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ChE 204
Introduction to Transport Phenomena

Module 1
The Bernoulli’s equation

Objectives of this module:

1) Understand the use and limitations of the Bernoulli’s equation
2) Apply the Bernoulli’s equation to solve a variety of fluid flow problems
3) Read and Apply the Moody diagram to solve fluid flow problems including friction

4) Apply the Bernoulli’s equation in the presence of closed-flow elements



1.1. Bernoulli’s equation

Daniel Bernoulli (1700-1782)

He was born in the city of Groningen in the Netherlands on February 8,
1700. His parents were Johann Bernoulli and Dorothea Falkner, both
mathematicians and from Basel. In 1705, when Daniel was aged 5, his family
relocated to Basel in Switzerland, his parents’ hometown, where his father
would became chair of mathematics at Basel University.

The Bernoulli Effect has many real-life applications and is often cited as the

reason aircraft wings provide lift.
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1.1. Bernoulli’s equation

The Bernoulli Equation is the application of energy conservation along a streamline.

QUESTION:
How many of you are familiar with the conservation of energy?




1.1. Bernoulli’s equation

CONSERVATION OF ENERGY

The law of conservation of energy states that the total energy of an isolated system is
conserved over time

In a closed system AE = cost

Boundary




1.1. Bernoulli’s equation

CONSERVATION OF ENERGY

What if a system starts to exchange energy with its surroundings?

Surroundings

Boundary

E

out

If the system start to interact with its surroundings and energy is transported across
the boundary, the following has to be true:

E.=E

out




1.1. Bernoulli’s equation

We consider a fluid flowing uphill in a pipe

Surroundings

Boundary

|E=E|

dv dp
ASSUMPTIONS: 1) Steadyflow (— =0and —=0)
dt dt

2) Incompressible fluid (p = density = const)

3) No friction

QUESTION: Which terms contribute to the energy of a fluid flowing uphill?



1.1. Bernoulli’s equation

We consider a fluid flowing uphill in a pipe

Surroundings

Boundary

|E=E|

E=W+ PE + KE

1) Wis the flow energy, the work done by the static pressure on the system
W=®-A) -l=P -V =P %
2) PE is the potential energy, the work done by gravity

PE=mgh

3) KE is the kinetic energy

KE—l 2
=S mv



1.1. Bernoulli’s equation

Surroundings

Boundary

|E=E|

|E=W+PE+KE=P -";1+mgh+%mv2

1) Wis the flow energy, the work done by the static pressure on the system
W=(@-A -d=P -V =P %
2) PE is the potential energy, the work done by gravity

PE=mgh

3) KE is the kinetic energy

KE—l 2
=S mv



1.1. Bernoulli’s equation

[£:= |

W, +PE; +KE; =W, +PE, + KE),
Py -%+mgh1 +%mv12= P, -%1+mgh2 +%mv§

divide by m both side of the equation:

P, 1., P, 1
F+gh1+ Ev1=?+gh2+ Evz

multiply by p both side of the equation:

1 1
‘ Py +pg hy + EP”12:P2+Pgh2+ Epvzz ‘

1
‘ P+pgh+§pv2 = cost

‘E = coSt ‘

10




1.1. Bernoulli’s equation (derivation from the Newton’s second law)

The Bernoulli Equation is the application of energy conservation along a streamline.

