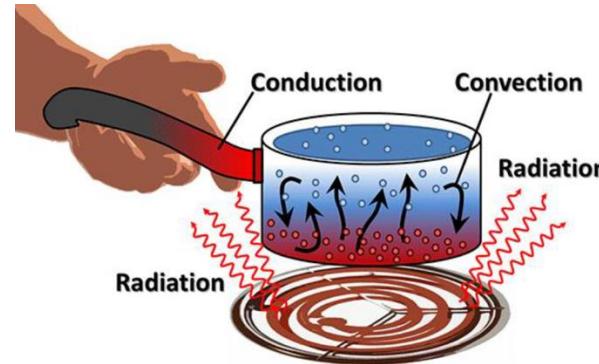


# ChE 204

# Introduction to Transport Phenomena

## Module 0

## Introduction


- 1.1. What are transport phenomena?
- 1.2. Why do we study them?
- 1.3. Overview of the course
- 1.4. Calendar for 2025

# 1.1. What are transport phenomena?

Fluid Mechanics

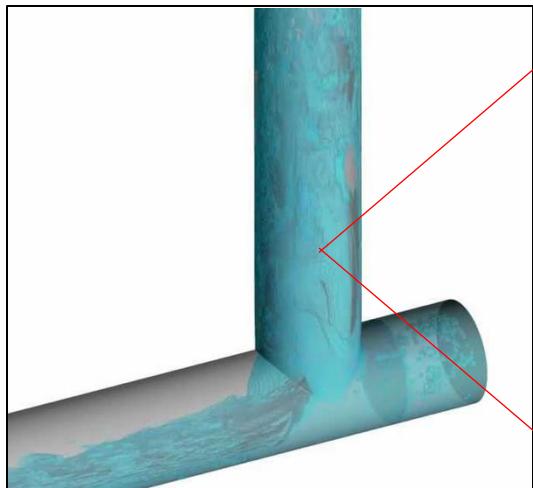


Heat Transport

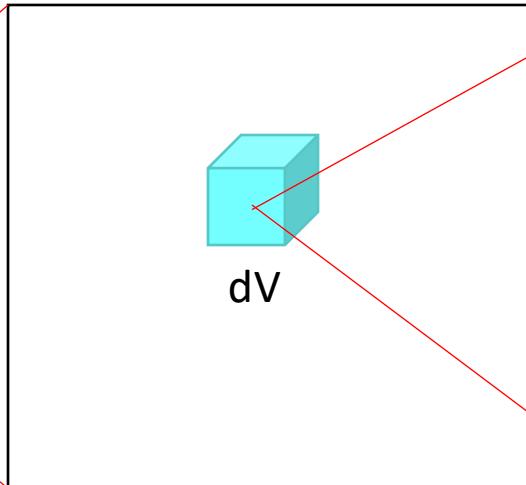


Mass Transport

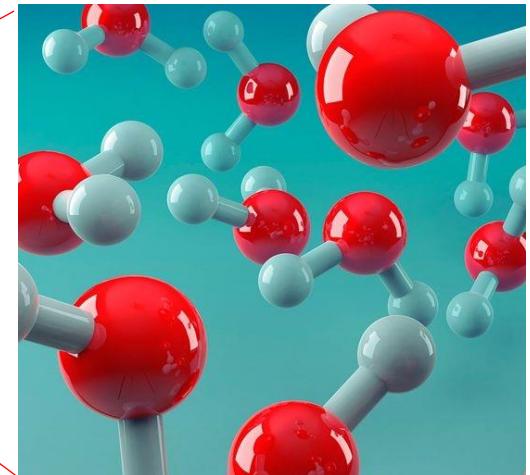



Momentum Transport




## 1.1. What are transport phenomena?

Transport phenomena are studied at different length scales


Macroscopic view

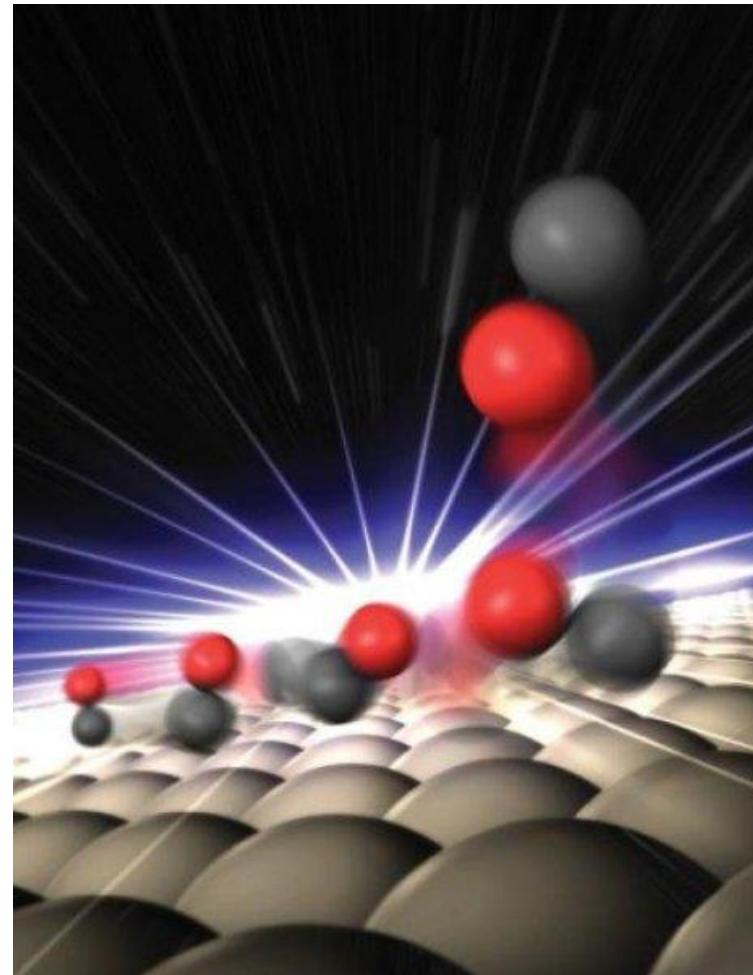


Microscopic view



Molecular view




## 1.2. Why do we study them?

Transport phenomena are important for chemists and chemical engineers

**Chemical Industry**



**Chemical synthesis** (i.e. nanoparticles, precipitation reactions, catalysis)



## 1.3. Overview of the course

→ Fluid Mechanics (Macroscopic view)

Module 1: Bernoulli's Equation

Module 2: Advective transport of mass and momentum

→ Microscopic view

Module 3: Transport of Heat (Fourier's Law)

Module 4: Transport of Mass (Fick's Law)

Module 5: Transport of Momentum (Newton's Law)

→ Molecular view

Only a few slides during the course

## 1.3. Overview of the course

### Supporting material

All the lectures, exercises and solution to the exercises will be uploaded in the Moodle page: <https://moodle.epfl.ch/enrol/index.php?id=15322>

Media Space <https://mediaspace.epfl.ch/channel/ChE-204+Introduction+to+transport+phenomena/29694>

### Books

Çengel, Cimbala “Fluid Mechanics”

Wilkes “Fluid Mechanics for Chemical Engineers”

Bird, Stewart, Lightfoot, Klingenberg “Introductory Transport Phenomena”

Incropera/DeWitt/Bergan/Lavine “Fundamentals of Heat and Mass Transport”

## 1.4. Calendar for 2025

| <b>Date</b> | <b>Lectures</b><br>(8:15-10:00 Wed, MED 0 1418)                | <b>Exercises</b><br>(17:15-18:00 Thurs, CE 1 101) |
|-------------|----------------------------------------------------------------|---------------------------------------------------|
