
ChE 204
Introduction to Transport Phenomena 

Module 1 

The Bernoulli’s equation

1.1. Bernoulli’s Equation 
1.2. The continuity equation
1.3. Applications of the Bernoulli’s Equation
1.4. Extension of Bernoulli’s Equation to include pumps
1.5. Friction factors due to viscosity
1.6 Pressure drop in various closed-flow elements
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Objectives of this module:

1) Understand the use and limitations of the Bernoulli’s equation

2)  Apply the Bernoulli’s equation to solve a variety of fluid flow problems

3) Read and Apply the Moody diagram to solve fluid flow problems including friction

4) Apply the Bernoulli’s equation in the presence of closed-flow elements

ChE 204
Introduction to Transport Phenomena 

2

Module 1 

The Bernoulli’s equation



1.1. Bernoulli’s equation

Daniel Bernoulli  (1700-1782)
He was born in the city of Groningen in the Netherlands on February 8, 
1700. His parents were Johann Bernoulli and Dorothea Falkner, both 
mathematicians and from Basel. In 1705, when Daniel was aged 5, his family 
relocated to Basel in Switzerland, his parents’ hometown, where his father 
would became chair of mathematics at Basel University.
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1.1. Bernoulli’s equation

The Bernoulli Equation is the application of energy conservation along a streamline. 
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QUESTION:
How many of you are familiar with the conservation of energy?
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1.1. Bernoulli’s equation

CONSERVATION OF ENERGY

System

Boundary

The law of conservation of energy states that the total energy of an isolated system is 
conserved over time

In a closed system ∆𝐸 = 𝑐𝑜𝑠𝑡
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1.1. Bernoulli’s equation

CONSERVATION OF ENERGY

System

Boundary

What if a system starts to exchange energy with its surroundings?

If the system start to interact with its surroundings and energy is transported across 
the boundary, the following has to be true: 

SurroundingsEin

Eout

Ein= Eout



7

System
Surroundings

1.1. Bernoulli’s equation

𝐴1

𝐴2

Boundary

ℎ1

ℎ2
𝑣1

𝑣2

𝑃1

𝑃2

We consider a fluid flowing uphill in a pipe

E1= E2

QUESTION: Which terms contribute to the energy of a fluid flowing uphill?

1) Steady flow ( 
𝑑𝑣

𝑑𝑡
 = 0 and  

𝑑𝑃

𝑑𝑡
 = 0 )

2) Incompressible fluid (𝜌 = density = const)

3) No friction

ASSUMPTIONS:



W is the flow energy, the work done by the static pressure on the system
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𝑃𝐸 = 𝑚 𝑔 ℎ

𝐾𝐸 =
1

2
𝑚𝑣2

𝐸 = 𝑊 + 𝑃𝐸 + 𝐾𝐸

System
Surroundings

PE is the potential energy, the work done by gravity

KE is the kinetic energy

1.1. Bernoulli’s equation

𝐴1

𝐴2

Boundary

ℎ1

ℎ2
𝑣1

𝑣2

𝑃1

𝑃2

We consider a fluid flowing uphill in a pipe

E1= E2

1)

2)

3)

𝑊 = (𝑃 ∙ 𝐴)  ∙ 𝑙 = 𝑃 ∙ 𝑉 = 𝑃 ∙
𝑚

𝜌



W is the flow energy, the work done by the static pressure on the system
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𝑃𝐸 = 𝑚 𝑔 ℎ

𝑊 = (𝑃 ∙ 𝐴)  ∙ 𝑑 = 𝑃 ∙ 𝑉 = 𝑃 ∙
𝑚

𝜌

𝐾𝐸 =
1

2
𝑚𝑣2

PE is the potential energy, the work done by gravity

KE is the kinetic energy

1.1. Bernoulli’s equation

𝐸 = 𝑊 + 𝑃𝐸 + 𝐾𝐸 = 𝑷 ∙
𝒎

𝝆
 + 𝒎 𝒈 𝒉 +

𝟏

𝟐
𝒎𝒗𝟐

System

Surroundings

𝐴1

𝐴2

Boundary

ℎ1

ℎ2
𝑣1

𝑣2

𝑃1

𝑃2

E1= E2

1)

2)

