MASS, BERNOULLI, AND
ENERGY EQUATIONS

his chapter deals with three equations commonly used in fluid mechan-

ics: the mass, Bernoulli, and energy equations. The mass equation is an

expression of the conservation of mass principle. The Bernoulli equa-
tion is concerned with the conservation of kinetic, potential, and flow ener-
gies of a fluid stream and their conversion to each other in regions of flow
where net viscous forces are negligible and where other restrictive conditions
apply. The energy equation is a statement of the conservation of energy prin-
ciple. In fluid mechanics, it is found convenient to separate mechanical
energy from thermal energy and to consider the conversion of mechanical
energy to thermal energy as a result of frictional effects as mechanical energy
loss. Then the energy equation becomes the mechanical energy balance.

We start this chapter with an overview of conservation principles and the
conservation of mass relation. This is followed by a discussion of various
forms of mechanical energy and the efficiency of mechanical work devices
such as pumps and turbines. Then we derive the Bernoulli equation by
applying Newton’s second law to a fluid element along a streamline and
demonstrate its use in a variety of applications. We continue with the devel-
opment of the energy equation in a form suitable for use in fluid mechanics
and introduce the concept of head loss. Finally, we apply the energy equa-
tion to various engineering systems.

Wind turbine “farms” are being constructed all
over the world to extract kinetic energy from
the wind and convert it to electrical energy.
The mass, energy, momentum, and angular
momentum balances are utilized in the design
of a wind turbine.

CHAPTER

OBJECTIVES

When you finish reading this chapter, you
should be able to

[ | Apply the conservation of
mass equation to balance the
incoming and outgoing flow
rates in a flow system

Recognize various forms of
mechanical energy, and work
with energy conversion
efficiencies

Understand the use and
limitations of the Bernoulli
equation, and apply it to solve a
variety of fluid flow problems

Work with the energy equation
expressed in terms of heads, and
use it to determine turbine
power output and pumping
power requirements
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FIGURE 5-1

Many fluid flow devices such as this
Pelton wheel hydraulic turbine are
analyzed by applying the conservation
of mass and energy principles, along
with the linear momentum equation.

Courtesy of Hydro Tasmania, www.hydro.com.au.
Used by permission.

5-1 = INTRODUCTION

You are already familiar with numerous conservation laws such as the laws
of conservation of mass, conservation of energy, and conservation of
momentum. Historically, the conservation laws are first applied to a fixed
quantity of matter called a closed system or just a system, and then extended
to regions in space called control volumes. The conservation relations are
also called balance equations since any conserved quantity must balance
during a process. We now give a brief description of the conservation of
mass and energy relations, and the linear momentum equation (Fig. 5-1).

Conservation of Mass

The conservation of mass relation for a closed system undergoing a change
is expressed as m,, = constant or dmg,Jdt = 0, which is the statement that
the mass of the system remains constant during a process. For a control vol-
ume (CV), mass balance is expressed in rate form as

. . . dmcy
Conservation of mass: My — Moy =
dt

where m1,, and m, are the total rates of mass flow into and out of the con-
trol volume, respectively, and dm/dt is the rate of change of mass within
the control volume boundaries. In fluid mechanics, the conservation of mass
relation written for a differential control volume is usually called the conti-
nuity equation. Conservation of mass is discussed in Section 5-2.

(5-1)

The Linear Momentum Equation

The product of the mass and the velocity of a body is called the linear momen-
fum or just the momentum of the body, and the momentum of a rigid body of
mass m moving with a velocity Vis mV. Newton’s second law states that the
acceleration of a body is proportional to the net force acting on it and is
inversely proportional to its mass, and that the rate of change of the momen-
tum of a body is equal to the net force acting on the body. Therefore, the
momentum of a system remains constant only when the net force acting on it
is zero, and thus the momentum of such systems is conserved. This is known
as the conservation of momentum principle. In fluid mechanics, Newton’s sec-
ond law is usually referred to as the linear momentum equation, which is dis-
cussed in Chap. 6 together with the angular momentum equation.

Conservation of Energy

Energy can be transferred to or from a closed system by heat or work, and
the conservation of energy principle requires that the net energy transfer to or
from a system during a process be equal to the change in the energy content
of the system. Control volumes involve energy transfer via mass flow also,
and the conservation of energy principle, also called the energy balance, is
expressed as

. . dEcy
Conservation of energy: E,—E,= dr

(5-2)
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where Ein and Eom are the total rates of energy transfer into and out of the
control volume, respectively, and dE/dt is the rate of change of energy
within the control volume boundaries. In fluid mechanics, we usually limit
our consideration to mechanical forms of energy only. Conservation of
energy is discussed in Section 5-6.

5-2 = CONSERVATION OF MASS

The conservation of mass principle is one of the most fundamental princi-
ples in nature. We are all familiar with this principle, and it is not difficult to
understand. A person does not have to be a scientist to figure out how much
vinegar-and-oil dressing will be obtained by mixing 100 g of oil with 25 g
of vinegar. Even chemical equations are balanced on the basis of the conser-
vation of mass principle. When 16 kg of oxygen reacts with 2 kg of hydro-
gen, 18 kg of water is formed (Fig. 5-2). In an electrolysis process, the
water separates back to 2 kg of hydrogen and 16 kg of oxygen.
Technically, mass is not exactly conserved. It turns out that mass m and

energy E can be converted to each other according to the well-known for-
mula proposed by Albert Einstein (1879-1955): 2kg |, | toke ) | 18ke
H, 0, H,0
E = mc? (5-3)
where c is the speed of light in a vacuum, which is ¢ = 2.9979 X 108 m/s. FIGURE 5-2
This equation suggests that the mass of a system changes when its energy Mass is conserved even during
changes. However, for most energy interactions encountered in practice, chemical reactions.

with the exception of nuclear reactions, the change in mass is extremely
small and cannot be detected by even the most sensitive devices. Thus, in
most engineering analyses, we consider both mass and energy as conserved
properties.

For closed systems, the conservation of mass principle is implicitly used by
requiring that the mass of the system remain constant during a process. For
control volumes, however, mass can cross the boundaries, and so we must
keep track of the amount of mass entering and leaving the control volume.

Mass and Volume Flow Rates
The amount of mass flowing through a cross section per unit time is called
the mass flow rate and is denoted by m2. The dot over a symbol is used to
indicate time rate of change.

A fluid flows into or out of a control volume, usually through pipes or
ducts. The differential mass flow rate of fluid flowing across a small area
element dA, in a cross section of the pipe is proportional to dA, itself, the

fluid density p, and the component of the flow velocity normal to dA_, \
which we denote as V,, and is expressed as (Fig. 5-3) ‘\‘
. Control surface \
om = pV,dA, (5-4) \
Note that both 6 and d are used to indicate differential quantities, but & is FIGURE 5-3
typically used for quantities (such as heat, work, and mass transfer) that are The normal velocity V, for a surface
path functions and have inexact differentials, while d is used for quantities is the component of velocity

(such as properties) that are point functions and have exact differentials. For perpendicular to the surface.
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Vavg :
_____ : ™ o
l >/
FIGURE 54

The average velocity V,,, is defined
as the average speed through a cross

section.

Cross section

FIGURE 5-5

The volume flow rate is the volume of
fluid flowing through a cross section
per unit time.

flow through an annulus of inner radius r, and outer radius r,, for example,
2 2

f dA.=A, — A, = 73— r}) but j Om = Ny, (total mass flow rate
1 1

through the annulus), not m, — m,. For specified values of r, and r,, the
value of the integral of dA,. is fixed (thus the names point function and exact
differential), but this is not the case for the integral of 6m (thus the names
path function and inexact differential).

The mass flow rate through the entire cross-sectional area of a pipe or
duct is obtained by integration:

= j S = J pV,dA,  (kgls) (5-5)
A

A

-

While Eq. 5-5 is always valid (in fact it is exact), it is not always practi-
cal for engineering analyses because of the integral. We would like instead
to express mass flow rate in terms of average values over a cross section of
the pipe. In a general compressible flow, both p and V,, vary across the pipe.
In many practical applications, however, the density is essentially uniform
over the pipe cross section, and we can take p outside the integral of Eq.
5-5. Velocity, however, is never uniform over a cross section of a pipe
because of the no-slip condition at the walls. Rather, the velocity varies
from zero at the walls to some maximum value at or near the centerline of
the pipe. We define the average velocity V,, as the average value of V,
across the entire cross section of the pipe (Fig. 5-4),

. 1
Average velocity: Vave = T J V,dA, (5-6)

c A‘

where A, is the area of the cross section normal to the flow direction. Note
that if the speed were V,,, all through the cross section, the mass flow rate
would be identical to that obtained by integrating the actual velocity profile.
Thus for incompressible flow or even for compressible flow where p is uni-
form across A, Eq. 5-5 becomes

= pVyeA.  (kgls) (5-7)

For compressible flow, we can think of p as the bulk average density over the
cross section, and then Eq. 57 can still be used as a reasonable approximation.
For simplicity, we drop the subscript on the average velocity. Unless other-
wise stated, V denotes the average velocity in the flow direction. Also, A,
denotes the cross-sectional area normal to the flow direction.

The volume of the fluid flowing through a cross section per unit time is
called the volume flow rate V/ (Fig. 5-5) and is given by
(m?/s) (5-8)

V= J V,dA, = VoA, = VA,
A

An early form of Eq. 5-8 was published in 1628 by the Italian monk Bene-
detto Castelli (circa 1577-1644). Note that many fluid mechanics textbooks

use Q instead of V for volume flow rate. We use V to avoid confusion with
heat transfer.



The mass and volume flow rates are related by
LV
h=pV=— 5-9
m=p y (5-9)
where v is the specific volume. This relation is analogous to m = pV =
V/v, which is the relation between the mass and the volume of a fluid in a
container.

Conservation of Mass Principle

The conservation of mass principle for a control volume can be expressed
as: The net mass transfer to or from a control volume during a time interval
At is equal to the net change (increase or decrease) of the total mass within
the control volume during At. That is,

(Total mass entering> _ (Total mass leaving> . < Net change of mass >
the CV during At the CV during At within the CV during At

or
My — Moy = Amcy (kg) (5-10)

where Amey = Mg, — Mg 1S the change in the mass of the control vol-
ume during the process (Fig. 5-6). It can also be expressed in rate form as

min - mout = dmCV/dt (kg/b) (5—1 1)

where m,, and m, are the total rates of mass flow into and out of the con-
trol volume, and dmcy/dt is the rate of change of mass within the control
volume boundaries. Equations 5-10 and 5-11 are often referred to as the
mass balance and are applicable to any control volume undergoing any
kind of process.

