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ChE 204
Introduction to Transport Phenomena

Module 5
Microscopic and Molecular Transport of Momentum:
Newton’s law of viscosity

Objectives of this module:

 To understand the meaning of viscosity at the macro and at the molecular scale
* To describe the transport modes for momentum

* To understand and apply the Newton’s law of viscosity



5.0. Modes of momentum transport

Momentum is transported every time there is a mass moving

e Radial transport of momentum

Krotation

momentum\

transport

* Advective momentum transport (transport by bulk motion of the fluid)




5.0. Modes of momentum transport

Momentum is transported every time there is a mass moving

* Advective momentum transport (transport by bulk motion of the fluid)

See Module 2 for
macroscopic description

advective momentum transport —— fluid density p

molecular momentum transport — dynamic viscosity p



5.0. Modes of momentum transport and viscosity

DEFINITION OF FLUID DENSITY

p= i |

" Volume

o) Ll B

m3 cm?3 L

It is @ macroscopic property!

DEFINITION OF DYNAMIC VISCOSITY

Viscosity is the property of the fluid which defines the interaction between the
moving molecules within the fluid. It measures the resistance of the fluid to flow.
Viscous forces are due to intermolecular forces acting in the fluid.

1) |Pa - s]

It is @ microscopic property!



5.1. Viscosity at the molecular level

With an increase of temperature, there is typically an increase in
the molecular interchange as molecules move faster at higher

1 _5 3
temperatures. KE gy = Emuz =2 kyT

The gas viscosity will increase with temperature. According to the
kinetic theory of gases, viscosity should be proportional to the
square root of the absolute temperature. In practice, it increases
much more rapidly.

In a liquid there will be molecular interchange similar to those
developed in a gas, but there are additional substantial attractive,
cohesive forces between the molecules of a liquid. Both cohesion
and molecular interchange contribute to liquid viscosity. The impact
of increasing the temperature of a liquid is to reduce the cohesive
forces while simultaneously increasing the rate of molecular
interchange. The former effect causes a decrease in the shear stress
while the latter causes it to increase. The result is that liquids show
a reduction in viscosity with increasing temperature.
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With high temperatures, viscosity increases in

5.1. Viscosity at the molecular level ;.. and decreases in liquids.

Values of the Dynamic viscosity MEien arr
A3 5 Temperature Viscosity  Viscosity
u=lkgm ™ s™"] = [Nsm™] = [Pas] T (°C) m (mPa-s) wu(mPa-s)

0 1 1.787 0.01716

Liquias | 20 1.0019 0.01813

40 0.6530 0.01908

Gases [ 60 0.4665 | 0.01999

s : 1 ; | : : 80 0.3548 0.02087

10-6 10-5 104 10-3 10-2 10.1 1 100 0.2821 v 0.02173

Viscosity (Pa s)
Temperature Viscosity Temperature Viscosity
Gases T (°C) 1 (mPa - s) Liquids T (°C) pn (mPa - s)
i-C¢H, 23 0.0076 (C,H5),0O 0 0.283
SF 23 0.0153 2D 0.224
CH, 20 0.0109 C¢H, 20 0.649
H,0O 100 0.01211 Br, 25 0.744
CO, 20 0.0146 Hg 20 1:552
N, 20 0.0175 C,H;OH 0 1.786
0O, 20 0.0204 25 1.074
Hg 380 0.0654 50 0.694
H,SO, 25 25.54

Glycerol 25 934.




5.1. Viscosity at the molecular level

Values of the Dynamic viscosity
n=[kgm 1s7!] = [Nsm™?] = [Pas]

Liquids |
Gases -
1 | L l | 1 ] ] l l l l
10-6 105 10-4 10-3 102 10-1 1
Viscosity (Pa s) [
Date Event

Years | Months
1927 | Hot pitch poured
October 1930 | Stem cut

Bitumen (pitch)

December 1938 | 1st drop fell 81 |98
highly viscous liquid February 1947 | 2nddropfell |82 |99
or semi-solid form of April 1954 | 3rd drop fell 72 |86
petroleum May 1962 | 4th drop fell 8.1 97

August 1970 | 5th drop fell 83 99
April 1979 | 6th drop fell 87 104
July 1988 | 7th drop fell 9.2 111
November 2000 | 8th drop felll® | 12.3 | 148
n=2x107Pas (20°C) PE
April 2014 | 9th droplE! 13.4 | 156




5.2. Newton’s law of viscosity

For laminar flow

Friction between layers

The fluid flows in parallel layers, with no
disruption or mixing between layers

Friction= resistance to motion
Viscosity=resistance to flow, thus it is special case of friction