[Ei=£3)

‘Ei= constant‘

The particle
i moving along a streamline (along the same path)conserves its energy

11




1.1. Bernoulli’s equation (derivation from the Newton’s second law)

Let’s focus on a particle moving along the streamline with velocity v and we focus on

the infinitesimally small volume dV
h

A

dA

y dA is the cross sectional area
dl=v-dt

dV =dA-dl
m=p-dV =p-dAdl

v

v
=

We can apply the Newton’s second law: Z F=ma

12



1.1. Bernoulli’s equation (derivation from the Newton’s second law)

We identify the forces acting on the particle along the s — direction

h

(P + dP)dA

dl=v-dt
dV =dA-dl
m=p-dV =p-dAdl
dl
dh
. 6
dx

dv
PdA — (P + dP)dA — mg sinf = ma

13



1.1. Bernoulli’s equation (derivation from the Newton’s second law)

dv
PdA — (P + dP)dA — mg sinf = m—

. dh dl
Subsituting m = p dA dl,sinf = I dt = -

dh dv
—dPdA—pdAdl g EzpdAdlva

Cancelling dA and simplifying dl
—dP — pg dh = pv dv

Noting that v dv = id(vz) and diving each term by p

dP 1.,
7 + gdh + > d(v“) =0  for one particle jof the fluid

14



1.1. Bernoulli’s equation
QUESTION:

How do we go from conservation of energy along one streamline to conservation of
energy along a stream of fluid?

Ny

1

=

15



1.1. Bernoulli’s equation

ar + g dh +%d(v2) = (0 for one particle 7 of the fluid

We integrate!

dP 1
j7 + g dh +§d(v2) = const

AL L ¢
— — — ds = cons
gt T at
dv dP
ASSUMPTIONS: 1) Steadyflow(—=0and —=0)
dt dt

2) Incompressible fluid (o = const)

The 3 terms are exact integrals, thus:

P 1
—+gh + Evz = const (along a stream line)

16



1.1. Bernoulli’s equation RECAP

P 1

—+gh + Evz = const (along a stream line)

If we multiply by the mass of the fluid m:

m 1
P—+mgh +=mv? = const (along a stream line)

/ ’ .
Kinetic energy
Flow energy

Potential energy

E =W + PE + KE = const (along a stream line)

This is exactly the same expression we found by simply applying the conservation of
energy

17



1.2. The continuity equation

®

QUESTION: & Uy = Uy
b. v > v,

c. v <y

18



1.2. The continuity equation

CONSERVATION OF MASS

Surroundings

Boundary

out

If the system start to interact with its surroundings and mass is transported across the
boundary, the following has to be true:

min= mout

19



1.2. The continuity equation

@ @
\

———

The number of particles that enters the pipe has to exit

i
J
k

20



1.2. The continuity equation

® @

%)

*%Atvl’g 4% ALvz -

We make always the same assumptions of steady state and uncompressible fluid.
We consider consider a time interval At:

mqp =my
pVi = pV;
pAlAt U1= pAzAt vz

Av; = 4,v,

https://www.youtube.com/watch?v=UJ3-Zm1wblQ 21



https://www.youtube.com/watch?v=UJ3-Zm1wbIQ
https://www.youtube.com/watch?v=UJ3-Zm1wbIQ

1.3. Applications of the Bernoulli’s equation

VOLUMETRIC AND MASS FLOW RATE

. L 3
Volumetric flow rate Q = 222meo/Jiutd _ 4, [_] [m_]

time S

mass of fluid K
Mass flow rate m = .ff =pQ =pAv [Q] [_g]
time S min

22



1.3. Applications of the Bernoulli’s equation

TWO DIFFERENT WAYS TO EXPRESS PRESSURE

Absolute pressure is zero-referenced against a perfect vacuum.

Gauge pressure is zero-referenced against ambient air pressure, so it is
equal to absolute pressure minus atmospheric pressure.

Example: P, =2 atm

P =P~ Pym=2atm—-1atm=1atm

gauge

If we express the atmospheric pressure as gauge pressure, the value is
0 atm

23



1.3. Applications of the Bernoulli’s equation

EXAMPLE: Calculating pressure at a fire hose nozzle

£ QUESTION:

4 , Pressure in the nozzle of this fire hose is less than at
/ ground level for two reasons: the water has to go
/ : uphill to get to the nozzle and speed increases in
4 ; the nozzle. In spite of its lowered pressure how can

4 10m the water still exert a large force on anything it
7 strikes? Also, what is the pressure in the water
4 - stream at the exit of the hose?




