q = me AT
(4.5-16)
= 4.00(120)(505—500) = 2400 W
o bstituting s, -
_ 2400
47 i e ) = 251200) < 35360 Wy’

Selving £ = 0203

45H Log Mean Temperature Difference and Varying
Temperature Drop -

Equations (4.5-1} and (4.3-12) as written apply only when the temperatﬁre drop(T, — T)
is constant for all parts of the heating surface. Hence the equation

q~UAn‘7U_UA( — T) = UAAT) (4.5-17)

only holds at one point in the apparatus when the fluids are being heated or cooled.
However, as the fluids travel through the heat exchanger, they become heated or cooled
and both T; and T, or either T; and T, vary. Then(7; — T,) or AT varies with position,
and some mean AT,, must be used over the whole apparatus.

In a typical heat exchanger a hot fluid inside a pipe is cooled from T, to T, by a
cold fluid which is flowing on the outside in a double pipe countercurrently (in the
reverse direction} and is heated from T, to T, asshown in Fig. 4.5-3a. The AT shown is
varying with distance. Hence, AT in Eq. (4.5-17) varies as the area A4 goes from 0 at the
inlet to A at the outlet of the exchanger.

For countercurrent flow of the two fluids as in Fig. 4.5-3a, the heat-transfer rate is

g=UA AT, (4.5-18)

where AT, is a suitable mean temperature difference to be determined. For a dA area, a
heat balance on the hot and the cold fluids gives

dq = —mic, dT" = mc, dT 4.5-19)

where m is flow rate in kg/s. The values of m, m', c,, ¢;,, and U are assumed constant.

| 75 . ”
ary | T | I O A N
AT } AT AT,
} I T, AT, :
‘_L—‘ %
Distance Distance
(a) (b)

FIGURE 4.5-3. Temperature profiles for one-pass double-pipe heat exchangers: {a)
countercurrent flow; (b} cocurrent or paralle! flow.
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Also,

dg = U(T" — T)dA (4.5-20)
From Eq.(4.5-19),dT" = —dq/m’c;,anddT = dg/mc,. Then,
. 1 1
AT —dT = dT" = T) = -—dq( — +-—> (4.5-21)
m'c, mc,
Substituting Eq. (4.5-20}into (4.5-21),
T —T t 1
(—(———w—) w= = Ul —— 4 — | dA (4.5-22)
T -T m'c,  mc,

Integrating between points 1 and 2,

! L-T v — ;! (4.5-23)
n{——=1|= ~ e
&T; -1 m'c,  mc

Making a heat balance between the inlet and outlet,

~

q=mc T, — Ty} = mc,(T, — T,) " (4.5-24)
Solving for m'c}, and mc, in Eq. (4.5-245 and substituting into Eq. (4.5-23),

_UAQT — T) — (T) = Ty
In (T3 — T/(T{ — T1)]

(4.5-25)

Comparing Egs. (4.5-18) and {4.5-25), we see that AT, is the log mean temperature
difference AT, . Hence, in the case where the overall heat-transfer coefficient U is
constant throughout the equipment and the heat capacity of each fluid is constant, the
proper temperature driving force to use over the entire apparatus is the log mean driving
force,
q = UAAT,, (4.5-26)
where, ,
AT, = AT = AT, (4.5-27)
In (ATy/AT))

It can be also shown that for parallel flow as pictured in Fig. 4.5-3b, the log mean
temperature difference should be used. In some cases where steam is condensing, 7, and
T, may be the same. The equations still hold for this case. When U varies with distance
or other complicating factors occur, other references should be consulted (B2, P3, W1).

EXAMPLE 4.5-4. Heat-Transfer Area and Log Mean
Temperature Difference

A heavy hydrocarbon oil which hasac,, = 2.30 kJ/kg- K is being cooled in
a heat exchanger from 371.9 K to 349.7 K and flows inside the tube at a rate’
of 3630 kg/h. A flow of 1450 kg water/h enters at 288.6 K for cooling and
flows outside the tube.

(a) Calculate the water outlet temperature and heat-transfer area if the

overall U; = 340 W/m? - K and the streams are countercurrent.
(b} Repeat for parallel flow.

Solution: Assume a ¢, = 4.187 kJ/kg-K for water. The water inlet T, =
288.6 K, outlet = Ty; oil inlet 77 == 3719, outlet 7] = 349.7 K. Calculating
the heat lost by the oil,

kg kJ
(3630 ?)(2.30 m>(371‘9 — 349.7K

185400 ki/h  or 51490 W (175700 btu/h)

i
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By a heat balance, the ¢ must also equal the heat gained by the water.
g = 185400 kJ/h = (1450 %—)(4 187 -gl(-J-—K)(T, —-288.6) K

Solving, Ty = 319.1 K. :

To solve for the log mean temperature difference, AT, =T, — T, =
349.7 — 2886 =611 K, AT, =T, — —-3719—3191-—5281( Substi-
tuting into Eq. (4.5-27),

— AT, 61.1 — 528

AT,
: M"*“m{M;/ATl)—Jn(61.1;52.8)‘56‘9K

Using Eq. (4.5-26),
g = U A;AT,,

51490 = 340(4,156.9)

Solving, A; = 2.66 m”. -

For part (b), the water outlet 1s still 7, = 319.1 K. Referring to Fig.
4.5-3b, AT, = 371.9 — 288.6 = 83.3 K and AT, = 349.7 - 319.1 = 30.6 K.
Again, using Eq. (4.5 27) and solving, AT, = 52.7 K. Substituting into Eq.
{(4.5-26), A; = 2.87 m* This is a larger area than for counterflow. This
occurs because countcrﬁow gives larger temperature driving forces and is
usually preferred over parallel flow for this reason.

EXAMPLE 4.5-5. Laminar Heat Transfer and Trial and Error

A hydrocarbon oil at 150°F enters inside a pipe with an inside diameter of
0.0303 ft and a length of 15 ft with a flow rate of 801b_/h. The inside pipe
surface is assumed constant at 350°F since steam is condensing outside the
pipe wall and has a very large heat-transfer coefficient. The properties of the
oil are ¢, = 0.50 btu/lb - “F and k,, = 0.083 btu/h -t -°F. The viscosity of
the oil varies with temperature as follows: 150°F, 6.50 cp; 200°F, 5.05 cp;
250°F, 3.80 cp; 300°F, 2.82 cp; 350°F, 1.95 cp.. Predict the heat-transfer
coefficient and the o1l outlet temperature, T, .

Solution: This is a trial-and-error solution since the outlet temperature of
the oil 7,, 15 unknown. The value of T,, = 250°F will be assumed and
checked later. The bulk mean temperature of the oil to use for the physical
properties is {150 + 250)/2 or 200°F. The viscosity at 200°F is

< b,
y = 5.05(24191) = 1223 =
At the wall temperature of 350°F,
1 = 1.95(2.4191) = 472 Lm.
ft-h
The cross-section area of the pipe 4 is
DZ 2
4 =00 OO 000725 2
4 4
m 80 Ib,/h Ib
G e e e eem—— m
A 0000722 12 1110001'2~h

u I 12.23
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