10



5.2. Newton’s law of viscosity

Laminar flow between two plates

Let’s assume we put the bottom plate in motion by applying the force F.
Because of the friction between the plate and the fluid and the fluid layers,
momentum will be transferred perpendicularly to the direction of flow.
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5.2. Newton’'s law of viscosity

1.

t<0

t=0
o
4 I
:
|

v (y, t) : Small ¢
Sg}l
t
4 |
v,(y) :

: Large t
I

Fluid initially
at rest

Lower plate
set in motion

Velocity buildup
in unsteady flow

Final velocity
distribution in
steady flow
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5.2. Newton’s law of viscosity

At t large (steady state) _— - [kg m S—z] Force
— “ -—
A Y V=[ms™1'] velocity

A = [m?] Surface Area
// // F S He smead .X quq /CLT-A.IZQJ
. (,L.o pP— A, P lo Az .= MMF\/'M \/elowfy
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‘\/luol‘(r\w‘g 92 He b /IM,HJ' F‘ AT _(\Z
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Fea AN
~

F |4
7= 41y (L5) p=[kgm 's™]
Dynamic viscosity
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5.2. Newton’'s law of viscosity

At t large (steady state)

F=[kgms™2%] Force

F VvV

A%y v= [ms~1] velocity
A = [m?] Surface Area

A kgm™'s™*

7= Hy (L5) p=lkgm™ s

Dynamic viscosity

14



5.2. Newton’'s law of viscosity

At t large (steady state)

oy F=lkgms” 2] Force
A%y v= [ms~1] velocity
A = [m?] Surface Area
i 1.5 kg m~is!
7= Hy (L5) p=lkgm™ s

Dynamic viscosity

. F,
The force is the momentum flow rate, thus ~is the momentum flux!
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5.2. Newton’s law of viscosity

At t large (steady state)

oy F=lkgms” 2] Force
A%y v= [ms~1] velocity

A = [m?] Surface Area
A kgm™'s™*
7= Hy (L5) p=lkgm™ s

Dynamic viscosity

Flux of x-momentum in the y-direction

dvx The first subscription gives the transport direction while
Tyx = —U the second subscription gives the component of the
dy momentum being transported.
_ Fyx . [k -1 —2] Plate moving along —x and
A momentum being transported along -y

Note. The Newton’s law of viscosity applies to Newtonian fluid, which are incompressible
fluids with constant viscosity. 16



5.2. Newton’'s law of viscosity

The dual interpretation of 7,

0V, |
Tyx = —,ua—y Viscous momentum flux
Fyx
Toy = == Viscous shear stress
yx A

Both are generated by the molecular forces during shear flow and are
interchangeable.

17



5.2. Newton’'s law of viscosity

The shear stress 1 is a tensor, which means that it will have 3 components per
each direction

Flux of x-momentum

v, 0v, 0V, ~ ~ X
Ty = —,u(ax + 9y + az) = XTxx T YTyx T ZTzx

Flux of y-momentum

dvy, dv, Jvy, ~ ~ X
Ty = —U Y + 9y + PP = XTyxy T YTyy + 2T,

Flux of z-momentum

Jdv, dv, Jdv, ~ ~ A
T, = —u(ax + 9y + az) = XTxz T YTyz + 2T4,

18



5.2. Newton’'s law of viscosity

If we consider a cube AxAyAz:

y A
TZy A
TZX
S
TZZ/ TJS
TZy A
7’-Z.X'
: sz
TZZ

A\ 4

Complete stress tensor

T = XT, +§7, + 27,
= XRXTyy + XYTyy + X271y,
+9X7yx + YY1,y + Y21,
+ZX1,, + 27, + 7227,
Txx Txy Txz

T=|Tyx Tyy Tyz
Tzx Tzy Tzz

More in Transport Phenomena |!

19



5.2. Newton’s law of viscosity

Example: An industrial process for coating of concrete panels with glycerol at 25°C (density

920 Kg m> ) uses a dip coating procedure. The panels (with dimensions of 1 m x 1 m x 0.005 m)
have a density of 1260 Kg m-3and are removed from the glycerol container (which has a width of
0.025 m) with a force of 100 N. Can you estimate the maximum speed the panel can be removed
(upward) while it is still submerged ?