1.3. Applications of the Bernoulli’s equation

EXAMPLE: Calculating pressure at a fire hose nozzle

@

£
F 4

10

U HH Y

QUESTION:

Pressure in the nozzle of this fire hose is less than at
ground level for two reasons: the water has to go
uphill to get to the nozzle and speed increases in
the nozzle. In spite of its lowered pressure how can
the water still exert a large force on anything it
strikes? Also, what is the pressure in the water
stream at the exit of the hose?

Exercize:

Fire hoses used in major structure fires have inside
diameters of 6.40 cm. Suppose such a hose carries a flow
of 40.0 L/s starting at a gauge pressure of 1.62 x 10® N/m?2.
The hose goes 10.0 m up a ladder to a nozzle having an
inside diameter of 3.00 cm. Assuming negligible resistance,
what is the pressure at the nozzle?

25



1.3. Applications of the Bernoulli’s equation

EXAMPLE: Calculating pressure at a fire hose nozzle

Solution: (This exercize will be solved during the lecture)

e et e ey s
Al conditions in:

40010 m¥s _
- 2(3.20x10-2 m)




EXAMPLE: Calculating pressure of a fire hose nozzle

QUESTION:

Pressure in the nozzle of this fire hose is less than at
ground level for two reasons: the water has to go
uphill to get to the nozzle and speed increases in
the nozzle. In spite of its lowered pressure how can
the water still exert a large force on anything it
strikes? Also, what is the pressure in the water

stream at the exit of the hose?

% 10m

Answer: In spite of its lowered pressure, the water
can exert a large force-en_anything it strikes, by

virtue of |ts(ﬁnet|c eWressure in the water

stream becomes equal to atmospheric pressure
once it emerges into theair.

ghadha s

JULJU\A
f 5 ’

\
LML L e i
HHBHHHHHHHHHHHHHHHHHHHHHHHEY

_L
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1.3. Applications of the Bernoulli’s equation

THE TORRICELLI'S THEOREM

T What is the output velocity of the fluid as a function of this height?

N~
1 1
P1+pgh1+ Epvlz=P2+pgh2+Epv22
A, | .
E If we express them as gauge pressure we can write
[ Uy Pgaugel:PgaugeZ=Patm—Patm=0
1 5 1 ,
pg() + 5 p()*=pg (=h) + = pv;
N

1

Py =P, =Py,

hy =0 v, =+ 2gh

v1A; = v,A, (continuity equation)
v, K v,




1.3. Applications of the Bernoulli’s equation

THE TORRICELLI'S THEOREM

Y QUESTION: which jet of water is the fastest?

v3>vz>v1

Uy = 4/ Zgh




1.3. Applications of the Bernoulli’s equation

THE TORRICELLI'S THEOREM

Exercize:
A large tank is filled with water to a depth of 15 meters. A spout is located 10m above the bottom of

the tank. (a) With what speed v, will water emerge from the spout? (b) What horizontal distance
from the base of the large tank does it land away?

Solution: (This exercize will be solved during the lecture)

Video on parabolic motion equations:

https://www.youtube.com/watch?v=X71H56Fdk6l|

30


https://www.youtube.com/watch?v=X71H56Fdk6I

1.3. Applications of the Bernoulli’s equation
THE TORRICELLI’'S TH EOREM

Exercize:

tAh,a rge tank is filled with water to a depth of 15 meters. A spout is located 10m above the bottom of

€ tank is, then opened as shown in the drawing. (a) With what speed v, will water emerge from the
spout? (b) What horizontal distance from the base of the large tank does it land away?