3)



1.1. Bernoulli’s equation

𝑃1  ∙
𝑚

𝜌
 + 𝑚 𝑔 ℎ1 +

1

2
𝑚𝑣1

2 𝑃2  ∙
𝑚

𝜌
 + 𝑚 𝑔 ℎ2 +

1

2
𝑚𝑣2

2=

𝑃1

𝜌
 + 𝑔 ℎ1 +

1

2
𝑣1

2 =
𝑃2

𝜌
 + 𝑔 ℎ2 +

1

2
𝑣2

2

divide by m both side of the equation:

multiply by 𝜌 both side of the equation:

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 = 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2

𝑃 + 𝜌𝑔ℎ +
1

2
𝜌𝑣2 = 𝑐𝑜𝑠𝑡
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𝑊1 + 𝑃𝐸1 + 𝐾𝐸1 = 𝑊2 + 𝑃𝐸2 + 𝐾𝐸2

E1= E2

𝐸 = 𝑐𝑜𝑠𝑡



1.1. Bernoulli’s equation (derivation from the Newton’s second law)

The Bernoulli Equation is the application of energy conservation along a streamline. 
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1 𝐸1
𝑖= 𝐸2

𝑖

𝐸𝑖= constant

𝑖
𝑣

2

The particle 
𝑖 moving along a streamline along the same path conserves its energy 
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Let’s focus on a particle moving along the streamline with velocity 𝑣 and we focus on 
the infinitesimally small volume 𝑑𝑉 

𝑑𝑙
𝑑𝐴

𝑥

ℎ

𝑠
𝑛

We can apply the Newton’s second law: ෍ 𝐹 = 𝑚𝑎

𝑣
𝑑𝑉 = 𝑑𝐴 ∙ 𝑑𝑙
𝑚 = 𝜌 ∙ 𝑑𝑉 = 𝜌 ∙ 𝑑𝐴 𝑑𝑙

𝑑l = 𝑣 ∙ 𝑑𝑡

𝑑𝐴 is the cross sectional area

1.1. Bernoulli’s equation (derivation from the Newton’s second law)
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We identify the forces acting on 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 along the 𝑠 − 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 

𝑑𝑙
𝑑𝐴

𝑥

ℎ

𝑠
𝑛

෍ 𝐹 = 𝑚𝑎

𝑣𝑷𝒅𝑨

(𝑷 + 𝒅𝑷)𝒅𝑨

𝒎𝒈

𝜃
𝑑𝑉 = 𝑑𝐴 ∙ 𝑑𝑙
𝑚 = 𝜌 ∙ 𝑑𝑉 = 𝜌 ∙ 𝑑𝐴 𝑑𝑙

𝑑𝑙 = 𝑣 ∙ 𝑑𝑡

𝑃𝑑𝐴 − 𝑃 + 𝑑𝑃 𝑑𝐴 − 𝑚𝑔 𝑠𝑖𝑛𝜃 = 𝑚
𝑑𝑣

𝑑𝑡

𝑑𝑙

𝑑𝑥

𝑑ℎ
𝜃

1.1. Bernoulli’s equation (derivation from the Newton’s second law)
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𝑃𝑑𝐴 − 𝑃 + 𝑑𝑃 𝑑𝐴 − 𝑚𝑔 𝑠𝑖𝑛𝜃 = 𝑚
𝑑𝑣

𝑑𝑡

−𝑑𝑃𝑑𝐴 − 𝜌 𝑑𝐴 𝑑𝑙 𝑔
𝑑ℎ

𝑑𝑙
= 𝜌 𝑑𝐴 𝑑𝑙 𝑣

𝑑𝑣

𝑑𝑙

𝑚 = 𝜌 𝑑𝐴 𝑑𝑙 , 𝑠𝑖𝑛𝜃 =
𝑑ℎ

𝑑𝑙
 , 𝑑𝑡 =

𝑑𝑙

𝑣
 

−𝑑𝑃 − 𝜌𝑔 𝑑ℎ = 𝜌𝑣 𝑑𝑣

Subsituting

Cancelling 𝑑𝐴 and simplifying 𝑑𝑙

Noting that 𝑣 𝑑𝑣 =
1

2
𝑑 𝑣2  and diving each term by 𝜌  

𝑑𝑃

𝜌
+ 𝑔 𝑑ℎ +

1

2
𝑑 𝑣2 = 0 for one particle i of the fluid

1.1. Bernoulli’s equation (derivation from the Newton’s second law)
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1.1. Bernoulli’s equation

QUESTION:
How do we go from conservation of energy along one streamline to conservation of 
energy along a stream of fluid?