Consider a control volume of arbitrary shape, as shown in Fig. 5-7. The
mass of a differential volume dV/ within the control volume is dm = p dV.
The total mass within the control volume at any instant in time ¢ is deter-
mined by integration to be

Total mass within the CV: Mmey = J pdVv (5-12)
cv

Then the time rate of change of the amount of mass within the control vol-
ume can be expressed as

d d
Tov _ 2 J pdV (5-13)
Ccv

Rate of change of mass within the CV: =
dt dt
For the special case of no mass crossing the control surface (i.e., the control
volume is a closed system), the conservation of mass principle reduces to
dmgyldt = 0. This relation is valid whether the control volume is fixed,
moving, or deforming.
The general conservation of mass relation for a control volume is derived
using the Reynolds transport theorem (RTT) by taking the property B to be
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FIGURE 5-6
Conservation of mass principle
for an ordinary bathtub.
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FIGURE 5-7

The differential control volume dV
and the differential control surface
dA used in the derivation of the
conservation of mass relation.
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The conservation of mass equation
is obtained by replacing B in the
Reynolds transport theorem by
mass m, and b by 1 (m per unit
mass = m/m = 1).
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(a) Control surface at an angle to flow
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(b) Control surface normal to flow

FIGURE 5-9

A control surface should always be
selected normal to flow at all locations
where it crosses the fluid flow to avoid
complications, even though the result
is the same.

the mass m (Chap. 4). Then we have b = 1 since dividing mass by mass to
get the property per unit mass gives unity. Also, the mass of a (closed) sys-
tem is constant, and thus its time derivative is zero. That is, dm, /dt = 0.
Then the Reynolds transport equation reduces immediately to
General conservation of mass: d j pdV+ J p(‘7' n)ydA =0 (5-14)
dt Jey cs

It states that the time rate of change of mass within the control volume plus
the net mass flow rate through the control surface is equal to zero.

The algebra is shown in Fig. 5-8, and thus illustrates that the Reynolds
transport theorem is a very powerful tool indeed.

Splitting the surface integral in Eq. 5-14 into two parts—one for the out-
going flow streams (positive) and one for the incoming streams (negative)—
the general conservation of mass relation can also be expressed as

d
—J pdV+ EJandA— EJandA=O
dt cv A i Jyq

(5-15)
out in

where A represents the area for an inlet or outlet, and the summation signs

are used to emphasize that all the inlets and outlets are to be considered.

Using the definition of mass flow rate, Eq. 5—15 can also be expressed as

%J pdV= Em*Em or —Em*Em
out in

out

There is considerable flexibility in the selection of a control volume when
solving a problem. Many control volume choices are available, but some are
more convenient to work with. A control volume should not introduce any
unnecessary complications. A wise choice of a control volume can make the
solution of a seemingly complicated problem rather easy. A simple rule in
selecting a control volume is to make the control surface normal to flow at
all locations where it crosses fluid flow, whenever possible. This way the
dot product Vi simply becomes the magnitude of the velocity, and the

p(V
A

dmw

(5-16)

integral n) dA becomes simply pVA (Fig. 5-9).

Moving or Deforming Control Volumes

Equations 5-14 and 5-15 are also valid for moving or deforming control
volumes Prov1ded that the absolute velocity Vis replaced by the relative
velocity V., which is the fluid velocity relative to the control surface (Chap.
4). In the case of a nondeforming control volume, relative velocity is the
fluid velocity observed by a person moving with the control volume and is
expressed as V =V- Vcs’ where Vis the fluid velocity and VCS is the
velocity of the control surface, both relative to a fixed point outside. Again
note that this is a vector subtraction.

Some practical problems (such as the injection of medication through the
needle of a syringe by the forced motion of the plunger) involve deforming
control volumes. The conservation of mass relations developed can still be
used for such deforming control volumes provided that the velocity of the
fluid crossing a deforming part of the control surface is expressed relative to
the control surface (that is, the fluid velocity should be expressed relative to



a reference frame attached to the deforming part of the control surface). The
relative velocity in this case at any point on the control surface is expressed
as V.=V — Vg, where V4 is the local velocity of the control surface at that
point relative to a fixed point outside the control volume.

Mass Balance for Steady-Flow Processes
During a steady-flow process, the total amount of mass contained within a
control volume does not change with time (m., = constant). Then the con-
servation of mass principle requires that the total amount of mass entering a
control volume equal the total amount of mass leaving it. For a garden hose
nozzle in steady operation, for example, the amount of water entering the
nozzle per unit time is equal to the amount of water leaving it per unit time.
When dealing with steady-flow processes, we are not interested in the
amount of mass that flows in or out of a device over time; instead, we are
interested in the amount of mass flowing per unit time, that is, the mass flow
rate m. The conservation of mass principle for a general steady-flow system
with multiple inlets and outlets is expressed in rate form as (Fig. 5-10)

Em= Erh

in out

Steady flow: (kg/s) (5-17)
It states that the total rate of mass entering a control volume is equal to the
total rate of mass leaving it.

Many engineering devices such as nozzles, diffusers, turbines, compres-
sors, and pumps involve a single stream (only one inlet and one outlet). For
these cases, we denote the inlet state by the subscript 1 and the outlet state
by the subscript 2, and drop the summation signs. Then Eq. 5-17 reduces,

for single-stream steady-flow systems, to

Steady flow (single stream): m=m, — p VA =p,V,A, (5-18)

Special Case: Incompressible Flow

The conservation of mass relations can be simplified even further when the
fluid is incompressible, which is usually the case for liquids. Canceling the
density from both sides of the general steady-flow relation gives

Steady, incompressible flow: E V= E v (m¥/s) (5-19)
in out

For single-stream steady-flow systems it becomes

Steady, incompressible flow (single stream): V] = V2 —-> VA = VA, (5-20)

It should always be kept in mind that there is no such thing as a “conserva-
tion of volume” principle. Therefore, the volume flow rates into and out of a
steady-flow device may be different. The volume flow rate at the outlet of
an air compressor is much less than that at the inlet even though the mass
flow rate of air through the compressor is constant (Fig. 5-11). This is due
to the higher density of air at the compressor exit. For steady flow of liquids,
however, the volume flow rates, as well as the mass flow rates, remain nearly
constant since liquids are essentially incompressible (constant-density) sub-
stances. Water flow through the nozzle of a garden hose is an example of
the latter case.
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Conservation of mass principle
for a two-inlet—one-outlet
steady-flow system.

m, =2 kg/ls
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FIGURE 5-11

During a steady-flow process,
volume flow rates are not necessarily
conserved although mass flow

rates are.
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FIGURE 5-12
Schematic for Example 5-1.
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Schematic for Example 5-2.

The conservation of mass principle requires every bit of mass to be ac-
counted for during a process. If you can balance your checkbook (by keep-
ing track of deposits and withdrawals, or by simply observing the “conser-
vation of money” principle), you should have no difficulty applying the
conservation of mass principle to engineering systems.

EXAMPLE 5-1 Water Flow through a Garden Hose Nozzle

A garden hose attached with a nozzle is used to fill a 10-gal bucket. The
inner diameter of the hose is 2 cm, and it reduces to 0.8 cm at the nozzle
exit (Fig. 5-12). If it takes 50 s to fill the bucket with water, determine
(a) the volume and mass flow rates of water through the hose, and (b) the
average velocity of water at the nozzle exit.

mass flow rates of water and the exit velocity are to be determined.
Assumptions 1 Water is an incompressible substance. 2 Flow through the
hose is steady. 3 There is no waste of water by splashing.

Properties We take the density of water to be 1000 kg/m3 = 1 kg/L.
Analysis (a) Noting that 10 gal of water are discharged in 50 s, the volume
and mass flow rates of water are

T A1 50s
m = pV = (1 kg/L)(0.757 Lis) = 0.757 kg/s

V 10 gal (37854 L
- (7) = 0.757 L/s
1 gal

(b) The cross-sectional area of the nozzle exit is
A, = 72 = 7(0.4 cm)® = 0.5027 cm? = 0.5027 X 10~ * m?

The volume flow rate through the hose and the nozzle is constant. Then the
average velocity of water at the nozzle exit becomes

y oYV __ 0757Lis ( 1m’
A, 05027 X 10~*m? \1000 L

Discussion It can be shown that the average velocity in the hose is 2.4 m/s.
Therefore, the nozzle increases the water velocity by over six times.

[ |
[ |
|
|
|
[ |
[ |
[ |
[ |

SOLUTION A garden hose is used to fill a water bucket. The volume and

) = 15.1 m/s |

EXAMPLE 5-2 Discharge of Water from a Tank

A 4-ft-high, 3-ft-diameter cylindrical water tank whose top is open to the
atmosphere is initially filled with water. Now the discharge plug near the bot-
tom of the tank is pulled out, and a water jet whose diameter is 0.5 in
streams out (Fig. 5-13). The average velocity of the jet is approximated as
V = V/2gh, where h is the height of water in the tank measured from the
center of the hole (a variable) and g is the gravitational acceleration. Deter-
mine how long it takes for the water level in the tank to drop to 2 ft from the
bottom.



SOLUTION The plug near the bottom of a water tank is pulled out. The time
it takes for half of the water in the tank to empty is to be determined.
Assumptions 1 Water is an incompressible substance. 2 The distance
between the bottom of the tank and the center of the hole is negligible com-
pared to the total water height. 3 The gravitational acceleration is 32.2 ft/s?.
Analysis We take the volume occupied by water as the control volume. The
size of the control volume decreases in this case as the water level drops,
and thus this is a variable control volume. (We could also treat this as a
fixed control volume that consists of the interior volume of the tank by disre-
garding the air that replaces the space vacated by the water.) This is obvi-
ously an unsteady-flow problem since the properties (such as the amount of
mass) within the control volume change with time.

The conservation of mass relation for a control volume undergoing any
process is given in rate form as

dmcy
dt

min - ’/hout = Q)]

During this process no mass enters the control volume (m;,, = 0), and the
mass flow rate of discharged water can be expressed as

Moy = (PVA) oy = p'V 28hAj (2)

where A, = wD%,/4 is the cross-sectional area of the jet, which is constant.
Noting that the density of water is constant, the mass of water in the tank at
any time is

= pV = pAunch ()

where A, = wD%,./4 is the base area of the cylindrical tank. Substituting
Egs. 2 and 3 |nto the mass balance relation (Eq. 1) gives

d(pA ) pTDiul4) dh
—pV2ghA, = === o —pV2gh(wDj i) = =2

Canceling the densities and other common terms and separating the vari-
ables give

Di dh

D \V2gh

Integrating from ¢ = O at which h = hy to t = t at which h = h, gives
fm: D th L V- \/;7< )
0 Djzet\/273 ho 7 V2 Diet
Substituting, the time of discharge is determined to be
_ VAR~ mc a 121“): 757 s = 12.6 min
V32212 fys> \ 0.5in '

Therefore, it takes 12.6 min after the discharge hole is unplugged for half of
the tank to be emptied.