dgm (a) e e

= 737 [2 o E)Emsoms
th - .
ﬁz ~G (b) L t}

10m

y=10m i
I_ ____________ oK
.k K= aceusroy ¥ kY
ghuhivg Pk parabolic motion equations: 5 : NOO ! @%%d%lﬂe%gm/
0 0 / £l A\ &
, 1 o0 (G el x=97f+qf t+—/Jt2 z X
= t— —gte \"*") & 2 JdonpX 0x X
St e > T
1 /9.8m =(99—)(1.43s) =141m
10m=§(—52—)t2 ot M el % (995)( )

(t=1.435

o4



1.3. Applications of the Bernoulli’s equation

THE VENTURI EFFECT

Consider a fluid flowing through a pipe with a constriction. Make a prediction regarding
the pressure. Is the pressure higher at point 1 or at point 2?

\ /

o} L]

/ \

2

*3

Yy v Y v

1 2 1 2
P1+pg/41+ 5PV = B +P9//2+ 5 PV

1 2 1 2
Pl +Epv1 :P2 +§pv2

A=Ay vy = Ayvy; A=A > Aymmv, >V =V = | [ > P

32



1.4. Extension of Bernoulli’s Equation to include pumps

In the energy balance we need to include the mechanical energy (or power)
transmitted by the pump to the fluid

‘E1=E2‘

Wy + PE; + KEy + Wyyny = Wy + PE, + KE,

1 1
Pi+pghi+ Spvi+ Fump = P2+ pgha + 5 pvs

33



1.4. Extension of Bernoulli’s Equation to include pumps

Definition of POWER OF A PUMP and PUMP HEAD

Power = Qp gH, | [W]

Q = volumetric flow [m3/s]
H p = density of fluid [kg/m?3]
g = gravity (9.81 m/s?)

H,, =pump head (m)

|'\ l:

i
Ll

i [= O
4

ol || '

Ll Aot Lol Aot

The pump "pressure-head" is the vertical lift in height - usually measured meters of water -
at which a pump can no longer exert enough pressure to move water. At this point, the
pump may be said to have reached its "shut-off" head pressure.

34



1.4. Extension of Bernoulli’s Equation to include pumps

Definition of EFFICIENCY OF A PUMP

A pump will have losses, thus we define the efficiency as:

ower output H
P PU 00 =—2P e 100

g power input power input

Let’s say that a pump is 80% efficient. This means that we have to supply

H
%Xl()()

P J t =
ower inpu 30

35



1.4. Extension of Bernoulli’s Equation to include pumps

CONVERSION FROM PUMP HEAD TO PRESSURE

The below equations may be used to convert between head
and pressure when those measures are in the metric units

— f kPa and m. Gravity is measured in m/s? and density in kg/m3
H P

P Hp = ——= Foump = pgHp

, PY

L Foump
—TI B =

[ B— 1

//I//////// 77 Example: Hp=061m  Poymp=7

P

sump = 1000 kgm=3x9.81ms2 x 0.61m = 5.98 kPa

Note: During the course, Ppump will refer to the pump pressure. If we want to refer to
the power, we will write “Power”

36



1.4. Extension of Bernoulli’s Equation to include pumps

The relation between pressure head
and pressure allows us to write the
Bernoulli’s equation in head terms

1 1
Py +pg hy + Epvlz‘l'Ppump:PZ +pg hy + Epvg

divide everything by pg

1 vi B pump _ P2 v5
— 4 hl + + = 4 hz + — All the terms have length as dimension!

P9 29 pg  pg 29

— pump head H,,
velocity head
static head
pressure head

H1+Hp=H2

37



1.4. Head of a pump and Bernoulli’s equation in head terms

Exercize:

Determine the Power of the pump

Power = QpgH,
p(oil) = 0.82 g/cm3

Z } Pump

> d

1 K\HJ/] x\

O = 70 Litersfs

Flow

/

D,=120mm=012m = r,= 006m

D =180mm=018m = =009
Py = 35kNIm’ P,y = 120N /m’
z,=0 Z,=0
P v? P v2
— +M+ —+H,=—+h, + —=
P9 29 P9 29
R T -2 _ Q0TS _ (1936
V1= AT r0.09myz - 27208 m/s Y2 T T n(0.06m)? m/s
g o= PP vZ—v? _ (120-35)kN/m2 (6-19%)2—(2-75%)2 — 1213m
P pg 2g  0.82(9.81)kN/m3 2(9.8DkN/m3 "~