1

2

1

2
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1.1. Bernoulli’s equation

1) Steady flow ( 
𝑑𝑣

𝑑𝑡
 = 0 and  

𝑑𝑃

𝑑𝑡
 = 0 )

2) Incompressible fluid (𝜌 = const)

ASSUMPTIONS:

We integrate!

න
𝑑𝑃

𝜌
+ 𝑔 𝑑ℎ +

1

2
𝑑 𝑣2 = 𝑐𝑜𝑛𝑠𝑡 

i

The 3 terms are exact integrals, thus:

𝑃

𝜌
+ 𝑔 ℎ +

1

2
𝑣2 = 𝑐𝑜𝑛𝑠𝑡 (𝑎𝑙𝑜𝑛𝑔 𝑎 𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑖𝑛𝑒)

𝑑𝑃

𝜌
+ 𝑔 𝑑ℎ +

1

2
𝑑 𝑣2 = 0 for one particle i of the fluid

න
𝑑𝑃

𝜌
 + 𝑔ℎ +

𝑣2

2
 + න

𝜕𝑣

𝜕𝑡
 𝑑𝑠 = 𝑐𝑜𝑛𝑠𝑡
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𝑃

𝜌
+ 𝑔 ℎ +

1

2
𝑣2 = 𝑐𝑜𝑛𝑠𝑡 (𝑎𝑙𝑜𝑛𝑔 𝑎 𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑖𝑛𝑒)

1.1. Bernoulli’s equation

If we multiply by the mass of the fluid 𝑚: 

𝑃
𝑚

𝜌
+ 𝑚𝑔 ℎ +

1

2
𝑚𝑣2 = 𝑐𝑜𝑛𝑠𝑡 (𝑎𝑙𝑜𝑛𝑔 𝑎 𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑖𝑛𝑒)

Kinetic energy

Potential energy

Flow energy

𝐸 = 𝑊 + 𝑃𝐸 + 𝐾𝐸 = 𝑐𝑜𝑛𝑠𝑡 (𝑎𝑙𝑜𝑛𝑔 𝑎 𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑖𝑛𝑒)

This is exactly the same expression we found by simply applying the conservation of 
energy

RECAP
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1.2. The continuity equation

𝐴1 𝑣1 𝐴2
𝑣2

1
2

QUESTION: a. 𝑣1 = 𝑣2

b.  𝑣1 > 𝑣2

c. 𝑣1 < 𝑣2
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1.2. The continuity equation

CONSERVATION OF MASS

System

Boundary

If the system start to interact with its surroundings and mass is transported across the 
boundary, the following has to be true: 

Surroundingsmin

mout

min= mout
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1.2. The continuity equation

1
2

𝑖

𝑗

𝑘

𝑖
𝑗
𝑘

The number of particles that enters the pipe has to exit
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1.2. The continuity equation

𝐴1 𝑣1 𝐴2
𝑣2

1 2

We make always the same assumptions of steady state and uncompressible fluid. 
We consider consider a time interval ∆𝑡:

∆𝑡 𝑣1

∆𝑡 𝑣2

𝑚1 = 𝑚2

𝜌𝑉1 = 𝜌𝑉2

𝜌𝐴1∆𝑡 𝑣1= 𝜌𝐴2∆𝑡 𝑣2

𝐴1𝑣1 = 𝐴2𝑣2

https://www.youtube.com/watch?v=UJ3-Zm1wbIQ

https://www.youtube.com/watch?v=UJ3-Zm1wbIQ

https://www.youtube.com/watch?v=UJ3-Zm1wbIQ
https://www.youtube.com/watch?v=UJ3-Zm1wbIQ
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1.3. Applications of the Bernoulli’s equation

VOLUMETRIC AND MASS FLOW RATE

𝑉𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝑸 =
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑡𝑖𝑚𝑒
 = 𝐴 𝑣

𝑚3

𝑠

𝐿

𝑠

𝑀𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 ሶ𝒎 =
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑓𝑙𝑢𝑖𝑑

𝑡𝑖𝑚𝑒
= 𝜌𝑄 = 𝜌𝐴 𝑣

 

𝑔

𝑠

𝐾𝑔

𝑚𝑖𝑛
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1.3. Applications of the Bernoulli’s equation

TWO DIFFERENT WAYS TO EXPRESS PRESSURE

Absolute pressure is zero-referenced against a perfect vacuum.