Discussion Using the same relation with h, = O gives t = 43.1 min for the
discharge of the entire amount of water in the tank. Therefore, emptying the
bottom half of the tank takes much longer than emptying the top half. This
is due to the decrease in the average discharge velocity of water with
decreasing h.

dt = —
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FIGURE 5-14

Mechanical energy is illustrated by
an ideal hydraulic turbine coupled
with an ideal generator. In the absence
of irreversible losses, the maximum
produced power is proportional to

(a) the change in water surface
elevation from the upstream to the
downstream reservoir or (b) (close-up
view) the drop in water pressure from
just upstream to just downstream of
the turbine.

5-3 = MECHANICAL ENERGY AND EFFICIENCY

Many fluid systems are designed to transport a fluid from one location to an-
other at a specified flow rate, velocity, and elevation difference, and the sys-
tem may generate mechanical work in a turbine or it may consume mechani-
cal work in a pump or fan during this process. These systems do not involve
the conversion of nuclear, chemical, or thermal energy to mechanical energy.
Also, they do not involve heat transfer in any significant amount, and they op-
erate essentially at constant temperature. Such systems can be analyzed con-
veniently by considering only the mechanical forms of energy and the fric-
tional effects that cause the mechanical energy to be lost (i.e., to be converted
to thermal energy that usually cannot be used for any useful purpose).

The mechanical energy can be defined as the form of energy that can be
converted to mechanical work completely and directly by an ideal mechani-
cal device such as an ideal turbine. Kinetic and potential energies are the
familiar forms of mechanical energy. Thermal energy is not mechanical
energy, however, since it cannot be converted to work directly and com-
pletely (the second law of thermodynamics).

A pump transfers mechanical energy to a fluid by raising its pressure, and
a turbine extracts mechanical energy from a fluid by dropping its pressure.
Therefore, the pressure of a flowing fluid is also associated with its mechan-
ical energy. In fact, the pressure unit Pa is equivalent to Pa = N/m? =
N - m/m? = J/m?, which is energy per unit volume, and the product Pv or
its equivalent P/p has the unit J/kg, which is energy per unit mass. Note that
pressure itself is not a form of energy. But a pressure force acting on a fluid
through a distance produces work, called flow work, in the amount of P/p
per unit mass. Flow work is expressed in terms of fluid properties, and it is
convenient to view it as part of the energy of a flowing fluid and call it flow
energy. Therefore, the mechanical energy of a flowing fluid can be
expressed on a unit-mass basis as

2

P
—+—+gz

e =
mech p 2

where P/p is the flow energy, V?/2 is the kinetic energy, and gz is the poten-
tial energy of the fluid, all per unit mass. Then the mechanical energy
change of a fluid during incompressible flow becomes

g—a+%—w

p 5 + g(z, — z1) (kJ/kg) (5-21)

Aemech =

Therefore, the mechanical energy of a fluid does not change during flow if
its pressure, density, velocity, and elevation remain constant. In the absence
of any irreversible losses, the mechanical energy change represents the me-
chanical work supplied to the fluid (if Ae,,., > 0) or extracted from the
fluid (if Ae,..; < 0). The maximum (ideal) power generated by a turbine,
for example, is W, = mAe,,.;, as shown in Fig. 5-14.

Consider a container of height £ filled with water, as shown in Fig. 5-15,
with the reference level selected at the bottom surface. The gage pressure and
the potential energy per unit mass are, respectively, P, = 0 and pe, = gh



Winax = mgh

at point A at the free surface, and P, = pgh and pe; = 0 at point B at the
bottom of the container. An ideal hydraulic turbine would produce the same
work per unit mass w4, = &4 whether it receives water (or any other fluid
with constant density) from the top or from the bottom of the container.
Note that we are also assuming ideal flow (no irreversible losses) through
the pipe leading from the tank to the turbine and negligible kinetic energy at
the turbine outlet. Therefore, the total mechanical energy of water at the
bottom is equivalent to that at the top.

The transfer of mechanical energy is usually accomplished by a rotating
shaft, and thus mechanical work is often referred to as shaft work. A pump
or a fan receives shaft work (usually from an electric motor) and transfers it
to the fluid as mechanical energy (less frictional losses). A turbine, on the
other hand, converts the mechanical energy of a fluid to shaft work. In the
absence of any irreversibilities such as friction, mechanical energy can be
converted entirely from one mechanical form to another, and the mechani-
cal efficiency of a device or process can be defined as (Fig. 5-16)

Mechanical energy OUtPUt _ Emech. out =1— Emech_ loss (5_22)

Thmech — - .
mee Mechanical energy input  Eoeh in Ereen. in

A conversion efficiency of less than 100 percent indicates that conversion
is less than perfect and some losses have occurred during conversion.
A mechanical efficiency of 97 percent indicates that 3 percent of the me-
chanical energy input is converted to thermal energy as a result of frictional
heating, and this manifests itself as a slight rise in the temperature of the
fluid.

In fluid systems, we are usually interested in increasing the pressure,
velocity, and/or elevation of a fluid. This is done by supplying mechanical
energy to the fluid by a pump, a fan, or a compressor (we refer to all of them
as pumps). Or we are interested in the reverse process of extracting mechan-
ical energy from a fluid by a turbine and producing mechanical power in the
form of a rotating shaft that can drive a generator or any other rotary device.
The degree of perfection of the conversion process between the mechanical
work supplied or extracted and the mechanical energy of the fluid is
expressed by the pump efficiency and turbine efficiency, defined as

Mechanical energy increase of the fluid — AE cch fia Wpump,
npump = - y - y

: . (5-23)
Mechanical energy input W gnatt. in W pump

129
MASS, BERNOULLI, AND ENERGY

FIGURE 5-15
The mechanical energy of water

at the bottom of a container is equal

to the mechanical energy at any
depth including the free surface
of the container.

Fan

SOWH I — i = 0.50 ke/s

SOREC (RO

Vi=0,V,=12m/s
=2
P, =P,

Nanech. fan = AE:mech, fluid — T/hV%/z
' Wshal'l, in Wshafl, in
_(0.50 kg/s)(12 m/s)*/2
- 50 W

=0.72

FIGURE 5-16

The mechanical efficiency of a fan
is the ratio of the kinetic energy
of air at the fan exit to the
mechanical power input.
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TNturbine = 0.75 T]generalor =097

Welect, out

H Generator E

=]
=

T]lurbinefgen = n!urbinengenemmr
=0.75 X 0.97
=0.73

FIGURE 5-17

The overall efficiency of a turbine—
generator is the product of the
efficiency of the turbine and the
efficiency of the generator, and
represents the fraction of the
mechanical energy of the fluid
converted to electric energy.

Generator

Tgenerator

=95%

FIGURE 5-18
Schematic for Example 5-3.

where AEmech’ fuid = Emech’ out Emech’ in 18 the rate of increase in the mechan-
ical energy of the fluid, which is equivalent to the useful pumping power
W supplied to the fluid, and

pump, u

e = Mechanical energy output B Wshan, o _ Wbine o o0
wibire  Mechanical energy decrease of the fluid IAE peen nia] ~ Woarbine. e

where |AE, . nuidl = Emech.in — Emech. ou 15 the rate of decrease in the

mechanical energy of the fluid, which is equivalent to the mechanical power
extracted from the fluid by the turbine W ;.. .» and we use the absolute
value sign to avoid negative values for efficiencies. A pump or turbine effi-
ciency of 100 percent indicates perfect conversion between the shaft work
and the mechanical energy of the fluid, and this value can be approached
(but never attained) as the frictional effects are minimized.

The mechanical efficiency should not be confused with the motor
efficiency and the generator efficiency, which are defined as

Mechanical power output Wt ou

Motor: = : . : (5-25)
Thmotor Electric power input W teet. in
and
Electric power output Weteet, out
Generator: Noenerator = =— (5-26)

Mechanical power input W, ..

A pump is usually packaged together with its motor, and a turbine with its
generator. Therefore, we are usually interested in the combined or overall
efficiency of pump-motor and turbine—generator combinations (Fig. 5-17),
which are defined as

Wpump‘ u AEmeCh, fluid

114 W

Mpump-motor — Mpump Mmotor =

(5-27)

elect, in elect, in

and

Wclcct, out Wclcct. out

Tllurhine—gen = Murbine ngeneralor = = . (5-28)
Wlurbine. e |AEmech. fluid ‘

All the efficiencies just defined range between O and 100 percent. The
lower limit of O percent corresponds to the conversion of the entire
mechanical or electric energy input to thermal energy, and the device in this
case functions like a resistance heater. The upper limit of 100 percent corre-
sponds to the case of perfect conversion with no friction or other irreversibil-
ities, and thus no conversion of mechanical or electric energy to thermal
energy.

EXAMPLE 5-3 Performance of a Hydraulic Turbine—-Generator

The water in a large lake is to be used to generate electricity by the installa-
tion of a hydraulic turbine—-generator. The elevation difference between the
free surfaces upstream and downstream of the dam is 50 m (Fig. 5-18).
Water is to be supplied at a rate of 5000 kg/s. If the electric power generated
is measured to be 1862 kW and the generator efficiency is 95 percent, de-
termine (a) the overall efficiency of the turbine-generator, (b) the mechanical
efficiency of the turbine, and (c) the shaft power supplied by the turbine to
the generator.
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SOLUTION A hydraulic turbine-generator is to generate electricity from the
water of a lake. The overall efficiency, the turbine efficiency, and the shaft
power are to be determined.
Assumptions 1 The elevation of the lake and that of the discharge site re-
main constant.
Properties The density of water is taken to be p = 1000 kg/m3.
Analysis (a) We perform our analysis from inlet (1) at the free surface of the
lake to outlet (2) at the free surface of the downstream discharge site. At
both free surfaces the pressure is atmospheric and the velocity is negligibly
small. The change in the water’s mechanical energy per unit mass is then
Pin _/Po/ut Vlzn D out

5 + 5 + 8(Zin — Zow)

-—— [ —
0 0

:gh

emech, in emech, out —

k
= 0.491*J

= (9.81 m/s?)(50 rn)< 1 kl/ke >
kg

1000 m*/s*

Then the rate at which mechanical energy is supplied to the turbine by the
fluid and the overall efficiency become

|AEmcch, ﬂuid| = m(emcch, in emcch, out) = (5000 kg/S)(049l kJ/kg) = 2455 kw

_ _ Welect, out 1862 kW _
o nmrbme_gen |AE mech ﬂuidl 2455 kw

(b) Knowing the overall and generator efficiencies, the mechanical efficiency
of the turbine is determined from

_ nturbine—gen _ 0.76

nturbine—gen = Nurbine ngenerator il Nurbine — - 0 95 = 0-80
ngenerator .

v
(c) The shaft power output is determined from the definition of mechanical
efficiency, Steady flow