38



1.4. Head of a pump and Bernoulli’s equation in head terms

Exercize:
Determine the power of the pump

Power = QpgH, = (0.07 = )(o 82 x9.81-)(12.13m) = 6.83 ™~ = 6.83 kW

Let’s say in the exercize we just solved, the pump is 90% efficient and we require 6.83kW
output:

6.83 kW

Power input = = 7.59 kW

39



1.4. Extension of Bernoulli’s Equation to include pumps

Conservation of energy along a stream line

E =W + PE + KE = const (along a stream line)

1 1
Pi+pg hi + 5pvi + Pyump = P2 + pg hy + = pv3

2 2
P v2 P v2
— +hy+ —+H,=—+hy + —=
Pg 29 pPg 29
g, = Jpump

PY

RECAP

40



1.5. Friction factors due to viscosity

In real pipe line there are energy losses due to friction and these must be taken into account as
they can be pretty significant.

Py
hq

1 1
Pi+pgh+ 5pvi # Pa+pghy+ Spv;

— frictional pressure drop

P, + pg hy + %pvf =P, +pg h, + %pv22+APf

41



1.5. Friction factors due to viscosity

What is friction?

e AN

FORCE

Reaction Force Resisting to Motion

FRICTION FORCE (F)

What is viscosity?
The viscosity of a fluid is a measure to its resistance to flow (i.e. honey is more

viscous than water)

W = dynamic viscosity [Kg-m™-storPa-s]

Resistance to flow when an external force is applied.

. .. . 12
v = kinematic viscosity = p [m? - 1]

Intrinsic resistance to flow when no external force is applied, except gravity.

42



1.5. Friction factors due to viscosity

Micro

Macro

Friction between layers

Molecular

1,5~10% ks friction  steady
force pulling

...wﬁ‘.fs ..r»a» w—h..- ,-.__ AT

»
------
......................

(™ {
.......................

OH termlnated polar surface

43



1.5. Friction factors due to viscosity

LAMINAR FLOW

Friction between layers

The fluid flows in parallel layers,
with no disruption or mixing
between layers

Nice demonstration of laminar flow

TURBOLENT FLOW

— B > -

/—/_\’)) ~

W= 2

The fluid flows in a chaotic manner with
strong currents, irregular velocity and
intermixing between layers

44


https://www.youtube.com/watch?v=dJTTUROqHgs

1.5. Friction factors due to viscosity

density of the fluid [Kg/m?3]
ﬁ average velocity [m/s]
PVgpgD < tube diameter [m]

Re = Reynolds number = p

dynamic viscosity
[Kg-m?t-slorPa-s]

with v = kinematic viscosity = %

vang

Re = Reynolds number = .

It represents the ratio between the inertial and the friction forces

45



1.5. Friction factors due to viscosity

LAMINAR FLOW

TURBOLENT FLOW

Friction between layers

Re < 2000

Re > 4000

46



1.5. Friction factors due to viscosity

LAMINAR FLOW Parabolic velocity profile
r
— Ecoulement laminaire sl
A i
N
L ( \é 1 .
s —

Friction between layers

v(r) = Vmax (1 - (%)2>

To remember: the velocity at the wall is zero

Re < 2000

47



1.5. Friction factors due to viscosity
Definition of the friction factor f

We consider a fluid flowing in a straight pipe in the laminar flow regime. Ultimately
we need the friction force to insert the friction term in the Bernoulli’s equation.