Gauge pressure is zero-referenced against ambient air pressure, so it is 
equal to absolute pressure minus atmospheric pressure. 

Example: Pabs = 2 atm
Pgauge = Pabs – Patm = 2 atm – 1 atm = 1 atm

If we express the atmospheric pressure as gauge pressure, the value is 
0 atm 
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Calculating pressure at a fire hose nozzle 

Pressure in the nozzle of this fire hose is less than at 
ground level for two reasons: the water has to go 
uphill to get to the nozzle and speed increases in 
the nozzle. In spite of its lowered pressure how can 
the water still exert a large force on anything it 
strikes? Also, what is the pressure in the water 
stream at the exit of the hose?

1.3. Applications of the Bernoulli’s equation

EXAMPLE:

QUESTION:
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Exercize:
Fire hoses used in major structure fires have inside 
diameters of 6.40 cm. Suppose such a hose carries a flow 
of 40.0 L/s starting at a gauge pressure of 1.62 x 106  N/m2.
 The hose goes 10.0 m up a ladder to a nozzle having an 
inside diameter of 3.00 cm. Assuming negligible resistance, 
what is the pressure at the nozzle? 

Calculating pressure at a fire hose nozzle 

1.3. Applications of the Bernoulli’s equation

EXAMPLE:

1

2

Pressure in the nozzle of this fire hose is less than at 
ground level for two reasons: the water has to go 
uphill to get to the nozzle and speed increases in 
the nozzle. In spite of its lowered pressure how can 
the water still exert a large force on anything it 
strikes? Also, what is the pressure in the water 
stream at the exit of the hose?

QUESTION:
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Calculating pressure at a fire hose nozzle 

1.3. Applications of the Bernoulli’s equation

EXAMPLE:

Solution: (This exercize will be solved during the lecture)
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What is the output velocity of the fluid as a function of this height?

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 = 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2

𝜌𝑔ℎ =
1

2
𝜌𝑣2

2

𝑣2 = 2𝑔ℎ

𝜌𝑔(0) +
1

2
𝜌 0 2 = 𝜌𝑔 −ℎ +

1

2
𝜌𝑣2

2
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𝐴2 ≪ 𝐴1

𝑷𝟏 = 𝑷𝟐 = 𝑷𝒂𝒕𝒎

ℎ1 = 0

𝑣1𝐴1 = 𝑣2𝐴2

𝑣1 ≪ 𝑣2

(continuity equation)

A1

hA2

𝑣2

1.3. Applications of the Bernoulli’s equation

THE TORRICELLI’S THEOREM

If we express them as gauge pressure we can write 

𝑷𝒈𝒂𝒖𝒈𝒆 𝟏 = 𝑷𝒈𝒂𝒖𝒈𝒆 𝟐 = 𝑷𝒂𝒕𝒎 − 𝑷𝒂𝒕𝒎 = 𝟎



1.3. Applications of the Bernoulli’s equation

29

𝑣2

𝑣3

𝑣1

THE TORRICELLI’S THEOREM

𝑣2 = 2𝑔ℎ

𝑣3 > 𝑣2 > 𝑣1

h1

h2

h3

x = ?

QUESTION: which jet of water is the fastest?
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1.3. Applications of the Bernoulli’s equation

THE TORRICELLI’S THEOREM
Exercize:
A large tank is filled with water to a depth of 15 meters. A spout is located 10m above the bottom of 
the tank. (a) With what speed 𝑣2 will water emerge from the spout? (b) What horizontal distance 
from the base of the large tank does it land away?