The dip-coating process

€2

= — T — T — BT — T
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5.2. Newton’s law of viscosity

Example: An industrial process for coating of concrete panels with glycerol at 25°C (density 920
kg m~3) uses a dip coating procedure. The panels (with dimensions of 1 m x 1 m x 0.005 m) have a
density of1260kg m=3 and are removed from the glycerol container (which has a width of 0.025 m)
with a force of 100 N. Can you estimate the maximum speed the panel can be removed (upward)

while it is still submerged ?
1::total = Fgravity _Fbuoyant T l::shear balance of forces

Vv
=mg - Vpglycerolg +A U Y

0.01m 0.005m

— >

Vv
= V(ppanel - pglycerol)g +A U Y

100 N= (0.005 m3)((1260-920) kg m3)(9.81 m s2)
+|(2 m2)(0.934 kg m~*s~1)v/(0.01m)

V=044ms1
V= volume
v = velocity

Note: 2m?2 because you consider the two sides of the block 2t



5.2. Newton’'s law of viscosity

NOTE: The Area indicates the AREA PARALLEL TO THE DIRECTION OF THE SHEAR FORCE

I:total (: I:applied) A

-
1%
N - 9
F
F buoyant shear
AREA =
]?' . longitudinal area of the cylinder = 2rrr X L
shear F gravity
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5.3. Analogies in heat, mass and momentum transport

Fourier’s (15Y) law of heat conduction

Flux density
[W m~2] — . 7
¥
> ?
Fick’s (15%) law of molecular diffusion
J Concentration gradient
1 - : Ca _ _
[mol s~ 'm™?] jay = —Dap & > [(molm™3) m™1]
‘ : : > Diffusivity [m’s 1]
Newton’s law of viscosity
dv
~1-2 _ x 7
[kgm™"s™“] Tyx = — & >
2
General transport relation for “entity”
[ 1m2] 5 dr Concentration gradient
" t't n —_ —_ > e >
cHtty”s v dy [("entity" m™3) m™1]
Flux density ‘ ,
> Diffusivity [m’s ]

23



5.3. Analogies in heat, mass and momentum transport

Flux density Fourier’s (15%) law of heat conduction
dT
(W m™2]=[Js™'m~?] q = _k@

Our “entity” is heat

k d(pc,T) . :
q=— 7 Concentration gradient of
PCp Y [ heat [(J m?3) m!]
d(pc,T) | k
q=—a——— o = —
dy pcp

Thermal diffusivity [m2s_1]

General transport relation for “entity”

["entity" s—m~2] 5 drl’ Concentration gradient
entity" s”1m ool — S N
y dy [("entity" m™3) m™!]

> Diffusivity [m’s™1]

24



5.3. Analogies in heat, mass and momentum transport

Flux density Newton’s law of viscosity
L dv,
[kgm™'s™%] = [(kgms ) m 2571 Tyxy = _.“E
Our “entity” is momentum ud(pv,)
Tyy = ——
yXx
p dy Concentration
radient of
d(pvy) o
yx = =V » momentum
dy
Momentum
Diffusivity [mzs_l]
OR

Kinematic viscosity
General transport relation for “entity”

dr Concentration gradient
1m_2] g lp = _6 g ] . " -3 -1
‘ dy [("entity" m™°) m™]

["entity" s~

> Diffusivity [m’s 1]
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5.3. Analogies in heat, mass and momentum transport

"entity”

Flux

Law

Coefficient of
proportionality

Driving force

Diffusivity

Concentration

Concentration
Gradient

Heat transport

Mass transport Momentum transport

q=[W m?] j=[mols™!m2] 7=[kgm 's7?]
= [Js~'m~2] =[(kgms 1) m2s71]
B dT _ o dc B dv
q dy ) dy T ‘udy
k D U
dT dc d_v
dy dy dy
k u
a=— V=—
PCp D P
pc,T C pv
d(pc,T) dc dpv

dy dy dy 26



5.4. Non dimensional numbers for simultaneous transport

The Reynold Number Re quantifies the relative importance of inertial
forces and viscous forces for given flow conditons

p density of the fluid [Kg/m?3]
inertial forces Vavgd — Vgped
Re = / _ Plavg — _9v9 Vapg average velocity [m/s]

viscous forces U \%
d tube diameter [m]
v = kinematic viscosity = — u dynamic (or absolute) viscosity
P [Kg-m?1-slorPa-s]
High Re ( > 3500) Turbulent flow, inertia dominates over friction

Low Re (< 2000) Laminar flow, friction dominates over inertia

27



5.4. Non dimensional numbers for simultaneous transport

The Prandtl Number Pr defines the importance of momentum over
thermal diffusivity

v kinematic viscosity [m?2/s]

e
_ momentum dif fusionrate v _ Cpu thermal diffusivity [m?/s]