Definition of a (Fanning) Friction factor ff Average kinetic
l energy density of fluid

[ g Ff = Awekinff
Force exerted by the t

fluid on the solid

surfaces

Wetted surface area for closed
flows or the projected area for
flow around submerged objects

Now the goal is to derive an expression for the Friction Factor f!

Note: Darcy Friction Factor (fp) = 4f¢ 18



1.5. Friction factors due to viscosity
Definition of the friction factor f
Py

——————=-T©

A
v

L
Ff = Awekinff
Fr = (2nRL)(53pvé04) 7
(P, — P))nR?* = (2nRL) (2pv2,,)f7 Fr = (AP - A) = (P, — P)mR?

written in terms of a viscous resistance
force to the flow of the fluid

f 21(2)(191—192) |
=g\l 1ov2,, We need vy, !

49



1.5. Friction factors due to viscosity
Definition of the friction factor f

The velocity profile for viscous fluid in laminar flow regime is a parabolic one:

V(1) = Vmax (1 - (%)2

R? (P—P;)
It can be shown that: V0 = ” 7
P,—P
Thus: v(r) = timhy) (R? —1?)
4ul
1 2T R 9 ( )
v R (P1—P,
Vz.avg = Wf fvz(r)'r drd® == v,4,, = ";“x = 5 L
0 0

Keep this in mind!



1.5. Friction factors due to viscosity
Definition of the friction factor f

f —a\7 v = —
4\L %p Vavg “avs 2 8u L
1/D\ (p1—Dp2 1
ﬁ=ﬂﬂ@ =
Epvavg vavg

£ = 1(D)(P1_P2)(8)( 4ul ) 16
d 4\L %pvavg D> P1— P2 pvang

1
Reynolds number

16

In laminar flow regime ff — R
e

64
Note: fD E—

Re

51



1.5. Friction factors due to viscosity
Definition of the friction factor f

TURBOLENT FLOW Re > 4000

r
Ecoulement turbulent 2 profil de vitesse

4 R ur) 1

_ r\m
R rA > V(1) = Vmax (1 - E)

— —;/) with 5 <n < 7 and n(v)

Colebrook Equation

1, e . 251
—_— T — 0
T 911370 " Reyf;

Where € is the tube roughness and D is the diameter of the tube.

52



1.5. Friction factors due to viscosity

€ = tube roughness

Surface 103 (m) (feet)
Copper, Lead, Brass, Aluminum (new) 0.001 - 0.002 3.3-6.710°
PVC and Plastic Pipes 0.0015 - 0.007 0.5-2.3310°
Epoxy, Vinyl Ester and Isophthalic pipe 0.005 1.7 10°
Stainless steel 0.015 510
Steel commercial pipe 0.045 - 0.09 1.5-310%
Stretched steel 0.015 510
Weld steel 0.045 1.510
Galvanized steel 0.15 5104
Rusted steel (corrosion) 0.15- 4 5-133 10
New cast iron 0.25-0.8 8-27 107
Worn cast iron 0.8-1.5 2.7-5103

Rusty cast iron 15-25 5-8.3103
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Friction factor ff

1.5. Friction factors due to viscosity

The Moody diagram: for flow of a Newtonian fluid in a straight circular pipe

/3 ssauybnoy adid aAle|oy

1.0 r
!
0.5
0.2
\ Colebrook equation
0.1 Y -
- N 1 11 £ N 251 \ T
0.05 N = =~ *10810 = | T
—f=&\\/¢°’# ff 3.7D  Re ff T
——°  Re
\ & = tube roughness [m]
0.02 I I I
\ Turbulent
0.01 { — -
T - — £/D = 0.004
:?{\ - e 0079 = 0?01
0.005 A f= 2079 Eo == 3.00]
Sy Re/s F4=t = 0.0004
% q "5 0.0001
0% \ Ydrayljc, il
0.002 e:,é/ Y Y Smogp -
ik L 1T
0.001 Ll
102 10° 104 10° 108
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1.5. Friction factors due to viscosity