(This exercize will be solved during the lecture)Solution:

https://www.youtube.com/watch?v=X71H56Fdk6I

Video on parabolic motion equations:

https://www.youtube.com/watch?v=X71H56Fdk6I
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Consider a fluid flowing through a pipe with a constriction. Make a prediction regarding 
the pressure. Is the pressure higher at point 1 or at point 2?

1.3. Applications of the Bernoulli’s equation

THE VENTURI EFFECT

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 = 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2

𝑃1 +
1

2
𝜌𝑣1

2 = 𝑃2 +
1

2
𝜌𝑣2

2

;
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1.4. Extension of Bernoulli’s Equation to include pumps

𝐴1

𝐴2

ℎ1

ℎ2
𝑣1

𝑣2

𝑃1

𝑃2

PUMP

𝑃𝑝𝑢𝑚𝑝

In the energy balance we need to include the mechanical energy (or power) 
transmitted by the pump to the fluid

𝑊1 + 𝑃𝐸1 + 𝐾𝐸1 +  𝑊𝑝𝑢𝑚𝑝 = 𝑊2 + 𝑃𝐸2 + 𝐾𝐸2

E1= E2

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 + 𝑃𝑝𝑢𝑚𝑝 = 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2
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1.4. Extension of Bernoulli’s Equation to include pumps

Definition of POWER OF A PUMP and PUMP HEAD

Power = 𝑄𝜌 𝑔𝑯𝒑

Q = volumetric flow [m3/s]
ρ = density of fluid [kg/m3]
g = gravity (9.81 m/s2)
𝐻𝑝 =pump head (m)

[W]

The pump "pressure-head" is the vertical lift in height - usually measured meters of water - 
at which a pump can no longer exert enough pressure to move water. At this point, the 
pump may be said to have reached its "shut-off" head pressure. 

𝐻𝑝
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1.4. Extension of Bernoulli’s Equation to include pumps

Definition of EFFICIENCY OF A PUMP

𝜂 =
𝑝𝑜𝑤𝑒𝑟 𝑜𝑢𝑡𝑝𝑢𝑡

𝑝𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
× 100 =

𝑄𝜌 𝑔𝑯𝒑

𝑝𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡
× 100

A pump will have losses, thus we define the efficiency as:

Let’s say that a pump is 80% efficient. This means that we have to supply 

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 =
𝑄𝜌 𝑔𝑯𝒑

80
× 100
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1.4. Extension of Bernoulli’s Equation to include pumps

CONVERSION FROM PUMP HEAD TO PRESSURE 

𝐻𝑝

𝑃𝑝𝑢𝑚𝑝

Example: Hp = 0.61 m Ppump = ?

Ppump = 1000 kg m−3 x 9.81 m s−2 x 0.61m = 5.98 𝑘𝑃𝑎

The below equations may be used to convert between head 
and pressure when those measures are in the metric units 
kPa and m. Gravity is measured in m/s2 and density in kg/m3

𝐻𝑃 =
 𝑃𝑝𝑢𝑚𝑝

𝜌𝑔 
𝑃𝑝𝑢𝑚𝑝 = 𝜌𝑔𝐻𝑃

Note: During the course, Ppump will refer to the pump pressure. If we want to refer to 
the power, we will write “Power”
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1.4. Extension of Bernoulli’s Equation to include pumps

The relation between pressure head 
and pressure allows us to write the 
Bernoulli’s equation in head terms 𝐴1

𝐴2

ℎ1

ℎ2

𝑣1

𝑣2

𝑃1

𝑃2

PUMP

𝑃𝑝𝑢𝑚𝑝

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 + 𝑃𝑝𝑢𝑚𝑝 = 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2

divide everything by 𝜌𝑔

𝑃1

𝜌𝑔 
+ ℎ1 +

𝑣1
2

2𝑔
+

𝑃𝑝𝑢𝑚𝑝

𝜌𝑔
=

𝑃2

𝜌𝑔 
+ ℎ2 +

𝑣2
2

2𝑔
All the terms have length as dimension!

velocity head

static head

pressure head

pump head 𝑯𝒑

𝐻1 + 𝑯𝒑 = 𝐻2
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1.4. Head of a pump and Bernoulli’s equation in head terms

