

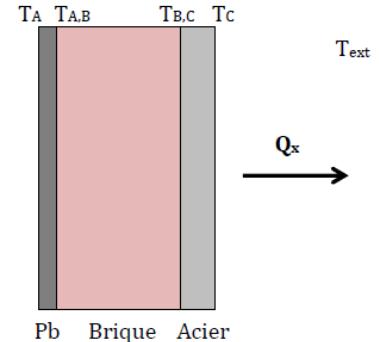
Introduction to Transport Phenomena: Exercises Module 3

Exercise 3.1

(Fourier's Law)

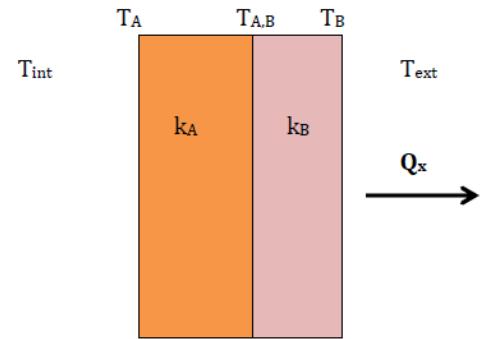
A plastic panel with a surface area of $A = 0.929m^2$ and a thickness $Y = 6.4mm$ conducts heat at a rate of $3W$ ($\dot{Q} = 3W$) in steady state when the temperatures were set at $T_0 = 24^\circ C$ and $T_1 = 26.0^\circ C$ on the two main surfaces.

- What is the thermal conductivity of the plastic?
- If $\dot{Q} = 30W$, what thickness of the same plastic would be necessary to keep the same T_0 and T_1 .


Exercise 3.2

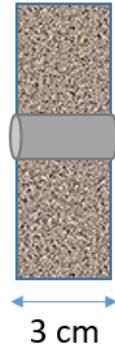
(Newton's Law of cooling and thermal resistances)

Composite reactor: During a chemical reaction occurring in a well-mixed reactor, the temperature of the fluid rises to $T_{int} = 123^\circ C$. The interior face of the reactor wall is coated with a lead sheet $3mm$ thick with $k_{Pb} = 30 \frac{W}{mK}$. The outside of the reactor is constituted by a steel sheet $12 mm$ thick ($k_{steel} = 38.7 \frac{W}{mK}$). As the reactor is placed in a room (at $T_{ext} = 27^\circ C$) frequently visited by workers, the outside temperature of the reactor should not exceed $T_C = 55^\circ C$ to avoid burns. To make sure the outside of the reactor is cool enough, a layer of brick is inserted ($k_{brique} = 0.74 \frac{W}{mK}$).


What brick thickness should be interposed between lead and steel? Given the heat transfer coefficient for the outer surface of the reactor ($h_{ext} = 10.2 \frac{W}{m^2 K}$) as well as its inner surface ($h_{int} = 7400 W/m^2 K$).

Exercise 3.3

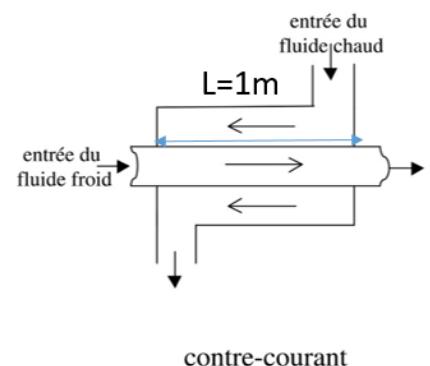
Furnace walls: The wall of a furnace is composed of two layers, the first layer A is of thickness 22.86 cm and consists of refractory bricks $k_A = 1.19 \frac{W}{mK}$, the second layer B is of thickness 13 cm insulation brick $k_B = 0.15 \frac{W}{mK}$. The temperature inside the furnace is $T_{int} = 1649^\circ C$ and the heat transfer coefficient to the inner wall of the wall is $h_{int} = 60 \frac{W}{m^2 K}$. The temperature of the ambient air is $T_{ext} = 27^\circ C$ and the heat transfer coefficient for the outside wall is $h_{ext} = 9.8 \frac{W}{m^2 K}$. Calculate a) the heat loss per m^2 of surface of the wall and b) the temperature of the inner surface T_A and outer surface T_B .



Exercise 3.4

Bolts in an insulating wall. A 3 cm thick wall of insulating material ($k_{wall} = 0.34 \frac{W}{m K}$) separates a hot room for drying powder and an office. Unfortunately, for every $0.015 \frac{m^2}{m^2}$ (on average) of wall surface there is a circular metal bolt (traversing the wall as shown) with a diameter of 7mm ($k_{bolt} = 45.6 \frac{W}{m K}$).

- What fraction of the wall area is metal bolts?
- What fraction of the heat conducted by the wall goes through the bolts?



Exercise 3.5

Review of heat exchanger. Consider the heat exchanger sketched here on the side (with length 1 m). Water ($c_p = 4.187 \frac{kJ}{kg K}$) is used as both the cold and the hot fluid. The mass flow rate of the cold fluid is $2 \frac{g}{s}$, $T_{cold,out} = 37^\circ C$ and $T_{cold,in} = 20^\circ C$. Knowing that $T_{hot,in} = 70^\circ C$ and $T_{hot,out} = 32.5^\circ C$, can you estimate the required flow rate of hot water?

If the overall heat transfer coefficient is equal to $106.47 \frac{W}{m^2 K}$, can you calculate the heat transfer area? Remember for a counter-current heat exchanger, $\dot{Q} = UA\Delta T_{LM}$, where $\Delta T_{LM} = \frac{\Delta T_1 - \Delta T_2}{\ln\left(\frac{\Delta T_1}{\Delta T_2}\right)}$, $\Delta T_1 = T_{hot,in} - T_{cold,out}$ and $\Delta T_2 = T_{hot,out} - T_{cold,in}$