The Moody diagram: for flow of a Newtonian fluid in a straight circular pipe
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1.5. Friction factors due to viscosity

The Moody diagram: for flow of a Newtonian fluid in a straight circular pipe

How to use the Moody diagram
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https://www.youtube.com/watch?v=PgAXycpuZqM

1.5. Friction factors due to viscosity

NEWTONIAN vs NON-NEWTONIAN FLUIDS

Newtonian fluids exhibit constant viscosity under applied shear stress for a constant
temperature. They have no elasticity (memory effect) Examples are: water, mineral oil,
gasoline.

In non-Newtonian fluids the viscosity changes under applied shear stress They have
elasticity (memory effect) Examples are: glue, silly putty, paint.
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1.5. Friction factors due to viscosity

In real pipe line there are energy losses due to friction and these must be taken into
account as they can be pretty significant.

—— frictional pressure drop

1 1
Py+pghi+ Spvi =Py +pghy+ Spvi+ APy

4L pVoy,
AFr=1rp 2

58



1.5. Friction factors due to viscosity

P B = P Yy
pg ' 29 P pg 2 29

Extension of the Bernoulli’s equation to include the energy gain
from a pump and the energy loss from friction
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1.6. Pressure drop in various closed-flow "elements”

Each of these “minor losses” can be calculated by:

Pressure drop over an Average kinetic

j’ Apf,element = KL%pvc%vg —

element (e.g. 90° elbow, energy density of fluid
gate valve, Y-connector) 4
due to friction Empirical “loss” coefficient

. _ _ _ (dimensionless)
The total friction loss in a straight section

of the tube:

Fy 4Lfy Ki3
APy straight = TRZ T%Pvc%vg

The total friction loss in a pipe (constant D) P

4ff
Apf,total = %pvc%vg (Tz Li + Z KL]')
L J

The total pressure difference (between to points):

» - K, P1—P2= AP¢ totar + Pg(hy —hy)  From Bernoulli
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Type of Component or Fitting

Tee, Flanged, Dividing Line Flow
Tee, Threaded, Dividing Line Flow
Tee, Flanged, Dividing Branched Flow
Tee, Threaded , Dividing Branch Flow
Union, Threaded

Elbow, Flanged Regular 90°
Elbow, Threaded Regular 90°
Elbow, Threaded Regular 45°

Elbow, Flanged Long Radius 90°
Elbow, Threaded Long Radius 90°
Elbow, Flanged Long Radius 45°

Return Bend, Flanged 180°

Return Bend, Threaded 180°
Globe Valve, Fully Open
Angle Valve, Fully Open
Gate Valve, Fully Open
Gate Valve, 1/4 Closed
Gate Valve, 1/2 Closed
Gate Valve, 3/4 Closed

Swing Check Valve, Forward Flow
Ball VValve, Fully Open
Ball VValve, 1/3 Closed
Ball Valve, 2/3 Closed
Diaphragm Valve, Open
Diaphragm Valve, Half Open
Diaphragm Valve, 1/4 Open
Water meter

Ky
0.2
0.9
1.0
2.0
0.08
0.3

1.5
0.4
0.2
0.7
0.2
0.2

1.5

10
2
0.15
0.26
2.1
17

0.05
5.5
200
2.3
4.3
21

Minor Loss
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1.6. Pressure drop in various closed-flow "elements”

Exercize:
Gasoline (petrol, u =3.4 X 1073Pas,p = 820 Kg m~3)is transferred through the below piping
system where h, — h; = L,and the diameter of the pipe is 0.15 m (the pipe is stainless steel). If the

required volumetric flow rate is 0.45 m3 s1, can you estimate the total pressure drop between points
1and 2?