𝑃1

𝜌𝑔 
+ ℎ1 +

𝑣1
2

2𝑔
+ 𝑯𝒑 =

𝑃2

𝜌𝑔 
+ ℎ2 +

𝑣2
2

2𝑔

0 0

𝑣1 =
𝑄

𝐴1

=
0.07𝑚3/𝑠

𝜋 0.09𝑚 2
= 2.7508 𝑚/𝑠 𝑣2 =

𝑄

𝐴2

=
0.07𝑚3/𝑠

𝜋 0.06𝑚 2
= 6.18936 𝑚/𝑠

Exercize:
Determine the Power of the pump

𝑯𝒑 =
𝑃2−𝑃1

𝜌𝑔 
+

𝑣2
2−𝑣1 

2

2𝑔
 =

120−35 𝑘𝑁/𝑚2

0.82 9.81 𝑘𝑁/𝑚3 
+

6.19
𝑚

𝑠
2− 2.75

𝑚

𝑠
2

2 9.81 𝑘𝑁/𝑚3  = 12.13m 

Power = 𝑄𝜌𝑔𝑯𝒑

𝜌 𝑜𝑖𝑙 = 0.82 𝑔/𝑐𝑚3 Oil
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1.4. Head of a pump and Bernoulli’s equation in head terms

Exercize:
Determine the power of the pump

Power = 𝑄𝜌𝑔𝑯𝒑 = (0.07
𝑚3

𝑠
)(0.82 x 9.81

𝑘𝑁

𝑚3) 12.13𝑚  = 6.83 
𝑚 𝑘𝑁

𝑠
 = 6.83 kW 

Let’s say in the exercize we just solved, the pump is 90% efficient and we require 6.83kW 
output: 

𝑃𝑜𝑤𝑒𝑟 𝑖𝑛𝑝𝑢𝑡 =
6.83 𝑘𝑊

0.9
 = 7.59 𝑘𝑊
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𝐸 = 𝑊 + 𝑃𝐸 + 𝐾𝐸 = 𝑐𝑜𝑛𝑠𝑡 (𝑎𝑙𝑜𝑛𝑔 𝑎 𝑠𝑡𝑟𝑒𝑎𝑚 𝑙𝑖𝑛𝑒)

1.4. Extension of Bernoulli’s Equation to include pumps

Conservation of energy along a stream line

RECAP

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 + 𝑃𝑝𝑢𝑚𝑝 = 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2

𝑃1

𝜌𝑔 
+ ℎ1 +

𝑣1
2

2𝑔
+ 𝑯𝒑 =

𝑃2

𝜌𝑔 
+ ℎ2 +

𝑣2
2

2𝑔

𝐻𝑃 =
 𝑃𝑝𝑢𝑚𝑝

𝜌𝑔 



1.5. Friction factors due to viscosity

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 ≠ 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 = 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2 + 𝜟𝑷𝒇

In real pipe line there are energy losses due to friction and these must be taken into account as 
they can be pretty significant.

frictional pressure drop

41

𝐴1

𝐴2

ℎ1

ℎ2
𝑣1

𝑣2

𝑃1

𝑃2



What is friction?

MASS
APPLIED 
FORCE

FRICTION FORCE (Ff)

Reaction Force Resisting to Motion

1.5. Friction factors due to viscosity

42

What is viscosity?

The viscosity of a fluid is a measure to its resistance to flow (i.e. honey is more 
viscous than water)

 = 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 

𝐯 = 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =
𝜇

𝜌

[Kg ∙ m-1 ∙ s-1 or Pa ∙ s ]

[m2 ∙ s-1]

Resistance to flow when an external force is applied.

Intrinsic resistance to flow when no external force is applied, except gravity.