Wshafl, out — nturbine|AEmech, ﬂuid| = (0.80)(2455 kW) = 1964 kW :21:;:2: }?
Discussion Note that the lake supplies 2455 kW of mechanical energy to Py=Py=Pyn
the turbine, which converts 1964 kW of it to shaft work that drives the gen- Enmeeh. in = Emech, out+ Emech, loss
erator, which generates 1862 kW of electric power. There are irreversible W o + 11921 = 11822+ Ermect, 1oss

losses through each component. . . .
Wpump= mgh + Enech, 1oss

FIGURE 5-19

Most processes encountered in practice involve only certain forms of Most fluid flow problems involve

energy, and in such cases it is more convenient to work with the simplified =~ mechanical forms of energy only, and

versions of the energy balance. For systems that involve only mechanical such problems are conveniently solved

Sforms of energy and its transfer as shaft work, the conservation of energy by using a mechanical energy balance.
principle can be expressed conveniently as

E = AEmech, system + Emech, loss (5-29)

mech, in

—E

mech, out

where E .., 105 TEPresents the conversion of mechanical energy to thermal
energy due to irreversibilities such as friction. For a system in steady
operation, the mechanical energy balance becomes E =E +

Emech, loss (Flg 5_19)

mech, in mech, out
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Bemoulli equation valid 5-4 = THE BERNOULLI EQUATION
—/\
/_\% The Bernoulli equation is an approximate relation between pressure,
Q velocity, and elevation, and is valid in regions of steady, incompressible
—_—— flow where net frictional forces are negligible (Fig. 5-20). Despite its
e AN simplicity, it has proven to be a very powerful tool in fluid mechanics. In this

section, we derive the Bernoulli equation by applying the conservation of
Bernoulli equation nor valid | linear momentum principle, and we demonstrate both its usefulness and its

limitations.
FIGURE 5-20 The key approximation in the derivation of the Bernoulli equation is that
The Bernoulli equation is an viscous effects are negligibly small compared to inertial, gravitational, and
approximate equation that is valid pressure effects. Since all fluids have viscosity (there is no such thing as an
only in inviscid regions of flow where — <inyiscid fluid”), this approximation cannot be valid for an entire flow field

net viscous forces are negligibly small  f practical interest. In other words, we cannot apply the Bernoulli equation
compared to inertial, grayltatlonal, O everywhere in a flow, no matter how small the fluid’s viscosity. However, it
pressure forces. Such regions occur turns out that the approximation is reasonable in certain regions of many
outside of boundary layers and wakes. practical flows. We refer to such regions as inviscid regions of flow, and we
stress that they are not regions where the fluid itself is inviscid or friction-
less, but rather they are regions where net viscous or frictional forces are
negligibly small compared to other forces acting on fluid particles.

Care must be exercised when applying the Bernoulli equation since it is
an approximation that applies only to inviscid regions of flow. In general,
frictional effects are always important very close to solid walls (boundary
layers) and directly downstream of bodies (wakes). Thus, the Bernoulli
approximation is typically useful in flow regions outside of boundary layers
and wakes, where the fluid motion is governed by the combined effects of
pressure and gravity forces.

The motion of a particle and the path it follows are described by the
velocity vector as a function of time and space coordinates and the initial
position of the particle. When the flow is steady (no change with time at a
specified location), all particles that pass through the same point follow the
same path (which is the streamline), and the velocity vectors remain tangent
to the path at every point.

Derivation of the Bernoulli Equation

Consider the motion of a fluid particle in a flow field in steady flow. Applying
Newton’s second law (which is referred to as the linear momentum equation
in fluid mechanics) in the s-direction on a particle moving along a streamline
gives

Steady flow along a streamline

(P +dP)dA

> F, = ma, (5-30)

ds In regions of flow where net frictional forces are negligible, there is no
4 pump or turbine, and no heat transfer along the streamline, the significant
‘ forces acting in the s-direction are the pressure (acting on both sides) and
the component of the weight of the particle in the s-direction (Fig. 5-21).
Therefore, Eq. 5-30 becomes
x av

PdA—(P+dP)dA—Wsin0=mV? (5-31)
s

FIGURE 5-21
The forces acting on a fluid particle where 0 is the angle between the normal of the streamline and the vertical
along a streamline. z-axis at that point, m = pV = p dA ds is the mass, W = mg = pg dA ds



is the weight of the fluid particle, and sin @ = dz/ds. Substituting,

d dv
—dPdA — pgdA ds = = pdAds vV = (5-32)
ds ds
Canceling dA from each term and simplifying,
—dP — pgdz = pVdV (5-33)
Noting that V dV = } d(V?) and dividing each term by p gives
dpP
(5-34)

7+%d(v2)+gdz=0

The last two terms are exact differentials. In the case of incompressible
flow, the first term also becomes an exact differential, and integration gives
Steady, incompressible flow: I;: + > + gz = constant (along a streamline)  (5-35)
This is the famous Bernoulli equation (Fig. 5-22), which is commonly
used in fluid mechanics for steady, incompressible flow along a streamline
in inviscid regions of flow. The Bernoulli equation was first stated in words
by the Swiss mathematician Daniel Bernoulli (1700-1782) in a text written
in 1738 when he was working in St. Petersburg, Russia. It was later derived
in equation form by his associate Leonhard Euler in 1755.

The value of the constant in Eq. 5-35 can be evaluated at any point on the
streamline where the pressure, density, velocity, and elevation are known.
The Bernoulli equation can also be written between any two points on the
same streamline as

P, V2 P, V3

—+ —+ gy =—+ -+ gz
p Lo :

5-36
> ( )

Steady, incompressible flow:
We recognize V?/2 as kinetic energy, gz as potential energy, and Plp as flow
energy, all per unit mass. Therefore, the Bernoulli equation can be viewed
as an expression of mechanical energy balance and can be stated as follows
(Fig. 5-23):

The sum of the kinetic, potential, and flow energies of a fluid particle
is constant along a streamline during steady flow when compressibility
and frictional effects are negligible.

The kinetic, potential, and flow energies are the mechanical forms of
energy, as discussed in Section 5-3, and the Bernoulli equation can be
viewed as the “conservation of mechanical energy principle.” This is equiva-
lent to the general conservation of energy principle for systems that do not
involve any conversion of mechanical energy and thermal energy to each
other, and thus the mechanical energy and thermal energy are conserved sep-
arately. The Bernoulli equation states that during steady, incompressible flow
with negligible friction, the various forms of mechanical energy are con-
verted to each other, but their sum remains constant. In other words, there is
no dissipation of mechanical energy during such flows since there is no fric-
tion that converts mechanical energy to sensible thermal (internal) energy.

Recall that energy is transferred to a system as work when a force is
applied to a system through a distance. In the light of Newton’s second law
of motion, the Bernoulli equation can also be viewed as: The work done by
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(Steady flow along a streamline)

General:

dE . VN
Jp + 5 + gz = constant

Incompressible flow (p = constant):

2
FP + VT + gz = constant

FIGURE 5-22

The Bernoulli equation is derived
assuming incompressible flow,
and thus it should not be used

for flows with significant
compressibility effects.

FIGURE 5-23
The Bernoulli equation states that the
sum of the kinetic, potential, and flow
energies of a fluid particle is constant
along a streamline during steady flow.
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‘B D
Stationary fluid Flowing fluid

Py—Py= Pp—Pc

FIGURE 5-24

The variation of pressure with
elevation in steady, incompressible
flow along a straight line is the
same as that in the stationary fluid
(but this is not the case for a
curved flow section).

the pressure and gravity forces on the fluid particle is equal to the increase
in the kinetic energy of the particle.

The Bernoulli equation is obtained from the conservation of momentum
for a fluid particle moving along a streamline. It can also be obtained from
the first law of thermodynamics applied to a steady-flow system, as shown
in Section 5-6.

Despite the highly restrictive approximations used in its derivation, the
Bernoulli equation is commonly used in practice since a variety of practical
fluid flow problems can be analyzed to reasonable accuracy with it. This is
because many flows of practical engineering interest are steady (or at least
steady in the mean), compressibility effects are relatively small, and net
frictional forces are negligible in regions of interest in the flow.

Force Balance across Streamlines

It is left as an exercise to show that a force balance in the direction n normal
to the streamline yields the following relation applicable across the stream-
lines for steady, incompressible flow:

P v
; + J R dn + gz = constant (across streamlines) (5-37)

For flow along a straight line, R — % and Eq. 5-37 reduces to P/p + gz =
constant or P = —pgz + constant, which is an expression for the variation of
hydrostatic pressure with vertical distance for a stationary fluid body. There-
fore, the variation of pressure with elevation in steady, incompressible flow
along a straight line is the same as that in the stationary fluid (Fig. 5-24).

Static, Dynamic, and Stagnation Pressures

The Bernoulli equation states that the sum of the flow, kinetic, and potential
energies of a fluid particle along a streamline is constant. Therefore, the
kinetic and potential energies of the fluid can be converted to flow energy
(and vice versa) during flow, causing the pressure to change. This phenome-
non can be made more visible by multiplying the Bernoulli equation by the
density p,

2
P+p EY + pgz = constant (along a streamline) (5-38)

Each term in this equation has pressure units, and thus each term represents
some kind of pressure:

* P is the static pressure (it does not incorporate any dynamic effects); it
represents the actual thermodynamic pressure of the fluid. This is the
same as the pressure used in thermodynamics and property tables.

e pV?2is the dynamic pressure; it represents the pressure rise when the
fluid in motion is brought to a stop isentropically.

* pgzis the hydrostatic pressure term, which is not pressure in a real sense
since its value depends on the reference level selected; it accounts for the
elevation effects, i.e., of fluid weight on pressure. (Be careful of sign—
unlike hydrostatic pressure pgh which increases with fluid depth, the
hydrostatic pressure term pgz decreases with fluid depth.)



The sum of the static, dynamic, and hydrostatic pressures is called the total
pressure. Therefore, the Bernoulli equation states that the total pressure
along a streamline is constant.