Globe valve. open ball valve,
open
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1.6. Pressure drop in various closed-flow "elements”

Solution: (This exercize will be solved during the lecture)

ke fouphu)

2.1. Pressure drop in various closed-flow "elements”
Gasoli e
Ine (petrol, i = 3.4x103 Pass, p = 820 kg m=3) is transferred through the below piping

steel) . If the required volumetric flow rate is®=0.45 m3 s can you estimate the total
pressure drop between points 1 and 2?

4f, :
P1 = P2 = 3PVéng (sz bk ZKL}' +pg(hy—hy) — Pr+ P&'M = 7
1 J (4 =4 + = MLJ)
Step 1: find Vayg and the Re
2
@=v,yn(3)" > 045m*s1 = vavg”(o_'zlé)z = Vayg = 2546 m s e [\r% ws

_ PYavgD 820 kgm—32546ms~10.15m _ o
e 34x10-7Pas  _ 21x10

Step 2: estimate f ¢ , >
e on in Torbe bt flow KLZ JUR— | | —

-~
~ 0.0038 / s
=3 - 3 ball valve,
e T - = g
.6
%;{O>0.0001L2=5m 1 i
L) = 10in8

h
I—-i-'----_-._....-.m.‘,lb

i

System where h, — h; = L, and the diameter of the pipe is 0.15 m (the pipe is stainless £ = 0,015 (0, -‘:

We aonG o toted pressoe doop 2
S 091\1 +4Pz&3
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1.6. Pressure drop in various closed-flow’

Solution:

—

=

‘’elements”
s
) | glew
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Friction factor ff

1.6. Pressure drop in various closed-flow “elements”

Solution: (This exercize will be solved during the lecture)
1.0
0.5
0.2
\ Colebrook equation
0.1 1
AN <_, 4] 13 2.51 1
0.05 Y = 410810 + T
N 7 570 " kelf;)
— Re
€ = tube roughness [m]
0.02 \ —
\ Turbulent
0.01 4 Ll
= £/D =0.004
“\:F ! = "e — 1 —_—
0.005 N /= 2079 E== 0.001
ly — —
& N Rpl/d xd\ i 0.0004
Z) i "H — T 0.0001
g M Yaraulicaly
0.002 ‘ eg% N Y Smoog '
0.001 LS | ||
102 10° 104 10° 108
PVYaygD

Re = Reynolds number =
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1.6. Pressure drop in various closed-flow “elements”

Solution: (This exercize will be solved during the lecture)

0.2
Transitionalior Critjcal Region
0.1
0.09 /
0.08
Q  0.07 N“‘*\\:‘_::' 0.05
S~ .05 R AR 0.04
5 v Y %h N 0.03
S 005 N
8 . R . 0.02
\ N T T 0.015
E 0.04 , \__ T 0.01
S 64/Re L SN N '
S o003 ) 0.005
+©
8 0.002
~ Lamingr Flow Turbulent Flow '
L3 0.02 0.001
0.0005
0.0002
0.0001
L 5
0.01 RATE—— 5% 10 5
. ——— 2x 10
Copytight wivw.hativedynanmics icom.au E%:—__;- 1 : 105
Hq::‘-“-“ 5x10°°
S~ T2 x 107
—
- =il Smooth
10° 10* 10° 10° 10 108

Reynolds Number %D

Relative Roughness (/D)



1.6. Pressure drop in various closed-flow “elements”

Exercize

A ski resort needs to pump water at 102C through 300 meters of 5 cm diameter steel pipe
from a pond at 2100 meters to a snow making machine at 2500 meters. The volumetric
flow rate has to be 0.007 m3/s and pressure into the machine at 1.4 bar. Determine the
power added by the pump. There is one ball valve controlling the inlet to the steel pipe and

two 902 bends.

Solution: (This exercize will be solved during the lecture)



1.6. Pressure drop in various closed-flow "elements”

Solution:
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1.6. Pressure drop in various closed-flow’

Solution:

‘’elements”
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1.6. Pressure drop in various closed-flow "elements”

Solution:
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