1.5. Friction factors due to viscosity
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Micro Molecular

𝒗𝒂𝒗𝒈

Macro



1.5. Friction factors due to viscosity

44

LAMINAR FLOW TURBOLENT FLOW

The fluid flows in parallel layers, 
with no disruption or mixing 
between layers

The fluid flows in a chaotic manner with 
strong currents, irregular velocity and 
intermixing between layers

Nice demonstration of laminar flow

https://www.youtube.com/watch?v=dJTTUROqHgs


1.5. Friction factors due to viscosity

𝑅𝑒 = 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝜌𝑣𝑎𝑣𝑔𝐷 

𝜇

density of the fluid [Kg/m3]

tube diameter [m]

average velocity [m/s]

dynamic viscosity 
[Kg ∙ m-1 ∙ s-1 or Pa ∙ s ]

with v = 𝑘𝑖𝑛𝑒𝑚𝑎𝑡𝑖𝑐 𝑣𝑖𝑠𝑐𝑜𝑠𝑖𝑡𝑦 =
𝜇

𝜌

𝑅𝑒 = 𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑣𝑎𝑣𝑔𝐷 

v

It represents the ratio between the inertial and the friction forces

45
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1.5. Friction factors due to viscosity

LAMINAR FLOW TURBOLENT FLOW

Re < 2000 Re > 4000
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1.5. Friction factors due to viscosity

LAMINAR FLOW

Re < 2000
𝑣 𝑟 = 𝑣𝑚𝑎𝑥 1 −

𝑟

𝑅

2

Parabolic velocity profile

R r

To remember: the velocity at the wall is zero



1.5. Friction factors due to viscosity

We consider a fluid flowing in a straight pipe in the laminar flow regime. Ultimately 
we need the friction force to insert the friction term in the Bernoulli’s equation.

Note: Darcy Friction Factor 𝑓𝐷 = 4𝑓𝑓

Definition of the friction factor 𝒇𝒇  

48

Now the goal is to derive an expression for the Friction Factor 𝑓𝑓!



1.5. Friction factors due to viscosity

D 𝑣

P1 P2

L

Definition of the friction factor 𝒇𝒇  

𝐹𝑓 = Δ𝑃 ∙ 𝐴 = 𝑃1 − 𝑃2 𝜋𝑅2
𝑃1 − 𝑃2 𝜋𝑅2 =

49

written in terms of a viscous resistance 
force to the flow of the fluid

We need 𝑣𝑎𝑣𝑔!



1.5. Friction factors due to viscosity

𝑣 𝑟 = 𝑣𝑚𝑎𝑥 1 −
𝑟

𝑅

2

Definition of the friction factor 𝒇𝒇  

The velocity profile for viscous fluid in laminar flow regime is a parabolic one: 

50

It can be shown that:  𝑣𝑚𝑎𝑥 =
𝑅2

4𝜇

(𝑃1−𝑃2)

𝐿

𝑣 𝑟 =
(𝑃1−𝑃2)

4𝜇𝐿
𝑅2 − 𝑟2Thus:

𝑣𝑧,𝑎𝑣𝑔 =
𝑣𝑚𝑎𝑥

2
=

𝑅2

8𝜇

(𝑃1−𝑃2)

𝐿

Keep this in mind!



1.5. Friction factors due to viscosity

Definition of the friction factor 𝒇𝒇  

51

1

𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟

𝑣𝑧,𝑎𝑣𝑔 =
𝑣𝑚𝑎𝑥

2
=

𝑅2

8𝜇

(𝑃1−𝑃2)

𝐿

In laminar flow regime 𝒇𝒇 =
𝟏𝟔

𝑹𝒆

Note: 𝑓𝐷 =
64

𝑅𝑒



1.5. Friction factors due to viscosity

Definition of the friction factor 𝒇𝒇  

52

𝟏

𝒇𝒇

= −𝟒𝒍𝒐𝒈𝟏𝟎

𝜺

𝟑. 𝟕𝑫
+

𝟐. 𝟓𝟏

𝑹𝒆 𝒇𝒇

TURBOLENT FLOW Re > 4000

𝑣 𝑟 = 𝑣𝑚𝑎𝑥 1 −
𝑟

𝑅

1
𝑛

with 5 < 𝑛 < 7 𝑎𝑛𝑑 𝑛(𝑣)

R r

Colebrook Equation

Where 𝜺 is the tube roughness and D is the diameter of the tube.