| 19/02/2025  | 1.1 to 1.5 (Bernoulli)                                         | 1.2 and 1.4                                       |
| 26/02/2025  | 1.6 and Module 2                                               | 1.7 and 2.2                                       |
| 05/03/2025  | Fourier's Law (3.1-3.2)                                        | 2.3 and 3.1                                       |
| 12/03/2025  | Newton's Law (3.3-3.4)                                         | 3.2 and 3.3                                       |
| 19/03/2025  | Heat Exchangers (3.5, 3.6, 3.7)                                | 3.5                                               |
| 26/03/2025  | Simulation Mid-Term Exam                                       | questions                                         |
| 02/04/2025  | Mid-Term Exam (8:00-10:00, room tbd)                           |                                                   |
| 09/04/2025  | Fick's Law (4.1 to 4.3)                                        | 4.1 and 4.2                                       |
| 16/04/2025  | Transport in binary systems and across interfaces (4.4 to 4.6) | 4.4, 4.5 and 4.6                                  |
| 23/04/2025  | Spring break                                                   |                                                   |
| 30/04/2025  | Newton's Law of Viscosity (5.0-5.2)                            | 5.1-5.3                                           |
| 07/05/2025  | Analogies between transports (5.3, 5.4)                        | Recap 4-5                                         |
| 14/05/2025  | Exam preparation (no lecture or exercise hour)                 |                                                   |
| 21/05/2025  | Simulation final exam                                          | questions                                         |
| 28/05/2024  | Final Exam (07:00-10:00 or 08:00-11:00 if possible, room tbd)  |                                                   |