The sum of the static and dynamic pressures is called the stagnation
pressure, and it is expressed as

2

14
Pag=P+p—  (kPa) (5-39)

Sl'(lg
The stagnation pressure represents the pressure at a point where the fluid is
brought to a complete stop isentropically. The static, dynamic, and stagna-
tion pressures are shown in Fig. 5-25. When static and stagnation pressures
are measured at a specified location, the fluid velocity at that location can be
calculated from
2Py — P)
V=|— (5-40)
p

Equation 540 is useful in the measurement of flow velocity when a com-
bination of a static pressure tap and a Pitot tube is used, as illustrated in Fig.
5-25. A static pressure tap is simply a small hole drilled into a wall such
that the plane of the hole is parallel to the flow direction. It measures the sta-
tic pressure. A Pitot tube is a small tube with its open end aligned into the
flow so as to sense the full impact pressure of the flowing fluid. It measures
the stagnation pressure. In situations in which the static and stagnation pres-
sure of a flowing liquid are greater than atmospheric pressure, a vertical trans-
parent tube called a piezometer tube (or simply a piezometer) can be
attached to the pressure tap and to the Pitot tube, as sketched in Fig. 5-25.
The liquid rises in the piezometer tube to a column height (head) that is pro-
portional to the pressure being measured. If the pressures to be measured are
below atmospheric, or if measuring pressures in gases, piezometer tubes do
not work. However, the static pressure tap and Pitot tube can still be used, but
they must be connected to some other kind of pressure measurement device
such as a U-tube manometer or a pressure transducer (Chap. 3). Sometimes
it is convenient to integrate static pressure holes on a Pitot probe. The result
is a Pitot-static probe, as shown in Fig. 5-26. A Pitot-static probe con-
nected to a pressure transducer or a manometer measures the dynamic pres-
sure (and thus fluid velocity).

When a stationary body is immersed in a flowing stream, the fluid is
brought to a stop at the nose of the body (the stagnation point). The flow
streamline that extends from far upstream to the stagnation point is called
the stagnation streamline (Fig. 5-27). For a two-dimensional flow in the
xy-plane, the stagnation point is actually a line parallel the z-axis, and the
stagnation streamline is actually a surface that separates fluid that flows
over the body from fluid that flows under the body. In an incompressible
flow, the fluid decelerates nearly isentropically from its free-stream velocity
to zero at the stagnation point, and the pressure at the stagnation point is
thus the stagnation pressure.

Limitations on the Use of the Bernoulli Equation

The Bernoulli equation (Eq. 5-35) is one of the most frequently used and
misused equations in fluid mechanics. Its versatility, simplicity, and ease of
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FIGURE 5-25
The static, dynamic, and
stagnation pressures.

FIGURE 5-26

Close-up of a Pitot-static probe,
showing the stagnation pressure

hole and two of the five static
circumferential pressure holes.

Photo by Po-Ya Abel Chuang. Used by permission.

Stagnation streamline

FIGURE 5-27

Streaklines produced by colored fluid
introduced upstream of an airfoil;
since the flow is steady, the streaklines
are the same as streamlines and
pathlines. The stagnation streamline

is marked.

Courtesy ONERA. Photograph by Werlé.
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FIGURE 5-28

Frictional effects and components
that disturb the streamlined
structure of flow in a flow section
make the Bernoulli equation
invalid. It should not be used in
any of the flows shown here.

use make it a very valuable tool for use in analysis, but the same attributes
also make it very tempting to misuse. Therefore, it is important to understand
the restrictions on its applicability and observe the limitations on its use, as
explained here:

1. Steady flow The first limitation on the Bernoulli equation is that it
is applicable to steady flow. Therefore, it should not be used during
transient start-up and shut-down periods, or during periods of change
in the flow conditions.

2. Frictionless flow Every flow involves some friction, no matter how
small, and frictional effects may or may not be negligible. The situation
is complicated even more by the amount of error that can be tolerated. In
general, frictional effects are negligible for short flow sections with large
cross sections, especially at low flow velocities. Frictional effects are
usually significant in long and narrow flow passages, in the wake region
downstream of an object, and in diverging flow sections such as diffusers
because of the increased possibility of the fluid separating from the
walls in such geometries. Frictional effects are also significant near solid
surfaces, and thus the Bernoulli equation is usually applicable along a
streamline in the core region of the flow, but not along a streamline close
to the surface (Fig. 5-28).

A component that disturbs the streamlined structure of flow and thus
causes considerable mixing and backflow such as a sharp entrance of a
tube or a partially closed valve in a flow section can make the Bernoulli
equation inapplicable.

3. No shaft work The Bernoulli equation was derived from a force
balance on a particle moving along a streamline. Therefore, the
Bernoulli equation is not applicable in a flow section that involves a
pump, turbine, fan, or any other machine or impeller since such devices
destroy the streamlines and carry out energy interactions with the fluid
particles. When the flow section considered involves any of these
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devices, the energy equation should be used instead to account for the
shaft work input or output. However, the Bernoulli equation can still
be applied to a flow section prior to or past a machine (assuming, of
course, that the other restrictions on its use are satisfied). In such cases,
the Bernoulli constant changes from upstream to downstream of the
device.

4. Incompressible flow One of the assumptions used in the derivation
of the Bernoulli equation is that p = constant and thus the flow is
incompressible. This condition is satisfied by liquids and also by gases
at Mach numbers less than about 0.3 since compressibility effects and
thus density variations of gases are negligible at such relatively low
velocities.

5. No heat transfer The density of a gas is inversely proportional to
temperature, and thus the Bernoulli equation should not be used for flow
sections that involve significant temperature change such as heating or
cooling sections.

6. Flow along a streamline Strictly speaking, the Bernoulli equation
Plp + V?/2 + gz = C is applicable along a streamline, and the value
of the constant C is generally different for different streamlines. When
a region of the flow is irrotational and there is no vorticity in the flow
field, the value of the constant C remains the same for all streamlines,
and the Bernoulli equation becomes applicable across streamlines as
well (Fig. 5-29). Therefore, we do not need to be concerned about the
streamlines when the flow is irrotational, and we can apply the Bernoulli
equation between any two points in the irrotational region of the flow
(Chap. 9).

We derived the Bernoulli equation by considering two-dimensional flow
in the xz-plane for simplicity, but the equation is valid for general three-
dimensional flow as well, as long as it is applied along the same streamline.
We should always keep in mind the assumptions used in the derivation of
the Bernoulli equation and make sure that they are not violated.

Hydraulic Grade Line (HGL)
and Energy Grade Line (EGL)

It is often convenient to represent the level of mechanical energy graphically
using heights to facilitate visualization of the various terms of the Bernoulli
equation. This is done by dividing each term of the Bernoulli equation by g
to give

PV
— + — + z = H = constant (along a streamline) (5-41)
pg  2g

Each term in this equation has the dimension of length and represents some
kind of “head” of a flowing fluid as follows:

* Plpg is the pressure head; it represents the height of a fluid column that
produces the static pressure P.

137
MASS, BERNOULLI, AND ENERGY

1, /
—/
t / 2
NV
Streamlines
P Vi P, V3
Fl+71+gz': 72+72 + g2,
FIGURE 5-29

‘When the flow is irrotational, the
Bernoulli equation becomes applicable
between any two points along the flow

(not just on the same streamline).
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FIGURE 5-30

An alternative form of the Bernoulli
equation is expressed in terms of
heads as: The sum of the pressure,
velocity, and elevation heads is
constant along a streamline.

FIGURE 5-31

The hydraulic grade line (HGL) and
the energy grade line (EGL) for free
discharge from a reservoir through a
horizontal pipe with a diffuser.

e V?/2g is the velocity head; it represents the elevation needed for a fluid
to reach the velocity V during frictionless free fall.

* zis the elevation head; it represents the potential energy of the fluid.

Also, H is the total head for the flow. Therefore, the Bernoulli equation can
be expressed in terms of heads as: The sum of the pressure, velocity, and
elevation heads along a streamline is constant during steady flow when the
compressibility and frictional effects are negligible (Fig. 5-30).

If a piezometer (which measures static pressure) is tapped into a pipe, as
shown in Fig. 5-31, the liquid would rise to a height of P/pg above the pipe
center. The hydraulic grade line (HGL) is obtained by doing this at several
locations along the pipe and drawing a curve through the liquid levels in the
piezometers. The vertical distance above the pipe center is a measure of
pressure within the pipe. Similarly, if a Pitot tube (measures static +
dynamic pressure) is tapped into a pipe, the liquid would rise to a height of
Plpg + V?/2g above the pipe center, or a distance of V?/2g above the HGL.
The energy grade line (EGL) is obtained by doing this at several locations
along the pipe and drawing a curve through the liquid levels in the Pitot tubes.

Noting that the fluid also has elevation head z (unless the reference level is
taken to be the centerline of the pipe), the HGL and EGL are defined as fol-
lows: The line that represents the sum of the static pressure and the elevation
heads, P/pg + z, is called the hydraulic grade line. The line that represents
the total head of the fluid, P/pg + V?*2g + z, is called the energy grade
line. The difference between the heights of EGL and HGL is equal to the
dynamic head, V?/2g. We note the following about the HGL and EGL:

* For stationary bodies such as reservoirs or lakes, the EGL and HGL
coincide with the free surface of the liquid. The elevation of the free
surface z in such cases represents both the EGL and the HGL since the
velocity is zero and the static (gage) pressure is zero.

¢ The EGL is always a distance V?/2g above the HGL. These two curves
approach each other as the velocity decreases, and they diverge as the
velocity increases. The height of the HGL decreases as the velocity
increases, and vice versa.

* In an idealized Bernoulli-type flow, EGL is horizontal and its height
remains constant. This would also be the case for HGL when the flow
velocity is constant (Fig. 5-32).
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* For open-channel flow, the HGL coincides with the free surface of the
liquid, and the EGL is a distance V?*/2g above the free surface.

* At a pipe exit, the pressure head is zero (atmospheric pressure) and thus
the HGL coincides with the pipe outlet (location 3 on Fig. 5-31).

* The mechanical energy loss due to frictional effects (conversion to
thermal energy) causes the EGL and HGL to slope downward in the
direction of flow. The slope is a measure of the head loss in the pipe
(discussed in detail in Chap. 8). A component that generates significant
frictional effects such as a valve causes a sudden drop in both EGL and
HGL at that location.

* A steep jump occurs in EGL and HGL whenever mechanical energy is
added to the fluid (by a pump, for example). Likewise, a steep drop
occurs in EGL and HGL whenever mechanical energy is removed from
the fluid (by a turbine, for example), as shown in Fig. 5-33.

* The pressure (gage) of a fluid is zero at locations where the HGL
intersects the fluid. The pressure in a flow section that lies above the HGL
is negative, and the pressure in a section that lies below the HGL is
positive (Fig. 5-34). Therefore, an accurate drawing of a piping system
and the HGL can be used to determine the regions where the pressure in
the pipe is negative (below the atmospheric pressure).

The last remark enables us to avoid situations in which the pressure drops
below the vapor pressure of the liquid (which may cause cavitation, as dis-
cussed in Chap. 2). Proper consideration is necessary in the placement of a
liquid pump to ensure that the suction side pressure does not fall too low,
especially at elevated temperatures where vapor pressure is higher than it is
at low temperatures.