Pr= heat dif fusionrate  «a ~ Tk #dynamicviscosity [Kg-m*-s7]
C, specific heat [J/Kg - K]
k thermal conductivity [W/m - K]
Pryes = 0.7 -1 Momentum diffusion is more or less equal to the heat
diffusion

Pr,; ~ 100 — 100000 Heat diffusion is extremely slow compared to the
momentum diffusion

Heat diffusion is extremely fast compared to the

Prmercury =~ 0.015 momentum diffusion

28



5.4. Non dimensional numbers for simultaneous transport

Relationship with boundary layers

Pre<l Pr>>1

temperature temperature

/‘
velocity @

|

J \

T Uy

—

oT=thickness thermal dv =thickness V€|0City ov=thickness VelOCity OT=thickness thermal
boudary layer boudary layer boudary layer boudary layer

A thinner boundary layer means that the variable takes less time to reach steady state,
thus it is dominant mode of transport

29



5.4. Non dimensional numbers for simultaneous transport

The Schmidt Number Sc compares the momentum over mass diffusivity

v kinematic viscosity [m?2/s]

S momentum dif fusion rate v U D mass diffusivity [m2/s]
C = - - = —= —
mass dif fusion rate D pD u dynamic viscosity [Kg - m™ - s?]
p density of the fluid [Kg/m?3]
SCyas = 0.7 =1 Momentum diffusion is more or less equal to the mass

diffusion

SCliquia = 100 — 1000 Momentum diffusion is faster than mass diffusion

30



5.4. Non dimensional numbers for simultaneous transport

Exemple: Fluid bed catalytic reactor

Sc>>1

Fluid inlet

—

Sc<«1

Fluid inlet

—

Catalyst layer

concentration

velocity

Catalyst layer

concentration

velocity

Fluid outlet

—

Fluid outlet

—

HIGHER
AMOUNT OF
UNREACTED

PRODUCT

LOWER
AMOUNT OF
UNREACTED

PRODUCT
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5.4. Non dimensional numbers for simultaneous transport

The Lewis Number Le compares the heat over mass transfer by convection

heat dif fusion rate  « a thermal diffusivity [m?/s]
Le = = — e
mass dif fusionrate D D mass diffusivity [m?/s]
SCyas = 0.7 =1 Heat diffusion is more or less equal to the mass
diffusion

SCliquia ~ 100 Heat diffusion is faster than mass diffusion

32



5.4. Non dimensional numbers for simultaneous transport

14

* Prandtl Number Pr = p

characterizes the simultaneous
transfer of heat and viscous
momentum

e Schmidt Number S¢ = D
gives the relative importance of
the transfer of momentum and
matter

7 a

e = —

: D
e Lewis Number
characterizes combined heat
transfer and mass transport by
diffusion

Viscous
diffusion rate

v
Mass

diffusion rate

a

Thermal
diffusion rate
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5.4. Non dimensional numbers for simultaneous transport

1% 14
Pr=— Sie = — Le:E
a

D D

Prandtl Numbers for Some Common Fluids

Temperature Prandtl Number
Substance K °C Pr=v/a
Mercury 300 27 2.72x10°°
Air 300 27 7.12%x 10"
Water 300 27 5.65
Ethyl alcohol 293 20 1.70 x 10
Glycerin 293 20 1.16 x 10*

Schmidt and Lewis Numbers for Dilute gases and Dilute Solutions

Temperature Schmidt Number Lewis Number
Substance K °C Sc=wv/D Le=a/D
0,-N, 273 0 7.3% 10" 1.0
Dilute gases 293 20 ~1 ~1
NaCl aqueous 293 20 7.0 x 10? 1.0 X 10°
Dilute solutions 293 20 ~10° ~10°
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5.4. Non dimensional numbers for simultaneous transport

Why are dimensionless numbers useful in transport phenomena?

1) Dimensionless numbers allow for comparisons between very different systems
Let’s say you are designing a stirrer for a batch reactor and you want to test a
prototype. It would make sense to test a miniature but you now that the size of the
reactor makes a difference. Yet, if you also decrease the viscosity of the liquid you are
using , so that the Reynolds number is the same in both processes, you can take your
conclusions from the miniature and apply them to larger scale.

2) Dimensionless numbers tell you how the system will behave.

The classic example involves again the Reynold number to predict the onset of
turbolence in a system. Critical values for the Reynold number for many different
systems are tabulated and so you can easily predict the onset of turbolence.