1.5. Friction factors due to viscosity
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1.5. Friction factors due to viscosity

The Moody diagram: for flow of a Newtonian fluid in a straight circular pipe
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1.5. Friction factors due to viscosity

The Moody diagram: for flow of a Newtonian fluid in a straight circular pipe
𝐹

𝑟𝑖
𝑐𝑡

𝑖𝑜
𝑛

 𝐹
𝑎

𝑐𝑡
𝑜

𝑟
 𝑓

𝐷
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How to use the Moody diagram

1.5. Friction factors due to viscosity

The Moody diagram: for flow of a Newtonian fluid in a straight circular pipe

https://www.youtube.com/watch?v=PgAXycpuZqM
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1.5. Friction factors due to viscosity

NEWTONIAN vs NON-NEWTONIAN FLUIDS

Newtonian fluids exhibit constant viscosity under applied shear stress for a constant 
temperature. They have no elasticity (memory effect) Examples are: water, mineral oil, 
gasoline.

In non-Newtonian fluids the viscosity changes under applied shear stress They have 
elasticity (memory effect) Examples are: glue, silly putty, paint.



1.5. Friction factors due to viscosity

𝑃1 + 𝜌𝑔 ℎ1 +
1

2
𝜌𝑣1

2 = 𝑃2 + 𝜌𝑔 ℎ2 +
1

2
𝜌𝑣2

2 + 𝜟𝑷𝒇

In real pipe line there are energy losses due to friction and these must be taken into 
account as they can be pretty significant.

frictional pressure drop

58

𝐴1

𝐴2

ℎ1

ℎ2
𝑣1

𝑣2

𝑃1

𝑃2

𝜟𝑷𝒇 = 𝒇𝒇

𝟒𝑳

𝑫

𝝆𝒗𝒂𝒗𝒈
𝟐

𝟐
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1.5. Friction factors due to viscosity

𝑃1

𝜌𝑔 
+ ℎ1 +

𝑣1
2

2𝑔
+ 𝑯𝒑 =

𝑃2

𝜌𝑔 
+ ℎ2 +

𝑣2
2

2𝑔
+ 𝑯𝒇

Extension of the Bernoulli’s equation to include the energy gain 
from a pump and the energy loss from friction

𝐴1

𝐴2

ℎ1

ℎ2
𝑣1

𝑣2

𝑃1

𝑃2

PUMP

𝑃𝑝𝑢𝑚𝑝
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RECAP



IN REAL LIFE NOTHING IS SIMPLE

61
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1.6. Pressure drop in various closed-flow ”elements”

62

The total friction loss in a straight section 

of the tube:

Δ𝑝𝑓,𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 =
𝐹𝑓

𝜋𝑅2

From Bernoulli 

in a pipe (constant D)
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1.6. Pressure drop in various closed-flow ”elements”

Exercize:
Gasoline (petrol, 𝜇 = 3.4 × 10−3𝑃𝑎 𝑠, 𝜌 = 820 𝐾𝑔 𝑚−3)is transferred through the below piping 
system where ℎ2 − ℎ1 = 𝐿2and the diameter of the pipe is 0.15 m (the pipe is stainless steel). If the 
required volumetric flow rate is 0.45 m3 s-1, can you estimate the total pressure drop between points 
1 and 2?
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1.6. Pressure drop in various closed-flow ”elements”

(This exercize will be solved during the lecture)Solution:
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1.6. Pressure drop in various closed-flow ”elements”

Solution:



67

1.6. Pressure drop in various closed-flow ”elements”

(This exercize will be solved during the lecture)Solution:
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𝐹
𝑟𝑖

𝑐𝑡
𝑖𝑜

𝑛
 𝐹

𝑎
𝑐𝑡

𝑜
𝑟

 𝑓
𝐷

1.6. Pressure drop in various closed-flow ”elements”

(This exercize will be solved during the lecture)Solution:
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1.6. Pressure drop in various closed-flow ”elements”

Exercize

A ski resort needs to pump water at 10ºC through 300 meters of 5 cm diameter steel pipe 
from a pond at 2100 meters to a snow making machine at 2500 meters. The volumetric 
flow rate has to be 0.007 m3/s and pressure into the machine at 1.4 bar. Determine the 
power added by the pump. There is one ball valve controlling the inlet to the steel pipe and 
two 90º bends.

(This exercize will be solved during the lecture)Solution:
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1.6. Pressure drop in various closed-flow ”elements”

Solution:
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1.6. Pressure drop in various closed-flow ”elements”

Solution:
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1.6. Pressure drop in various closed-flow ”elements”

Solution:
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