Now we examine Fig. 5-31 more closely. At point O (at the liquid surface),
EGL and HGL are even with the liquid surface since there is no flow there.
HGL decreases rapidly as the liquid accelerates into the pipe; however, EGL
decreases very slowly through the well-rounded pipe inlet. EGL declines con-
tinually along the flow direction due to friction and other irreversible losses in
the flow. EGL cannot increase in the flow direction unless energy is supplied
to the fluid. HGL can rise or fall in the flow direction, but can never exceed
EGL. HGL rises in the diffuser section as the velocity decreases, and the sta-
tic pressure recovers somewhat; the total pressure does not recover, however,
and EGL decreases through the diffuser. The difference between EGL and
HGL is V2/2g at point 1, and V3/2g at point 2. Since V, > V,, the difference
between the two grade lines is larger at point 1 than at point 2. The downward
slope of both grade lines is larger for the smaller diameter section of pipe
since the frictional head loss is greater. Finally, HGL decays to the liquid sur-
face at the outlet since the pressure there is atmospheric. However, EGL is
still higher than HGL by the amount V3/2g since V; = V, at the outlet.

Applications of the Bernouli Equation

So far, we have discussed the fundamental aspects of the Bernoulli equa-
tion. Now we demonstrate its use in a wide range of applications through
examples.
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In an idealized Bernoulli-type flow,
EGL is horizontal and its height
remains constant. But this is not
the case for HGL when the flow

velocity varies along the flow.
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A steep jump occurs in EGL and HGL
whenever mechanical energy is added
to the fluid by a pump, and a steep drop
occurs whenever mechanical energy is
removed from the fluid by a turbine.
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The pressure (gage) of a fluid is zero
at locations where the HGL intersects
the fluid, and the pressure is negative
(vacuum) in a flow section that lies
above the HGL.
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FIGURE 5-35

Schematic for Example 5—4. Inset
shows a magnified view of the hose
outlet region.

EXAMPLE 5-4 Spraying Water into the Air

Water is flowing from a garden hose (Fig. 5-35). A child places his thumb to
cover most of the hose outlet, causing a thin jet of high-speed water to
emerge. The pressure in the hose just upstream of his thumb is 400 kPa. If
the hose is held upward, what is the maximum height that the jet could
achieve?

SOLUTION Water from a hose attached to the water main is sprayed into
the air. The maximum height the water jet can rise is to be determined.
Assumptions 1 The flow exiting into the air is steady, incompressible, and irro-
tational (so that the Bernoulli equation is applicable). 2 The surface tension
effects are negligible. 3 The friction between the water and air is negligible.
4 The irreversibilities that occur at the outlet of the hose due to abrupt con-
traction are not taken into account.

Properties We take the density of water to be 1000 kg/m3.

Analysis This problem involves the conversion of flow, kinetic, and potential
energies to each other without involving any pumps, turbines, and wasteful
components with large frictional losses, and thus it is suitable for the use of
the Bernoulli equation. The water height will be maximum under the stated
assumptions. The velocity inside the hose is relatively low (V<< V3, and
thus V; = 0) and we take elevation just below the hose outlet as the reference
level (z; = 0). At the top of the water trajectory V, = O, and atmospheric
pressure pertains. Then the Bernoulli equation simplifies to

iJrﬁiOJrzl/vo=i+ﬁ/‘0+12 - iZPalm*l—zz
pg 28 pg 28 pg P8
Solving for z, and substituting,
e P Pan _ Prose 400 kPa (1000 N/m2> (1 kg - m/82>
P8 pg (1000 kg/m?)(9.81 m/s?) \ 1 kPa IN
=40.8 m

Therefore, the water jet can rise as high as 40.8 m into the sky in this case.
Discussion The result obtained by the Bernoulli equation represents the
upper limit and should be interpreted accordingly. It tells us that the water
cannot possibly rise more than 40.8 m, and, in all likelihood, the rise will be
much less than 40.8 m due to irreversible losses that we neglected.

EXAMPLE 5-5 Water Discharge from a Large Tank

A large tank open to the atmosphere is filled with water to a height of 5 m
from the outlet tap (Fig. 5-36). A tap near the bottom of the tank is now
opened, and water flows out from the smooth and rounded outlet. Determine
the maximum water velocity at the outlet.

SOLUTION A tap near the bottom of a tank is opened. The maximum exit
velocity of water from the tank is to be determined.

Assumptions 1 The flow is incompressible and irrotational (except very close
to the walls). 2 The water drains slowly enough that the flow can be approxi-
mated as steady (actually quasi-steady when the tank begins to drain).
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Analysis This problem involves the conversion of flow, kinetic, and potential

energies to each other without involving any pumps, turbines, and wasteful

components with large frictional losses, and thus it is suitable for the use of o
L]

the Bernoulli equation. We take point 1 to be at the free surface of water so _
that P, = P, (open to the atmosphere), VZ << V3 and thus V; = O (the
tank is very large relative to the outlet), and z; = 5 m and z, = O (we take
the reference level at the center of the outlet). Also, P, = P, (water dis-

charges into the atmosphere). Then the Bernoulli equation simplifies to Sm Water <
~0 0
%+Z§]+zl=%+;§+z2/—> z1=;/§ 1 2 |
Solving for V, and substituting, &
V, = V2gz, = V2(9.81 m/s?(5 m) = 9.9 m/s FIGURE 5-36
The relation V = V/2gz is called the Toricelli equation. Schematic for Example 5-5.

Therefore, the water leaves the tank with an initial maximum velocity of
9.9 m/s. This is the same velocity that would manifest if a solid were dropped
a distance of 5 m in the absence of air friction drag. (What would the veloc-
ity be if the tap were at the bottom of the tank instead of on the side?)
Discussion If the orifice were sharp-edged instead of rounded, then the flow
would be disturbed, and the average exit velocity would be less than 9.9 m/s.
Care must be exercised when attempting to apply the Bernoulli equation to sit-
uations where abrupt expansions or contractions occur since the friction and
flow disturbance in such cases may not be negligible. From conservation of
mass, (V1/V,)? = (D,/D;)*. So, for example, if D,/D; = 0.1, then (V;/V,)? =
0.0001, and our approximation that V¢ << V3 is justified.

: EXAMPLE 5-6 Velocity Measurement by a Pitot Tube T
® A piezometer and a Pitot tube are tapped into a horizontal water pipe, as ha=12 Tm
shown in Fig. 5-37, to measure static and stagnation (static + dynamic) ﬁ
B pressures. For the indicated water column heights, determine the velocity at hy=7cm
I the center of the pipe. l
SOLUTION The static and stagnation pressures in a horizontal pipe are Wi h1=3cr£I:/
ater_e —V;
measured. The velocity at the center of the pipe is to be determined. @xT/
Assumptions 1 The flow is steady and incompressible. 2 Points 1 and 2 are Stagnation
close enough together that the irreversible energy loss between these two point
points is negligible, and thus we can use the Bernoulli equation.
Analysis We take points 1 and 2 along the centerline of the pipe, with point FIGURE 5-37
1 directly under the piezometer and point 2 at the tip of the Pitot tube. This Schematic for Example 5-6.

is a steady flow with straight and parallel streamlines, and the gage pres-
sures at points 1 and 2 can be expressed as

Py = pg(hy + hy)
Py = pg(hy + hy + h3)
Noting that point 2 is a stagnation point and thus V, = O and z; = z,, the
application of the Bernoulli equation between points 1 and 2 gives
0
P Vi P, V3/
71"'71"'%1:*2"'*2 +é2
pg 28 pg 28

Vi_P—P

2g P8
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FIGURE 5-38

Schematic for Example 5-7. The
vertical scale is greatly exaggerated.

Substituting the P, and P, expressions gives

V12_P2—P1:pg(hl+h2+h3)—pg(hl+h2):h

28 pg pg

3

Solving for V; and substituting,

V, = V2gh; = V2(9.81 m/s3(0.12 m) = 1.53 m/s

Discussion Note that to determine the flow velocity, all we need is to mea-
sure the height of the excess fluid column in the Pitot tube compared to that
in the piezometer tube.

EXAMPLE 5-7 The Rise of the Ocean Due to a Hurricane

A hurricane is a tropical storm formed over the ocean by low atmospheric
pressures. As a hurricane approaches land, inordinate ocean swells (very high
tides) accompany the hurricane. A Class-5 hurricane features winds in excess
of 155 mph, although the wind velocity at the center “eye” is very low.

Figure 5-38 depicts a hurricane hovering over the ocean swell below. The
atmospheric pressure 200 mi from the eye is 30.0 in Hg (at point 1, gener-
ally normal for the ocean) and the winds are calm. The hurricane atmo-
spheric pressure at the eye of the storm is 22.0 in Hg. Estimate the ocean
swell at (a) the eye of the hurricane at point 3 and (b) point 2, where the
wind velocity is 155 mph. Take the density of seawater and mercury to be
64 Ibm/ft3 and 848 Ibm/ft3, respectively, and the density of air at normal
sea-level temperature and pressure to be 0.076 Ibm/ft3.

SOLUTION A hurricane is moving over the ocean. The amount of ocean
swell at the eye and at active regions of the hurricane are to be determined.
Assumptions 1 The airflow within the hurricane is steady, incompressible,
and irrotational (so that the Bernoulli equation is applicable). (This is cer-
tainly a very questionable assumption for a highly turbulent flow, but it is jus-
tified in the discussion.) 2 The effect of water sucked into the air is negligible.
Properties The densities of air at normal conditions, seawater, and mercury
are given to be 0.076 Ibm/ft3, 64 |bm/ft3, and 848 |bm/ft3, respectively.
Analysis (a) Reduced atmospheric pressure over the water causes the water
to rise. Thus, decreased pressure at point 2 relative to point 1 causes the
ocean water to rise at point 2. The same is true at point 3, where the storm air
velocity is negligible. The pressure difference given in terms of the mercury
column height is expressed in terms of the seawater column height by

PH
AP = (pgh)Hg = (pgh)sw - hsw = rthg
Then the pressure difference between points 1 and 3 in terms of the sea-
water column height becomes

(848 Ibm/ft’

_ Pre >[30—22)' H](l—ft)—sssft
64 o/t )\ mEe\12im) — >

h_
" b

Hg —

which is equivalent to the storm surge at the eye of the hurricane since the
wind velocity there is negligible and there are no dynamic effects.



