

Introduction to Transport Phenomena: Exercises Recap Modules 4 and 5

Exercise 1 (very similar to 4.2)

Helium gas (A) is stored at 20°C in a spherical container of fused silica (B), which has an internal diameter $D=0.20\text{m}$ and a wall thickness $L=2\text{mm}$. If the container is charged to an initial pressure $P_A=4\text{bars}$, what is the rate at which this pressure decreases with time (leakage rate)? ($D_{AB} = 0.4 \times 10^{-13} \text{ m}^2/\text{s}$ and $S_{AB} = 0.45 \times 10^{-3} \text{ kmol/m}^3 \text{ bar}$). Assume that the driving force does not change with time.

Exercise 2 (very similar to 4.4)

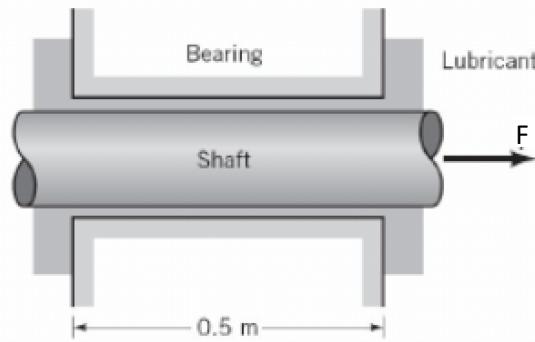
Humidification. Imagine that water is evaporating into initially dry air in a closed vessel. The vessel is isothermal at 25°C so the water's vapor pressure is 3.2 kPa. This vessel has 0.8 liters of water with 150 cm² of surface area in a total volume of 19.2 liters. After 3 min, the air is 5% saturated. What is the mass transfer coefficient? How long it takes to reach 90% saturation?

Notes:

- 1) If air is 100% saturated in water, it means that the water partial pressure in air is equal to its vapor pressure ($P_{saturation}$) at that specific temperature. If air is 5% saturated in water, it means that the water partial pressure in air is 5% of $P_{saturation}$.

$$x_{\text{water at 5\% saturation}} = 0.05 \frac{P_{\text{saturation}} (3.2 \text{ kPa})}{\text{Total Pressure} (101 \text{ kPa})}$$

$$\frac{C_{\text{water}}}{C_{\text{saturation}}} = \frac{P_{\text{water}}}{P_{\text{saturation}}} = 0.05$$


- 2) If we assume that air is an ideal gas, its molar volume at 25°C is 24.4 L/mol. Thus, the concentration of pure air is 1/24.4 mol/L

Exercise 3 (too easy to be real)

A plate with area 1m^2 moves at 60cm/s and it is 0.025 mm apart from a fixed plate. To keep this velocity, it requires a force of 2N . Find the fluid viscosity between the plates.

Exercise 4

A 25-mm diameter shaft is pulled through a cylindrical bearing. The lubricant that fills the 0.3-mm gap between the shaft and the bearing is an oil having dynamic viscosity $0.650 \frac{\text{N} \cdot \text{s}}{\text{m}^2}$ (or $\text{Pa} \cdot \text{s}$). Determine the force required to pull the shaft at a velocity of 3 m/s

