

𝑖=1

= 20𝑚 + 30𝑚 = 50𝑚 

∑ 𝐾𝐿𝑗

3

𝑗=1

= 0.3 + 2 + 0.05 + 0.3 = 2.65 

 

𝑓𝑓 can be estimated from the Moody diagram, taking coefficient of kinematic viscosity as 
𝜇

𝜌
= 0.9 ∗

10−6𝑚2/𝑠 : 

𝑣𝑎𝑣𝑔 =
4𝑄

𝜋𝐷2
= 5.3

𝑚

𝑠
 

𝑅𝑒 =
𝜌𝑣𝑎𝑣𝑔𝐷

𝜇
= 1.17 ∗ 105 

𝑊e are in turbulent regime,  𝜀 = 0.015 ∗ 10−3𝑚 for the stainless steel and therefore 
𝜀

𝐷
= 0.00075. 

Then from the diagram:  

𝑓𝑓 = 0.0053 

This gives: 

(3’) 



𝑝3 − 𝑝2 =
1

2
∗ 1000 ∗ 5.32 ∗ (4 ∗

0.0053

0.02
∗ 50 + 2.65) + 1000 ∗ 9.81 ∗ 20 

 

𝒑𝟑 − 𝒑𝟐 = 𝟗. 𝟖 ∗ 𝟏𝟎𝟓𝑷𝒂 

 

Since the outlet is at atmospheric pressure: 

𝑝2 = 1.013 ∗ 105𝑃𝑎 

 

And therefore: 

𝒑𝟑 = 𝟏. 𝟎𝟖 ∗ 𝟏𝟎𝟔𝑷𝒂 

 

b)  

We are given that the mechanical efficiency of the pump is 65 %, thus the power input that we need 

to operate the pump will be given by  

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 =
𝑄𝜌 𝑔𝑯𝒑

0.65
 

We have two ways to answer this question 

 (1) 

𝜌 𝑔𝑯𝒑 = ∆𝑃𝑝 = (𝑝3 − 𝑝3
′ ) 

which corresponds to the pressure drop that the pump has to compensate to keep the water flowing. 

We just calculated 𝑝3 , we need 𝑝3
′  

We apply Bernoulli’s between (1) and (3’)  

𝑝1 + 𝜌𝑔ℎ1 +
1

2
𝜌𝑣𝑎𝑣𝑔

2 = 𝑝3′ + 𝜌𝑔ℎ3′ +
1

2
𝜌𝑣𝑎𝑣𝑔

2 +
1

2
𝜌𝑣𝑎𝑣𝑔

2 (
4𝑓𝑓

𝐷
∑ 𝐿𝑖

1

𝑖=1

+ ∑ 𝐾𝐿𝑗

1

𝑗=1

) 

𝑝1 − 𝑝3′ =
1

2
𝜌𝑣𝑎𝑣𝑔

2 ∗ (
4𝑓𝑓

𝐷
∑ 𝐿𝑖

1

𝑖=1

+ ∑ 𝐾𝐿𝑗)

1

𝑗=1

+ 𝜌𝑔(ℎ3′ − ℎ1) 

Worst case scenario, the tank is empty, and the water level corresponds to the bottom of the tank:  

ℎ3′ − ℎ1 = 1𝑚 

In this case:  

∑ 𝐿𝑖

1

𝑖=1

= 1𝑚 



∑ 𝐾𝐿𝑗 = 0.3

1

𝑗=1

 

𝑝1 − 𝑝3′ =
1

2
∗ 1000 ∗ 5.32 ∗ (4 ∗

0.021

0.02
∗ 1 + 0.3) + 1000 ∗ 9.81 ∗ (−1) 

𝑝1 − 𝑝3′ = 9291𝑃𝑎 

 

And with 𝑝1 = 1𝑎𝑡𝑚 = 1.013 ∗ 105𝑃𝑎  

𝒑𝟑′ = 𝟗. 𝟐 ∗ 𝟏𝟎𝟒𝑷𝒂 

 

𝑝3 − 𝑝3′ = 9.88 ∗ 105𝑃𝑎 

 

𝑷𝒐𝒘𝒆𝒓 𝒊𝒏𝒑𝒖𝒕 =
𝑄𝜌 𝑔𝑯𝒑

0.65
= 

𝑄∗(𝑝3−𝑝
3′)

0.65
=

100

(1000∗60)
∗9.88∗105

0.65
= 𝟐𝟒𝟑𝟐𝑾 

 

(2) 

The second approach to solve this problem is to apply the Bernoulli’s equation between point 1 and 

point 2 and include all the pressure drop due to all the pipe elements. This gives very similar results. 

𝑝1 + 𝜌𝑔ℎ1 +
1

2
𝜌𝑣𝑎𝑣𝑔

2 + 𝜌𝑔𝐻𝑝𝑢𝑚𝑝 = 𝑝2 + 𝜌𝑔ℎ2 +
1

2
𝜌𝑣𝑎𝑣𝑔

2 +
1

2
𝜌𝑣𝑎𝑣𝑔

2 (
4𝑓𝑓

𝐷
∑ 𝐿𝑖

3

𝑖=1

+ ∑ 𝐾𝐿𝑗

4

𝑗=1

) 

105 + 103 ∗ 9.8 ∗ 1 + 103 ∗ 9.8 ∗ 𝐻𝑝𝑢𝑚𝑝 = 105 + 103 ∗ 9.8 ∗ 20 +
1

2
∗ 103 ∗ 5.32 (

4∗0.0053

0.02
(51) +

(0.3 + 0.3 + 2 + 0.05 + 0.3))  

 

𝑷𝒐𝒘𝒆𝒓 𝒊𝒏𝒑𝒖𝒕 =
𝑄𝜌 𝑔𝑯𝒑

0.65
= 

100

(1000∗60)
∗1000∗9.8∗100.7

0.65
= 𝟐𝟓𝟑𝟏𝑾 

 