(b) To determine the additional rise of ocean water at point 2 due to the high
winds at that point, we write the Bernoulli equation between points A and B,
which are on top of points 2 and 3, respectively. Noting that V; = O (the eye
region of the hurricane is relatively calm) and z; = z; (both points are on the
same horizontal line), the Bernoulli equation simplifies to
2 2 20 2
B, Vi, B Va7 RBh Vi
pg 28 pg 2g P8 2g

Substituting,

Py — P, Vi _ (155 mph)’ (1.4667 fit/s
P8 2g  2(32.2ft/s>) \ 1 mph

2
> = 803 ft

where p is the density of air in the hurricane. Noting that the density of an
ideal gas at constant temperature is proportional to absolute pressure and the
density of air at the normal atmospheric pressure of 14.7 psia = 30 in Hg is
0.076 lbm/ft3, the density of air in the hurricane is

P
P

i 22 in Hg
Pair = Patmair = | - ](0.076 Ibm/ft’) = 0.056 Ibm/ft’

atm air 30 in Hg
Using the relation developed above in part (a), the seawater column height
equivalent to 803 ft of air column height is determined to be

air 0.056 1bm/ft3
hdynamic = P air <73>(803 ft) = 0.70 ft
64 1bm/ft

SwW

Therefore, the pressure at point 2 is 0.70 ft seawater column lower than the
pressure at point 3 due to the high wind velocities, causing the ocean to rise
an additional 0.70 ft. Then the total storm surge at point 2 becomes

hy = hy + Byynamie = 8.83 + 0.70 = 9.53 ft

Discussion This problem involves highly turbulent flow and the intense
breakdown of the streamlines, and thus the applicability of the Bernoulli
equation in part (b) is questionable. Furthermore, the flow in the eye of the
storm is not irrotational, and the Bernoulli equation constant changes across
streamlines (see Chap. 10). The Bernoulli analysis can be thought of as the
limiting, ideal case, and shows that the rise of seawater due to high-velocity
winds cannot be more than 0.70 ft.

The wind power of hurricanes is not the only cause of damage to coastal
areas. Ocean flooding and erosion from excessive tides is just as serious, as
are high waves generated by the storm turbulence and energy.

5-5 = GENERAL ENERGY EQUATION

One of the most fundamental laws in nature is the first law of thermody-
namics, also known as the conservation of energy principle, which pro-
vides a sound basis for studying the relationships among the various forms
of energy and energy interactions. It states that energy can be neither created
nor destroyed during a process; it can only change forms. Therefore, every
bit of energy must be accounted for during a process. The conservation of
energy principle for any system can be expressed simply as E;,, — E_,, = AE.

143
MASS, BERNOULLI, AND ENERGY

PE, = 10kJ
KE, =0

PE,=7kJ
KE,=3kJ

m

FIGURE 5-39

Energy cannot be created or
destroyed during a process;
it can only change forms.
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The energy change of a system
during a process is equal to the net
work and heat transfer between the
system and its surroundings.

Room air
25°C

No heat 81/s
transfer

FIGURE 541

Temperature difference is the driving
force for heat transfer. The larger the
temperature difference, the higher is

the rate of heat transfer.

The transfer of any quantity (such as mass, momentum, and energy) is
recognized at the boundary as the quantity crosses the boundary. A quantity
is said to enter a system (or control volume) if it crosses the boundary from
the outside to the inside, and to exit the system if it moves in the reverse
direction. A quantity that moves from one location to another within a sys-
tem is not considered as a transferred quantity in an analysis since it does
not enter or exit the system. Therefore, it is important to specify the system
and thus clearly identify its boundaries before an engineering analysis is
performed.

The energy content of a fixed quantity of mass (a closed system) can be
changed by two mechanisms: heat transfer Q and work transfer W. Then the
conservation of energy for a fixed quantity of mass can be expressed in rate
form as (Fig. 5-40)

dE.

sys

dt

or Qnet in + Wnet in — E J pe dV (5—42)

sys

Qnet in + Wnel in —
where O, ..i, = Oi, — Ouu is the net rate of heat transfer to the system (neg-
ative, if from the system), W,..;, = W,, — W, is the net power input to the
system in all forms (negative, if power output) and dE /dt is the rate of
change of the total energy content of the system. For simple compressible
systems, total energy consists of internal, kinetic, and potential energies,
and it is expressed on a unit-mass basis as (see Chap. 2)

V2
e=u+ke+pe=u+?+gz (5-43)

Note that total energy is a property, and its value does not change unless the
state of the system changes.

Energy Transfer by Heat, @

In daily life, we frequently refer to the sensible and latent forms of internal
energy as heat, and talk about the heat content of bodies. Scientifically the
more correct name for these forms of energy is thermal energy. For single-
phase substances, a change in the thermal energy of a given mass results in
a change in temperature, and thus temperature is a good representative of
thermal energy. Thermal energy tends to move naturally in the direction of
decreasing temperature. The transfer of energy from one system to another
as a result of a temperature difference is called heat transfer. The warming
up of a canned drink in a warmer room, for example, is due to heat transfer
(Fig. 5-41). The time rate of heat transfer is called heat transfer rate and
is denoted by Q.

The direction of heat transfer is always from the higher-temperature body
to the lower-temperature one. Once temperature equality is established, heat
transfer stops. There cannot be any net heat transfer between two systems
(or a system and its surroundings) that are at the same temperature.

A process during which there is no heat transfer is called an adiabatic
process. There are two ways a process can be adiabatic: Either the system is
well insulated so that only a negligible amount of heat can pass through the



system boundary, or both the system and the surroundings are at the same
temperature and therefore there is no driving force (temperature difference)
for net heat transfer. An adiabatic process should not be confused with an
isothermal process. Even though there is no heat transfer during an adia-
batic process, the energy content and thus the temperature of a system can
still be changed by other means such as work transfer.

Energy Transfer by Work, W

An energy interaction is work if it is associated with a force acting through
a distance. A rising piston, a rotating shaft, and an electric wire crossing the
system boundary are all associated with work interactions. The time rate of
doing work is called power and is denoted by W. Car engines and hydraulic,
steam, and gas turbines produce work; compressors, pumps, fans, and mix-
ers consume work.

Work-consuming devices transfer energy to the fluid, and thus increase
the energy of the fluid. A fan in a room, for example, mobilizes the air and
increases its kinetic energy. The electric energy a fan consumes is first con-
verted to mechanical energy by its motor that forces the shaft of the blades
to rotate. This mechanical energy is then transferred to the air, as evidenced
by the increase in air velocity. This energy transfer to air has nothing to do
with a temperature difference, so it cannot be heat transfer. Therefore, it
must be work. Air discharged by the fan eventually comes to a stop and thus
loses its mechanical energy as a result of friction between air particles of
different velocities. But this is not a “loss” in the real sense; it is simply
the conversion of mechanical energy to an equivalent amount of thermal
energy (which is of limited value, and thus the term loss) in accordance
with the conservation of energy principle. If a fan runs a long time in a
sealed room, we can sense the buildup of this thermal energy by a rise in air
temperature.

A system may involve numerous forms of work, and the total work can be
expressed as

Wtotal = Wshaft + Wpressure + inscous + Wother (5-44)

where W, is the work transmitted by a rotating shaft, W is the work
done by the pressure forces on the control surface, W, ., is the work done
by the normal and shear components of viscous forces on the control sur-
face, and W, is the work done by other forces such as electric, magnetic,
and surface tension, which are insignificant for simple compressible systems
and are not considered in this text. We do not consider W, €ither since
moving walls, such as fan blades or turbine runners, are usually inside the
control volume, and are not part of the control surface. But it should be kept
in mind that the work done by shear forces as the blades shear through the

fluid may need to be considered in a refined analysis of turbomachinery.

Shaft Work

Many flow systems involve a machine such as a pump, a turbine, a fan, or a
compressor whose shaft protrudes through the control surface, and the work
transfer associated with all such devices is simply referred to as shaft work
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The pressure force acting on (a) the
moving boundary of a system in

a piston-cylinder device, and

(b) the differential surface area

of a system of arbitrary shape.

W gaii- The power transmitted via a rotating shaft is proportional to the shaft

torque T, and is expressed as

Wshaft = wTshaft = 277-ﬁTshaft (5-45)

where w is the angular speed of the shaft in rad/s and 7 is defined as the
number of revolutions of the shaft per unit time, often expressed in rev/min
or rpm.

Work Done by Pressure Forces

Consider a gas being compressed in the piston-cylinder device shown in
Fig. 5-42a. When the piston moves down a differential distance ds under
the influence of the pressure force PA, where A is the cross-sectional area of
the piston, the boundary work done on the system is 6Wy,ngay = PA ds.
Dividing both sides of this relation by the differential time interval df gives
the time rate of boundary work (i.e., power),

SWpressure = 8Wb0undury =P Avpiston

where V., = ds/dt is the piston velocity, which is the velocity of the mov-
ing boundary at the piston face.

Now consider a material chunk of fluid (a system) of arbitrary shape,
which moves with the flow and is free to deform under the influence of
pressure, as shown in Fig. 5-42b. Pressure always acts inward and normal
to the surface, and the pressure force acting on a differential area dA is
P dA. Again noting that work is force times distance and distance traveled
per unit time is velocity, the time rate at which work is done by pressure

forces on this differential part of the system is

SW pressune = —P dA V, = —P dA(V - 11) (5-46)

since the normal component of velocity through the differential area dA is
V,=Vcos=V- 7. Note that 7 is the outer normal of dA, and thus the
quantity V - 7 is positive for expansion and negative for compression. The
negative sign in Eq. 5-46 ensures that work done by pressure forces is posi-
tive when it is done on the system, and negative when it is done by the sys-
tem, which agrees with our sign convention. The total rate of work done by
pressure forces is obtained by integrating 6W,.... over the entire surface A,
. S P -
W pressure, netin = J P(V-n)ydA = — J —p(V-n)dA (5-47)
A A p

In light of these discussions, the net power transfer can be expressed as

Wnet in — Wshaft, net in + Wpressure, netin Wshaft, netin J P(‘_} : Z) dA (5_48)
A

Then the rate form of the conservation of energy relation for a closed sys-
tem becomes

dE.

. . . s
Qnet in T Wshaﬂ, net in + Wpressure, netin — 7 (5-49)
To obtain a relation for the conservation of energy for a control volume,

we apply the Reynolds transport theorem by replacing B with total energy



E, and b with total energy per unit mass e, whichis e = u + ke + pe = u +
V?/2 + gz (Fig. 5-43). This yields

dE sys d

= — + H..”A
o dtj epdV J ep(V, - n)

cv Ccs

(5-50)

Substituting the left-hand side of Eq. 549 into Eq. 5-50, the general form
of the energy equation that applies to fixed, moving, or deforming control
volumes becomes

. . . d — -
Qnel in + Wshaft, net in + Wpressure, netin — . J ep dV + J eP(Vr : n) dA (5_51)
dt Ccv CS

which can be stated as

The net rate of energy The time rate of The net flow rate of

transfer into a CV by | = [ change of the energy | + [ energy out of the control

heat and work transfer content of the CV surface by mass flow
Here V =V - VCS is the fluid velocity relative to the control surface, and
the product p(V 1) dA represents the mass flow rate through area element
dA into or out of the control volume. Again noting that 77 is the outer normal
of dA, the quantity V, - n and thus mass flow is positive for outflow and
negative for inflow.

Substituting the surface integral for the rate of pressure work from Eq. 547
into Eq. 5-51 and combining it with the surface integral on the right give

Qnet in + Wshafl, netin — % J ep dV + J (g + e>p(Vr . 71) dA (5_52)
Ccv CS
This is a very convenient form for the energy equation since pressure work
is now combined with the energy of the fluid crossing the control surface
and we no longer have to deal with pressure work.

The term P/p = PV = wy,, is the flow work, which is the work per unit
mass associated with pushing a fluid into or out of a control volume. Note
that the fluid velocity at a solid surface is equal to the velocity of the solid
surface because of the no-slip condition. As a result, the pressure work
along the portions of the control surface that coincide with nonmoving solid
surfaces is zero. Therefore, pressure work for fixed control volumes can
exist only along the imaginary part of the control surface where the fluid
enters and leaves the control volume, i.e., inlets and outlets.

_Fora fixed control volume (no motion or deformation of control volume),
V, = V and the energy equation Eq. 5-52 becomes

. : d P S
Fixed CV: Qnel in + Wshaﬂ netin — j ep av + j (7 + L))p(v : n) dA (5-53)
’ dt (6)% CS p

This equation is not in a convenient form for solving practical engineering
problems because of the integrals, and thus it is desirable to rewrite it in
terms of average velocities and mass flow rates through inlets and outlets. If
Pl/p + e is nearly uniform across an inlet or outlet, we can simply take it
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The conservation of energy equation
is obtained by replacing B in the
Reynolds transport theorem by
energy E and b by e.
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In a typical engineering problem, the
control volume may contain many
inlets and outlets; energy flows in at
each inlet, and energy flows out at
each outlet. Energy also enters the
control volume through net heat
transfer and net shaft work.
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FIGURE 5-45
A control volume with only one inlet

and one outlet and energy interactions.

outside the integral. Noting that m = j p(\7- n) dA, is the mass flow rate
A,

across an inlet or outlet, the rate of inflow or outflow of energy through the

inlet or outlet can be approximated as m(P/p + e). Then the energy equa-

tion becomes (Fig. 5-44)
(P
m(* + e) (5-54)
p

. . d
Qnelin + Wshaft,netin = J ep dv + 2 < + 6’) - E
dt cvV out p in
where e = u + V%2 + gz (Eq. 5-43) is the total energy per unit mass for
both the control volume and flow streams. Then,

+u+-—+gz

. . d V- ) P VZ
antin+WShaft,ncIinvaePdV+ Em<p+u+2+gz) %m(p >

out

(5-55)

or

o)

n

. . d V2
anlin + Wshuft netin — . ‘[ ep dV + E m<h ++ gz)
’ dr ), 2

out

(5-56)

where we used the definition of enthalpy # = u + Pv = u + P/p. The last
two equations are fairly general expressions of conservation of energy, but
their use is still limited to fixed control volumes, uniform flow at inlets and
outlets, and negligible work due to viscous forces and other effects. Also,
the subscript “net in” stands for “net input,” and thus any heat or work
transfer is positive if fo the system and negative if from the system.

5-6 = ENERGY ANALYSIS OF STEADY FLOWS

For steady flows, the time rate of change of the energy content of the con-
trol volume is zero, and Eq. 5-56 simplifies to

Em( +—+gz) Em( +K2+gz> (5-57)

out

Qnet in + Wshaft, netin

It states that the net rate of energy transfer to a control volume by heat and
work transfers during steady flow is equal to the difference between the
rates of outgoing and incoming energy flows with mass.

Many practical problems involve just one inlet and one outlet (Fig. 5-45).
The mass flow rate for such single-stream devices remains constant, and
Eq. 5-57 reduces to

2 V%
+ 8z — 21)

Orevin T Winatt netin = n'1(h2 —ht (5-58)

where subscripts 1 and 2 refer to the inlet and outlet, respectively. The

steady-flow energy equation on a unit-mass basis is obtained by dividing
Eq. 5-58 by the mass flow rate 1,

2 _ V%

* 8z —21)

Gretin + Wshafl, netin h2 - hl + (5—59)



where ¢, i, = _Q'nel .,/m 1s the net heat transfer to the fluid per unit mass and
Wihatt, net in — Wenaft, net i/ 18 the net shaft work input to the fluid per unit
mass. Using the definition of enthalpy 7 = u + P/p and rearranging, the
steady-flow energy equation can also be expressed as

PV

T P, V3
shaft, net in + E + ? + 821 = E + 7 + 82 + (MZ —u; — qnelin) (5_60)

w,
where u is the internal energy, Plp is the flow energy, V?/2 is the kinetic
energy, and gz is the potential energy of the fluid, all per unit mass. These
relations are valid for both compressible and incompressible flows.

The left side of Eq. 5-60 represents the mechanical energy input, while the
first three terms on the right side represent the mechanical energy output. If
the flow is 1deal with no irreversibilities such as friction, the total mechanical
energy must be conserved, and the term in parentheses (1, — u; — ¢, in)
must equal zero. That is,

Ideal flow (no mechanical energy loss): Quetin = U — Uy (5-61)

Any increase in u, — u, above ¢, ;, is due to the irreversible conversion of
mechanical energy to thermal energy, and thus u, — u; — g, ;, represents
the mechanical energy loss (Fig. 5-46). That is,

Mechanical energy loss: Crnech. loss = U2 — U1 — Guerin (5-62)

For single-phase fluids (a gas or a liquid), we have u, — u;, = ¢ (T, — T})
where ¢, is the constant-volume specific heat.

The steady-flow energy equation on a unit-mass basis can be written con-
veniently as a mechanical energy balance as

€mech,in = €mech, out T €mech, loss (5-63)
or
w. ,+i+ﬁ+ :&4—&%4— + €mech, loss (5-64)
sha, netin ) T T 82 0, 2 822 T €mech, loss
Noting that Wy netin = Wpump — Wrbines the mechanical energy balance can

be written more explicitly as

P Vi P, V3
; + E + 821 + M)pump = ; + ? + 822 + Whurbine + €mech, loss (5-65)
1 2

where w,,,, is the mechanical work input (due to the presence of a pump,

fan, compressor, etc.) and wy ;. is the mechanical work output (due to a
turbine). When the flow is incompressible, either absolute or gage pressure
can be used for P since P, /p would appear on both sides and would can-
cel out.

Multiplying Eq. 5-65 by the mass flow rate m gives

(P, V? - (P, V3 5 :
m|— +— + 274 + Wpump =m|—+_—+ 822 + W[urbinc + Emcch, loss (5-66)
P1 2 P2 2

where Vi{mmp is the shaft power input through the pump’s shaft, W, is the

shaft power output through the turbine’s shaft, and E is the total

mech, loss
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0.7 kg/s
(/
15.2°C
P Au=0.84ki/ke
AT =0.2°C
2 kW
npump = 0'70
15.0°C
Water
FIGURE 5-46

The lost mechanical energy in a fluid
flow system results in an increase in
the internal energy of the fluid and
thus in a rise of fluid temperature.
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FIGURE 5-47

Mechanical energy flow chart for
a fluid flow system that involves
a pump and a turbine. Vertical
dimensions show each energy
term expressed as an equivalent
column height of fluid, i.e., head,
corresponding to each term

of Eq. 5-67.

mechanical power loss, which consists of pump and turbine losses as well as
the frictional losses in the piping network. That is,
Emech, loss — E + Emech loss, turbine +E

mech loss, pump ‘mech loss, piping

By convention, irreversible pump and turbine losses are treated separately
from irreversible losses due to other components of the piping system. Thus
the energy equation can be expressed in its most common form in terms of
heads by dividing each term in Eq. 5-66 by mg. The result is

P Vi P, V3

L v =2+ 24,+h
2g 21 2g Fe)

pump, u turbine, e + hL (5-67)
P18 P28

where )
N w
pump, u g - mg

to the fluid by the pump. Because of irreversible losses in the pump,
h is less than /mg by the factor 1.

oo MpumpWpump . :
R~ PP PR S the useful head delivered

pump, u pump

Wturbine, e Wturbine, e Wturbine .
Nerbine, e = = = — 18 the extracted head removed

8 mg NturbineE8
from the fluid by the turbine. Because of irreversible losses in the
turbine, A is greater than W,,,;../mg by the factor 1, in-

urbine
€mech loss, piping E
8 mg

1 and 2 due to all components of the piping system other than the pump
or turbine.

turbine, e

mech loss, piping .

° h = is the irreversible head loss between

Note that the head loss h; represents the frictional losses associated with
fluid flow in piping, and it does not include the losses that occur within the
pump or turbine due to the inefficiencies of these devices—these losses are
taken into account by 7, and 1,.. Equation 5-67 is illustrated sche-
matically in Fig. 5-47.

The pump head is zero if the piping system does not involve a pump, a
fan, or a compressor, and the furbine head is zero if the system does not
involve a turbine.

W Control volume W[urbine

] / P

Emech loss,
turbine

mech loss, pump

Emech fluid, out

P, V3
—+ =4z
pg 2g *

his .
—V Emech loss, piping

Ernech 1 d,in) |=—*+ 5=t




Special Case: Incompressible Flow with No
Mechanical Work Devices and Negligible Friction

When piping losses are negligible, there is negligible dissipation of mechan-
ical energy into thermal energy, and thus /i, = €. 1055, piping/8 = 0. Also,
hoump, u = Myurbine, e = O When there are no mechanical work devices such as

fans, pumps, or turbines. Then Eq. 5-67 reduces to

P, Vi P, V3 p Vv

—t —+z=—+t—+2z or — 4+ — + z = constant  (5-68)

pg 28 rg 28 P 28
which is the Bernoulli equation derived earlier using Newton’s second law
of motion. Thus, the Bernoulli equation can be thought of as a degenerate
form of the energy equation.

Kinetic Energy Correction Factor, «
The average flow velocity V,,, was defined such that the relation pV, A gives
the actual mass flow rate. Therefore, there is no such thing as a correction fac-
tor for mass flow rate. However, as Gaspard Coriolis (1792-1843) showed,
the kinetic energy of a fluid stream obtained from V?/2 is not the same as the
actual kinetic energy of the fluid stream since the square of a sum is not equal
to the sum of the squares of its components (Fig. 5-48). This error can be cor-
rected by replacing the kinetic energy terms V22 in the energy equation by
aV,fvg/Z, where « is the kinetic energy correction factor. By using equations
for the variation of velocity with the radial distance, it can be shown that the
correction factor is 2.0 for fully developed laminar pipe flow, and it ranges
between 1.04 and 1.11 for fully developed turbulent flow in a round pipe.
The kinetic energy correction factors are often ignored (i.e., « is set equal
to 1) in an elementary analysis since (1) most flows encountered in practice
are turbulent, for which the correction factor is near unity, and (2) the kinetic
energy terms are often small relative to the other terms in the energy equa-
tion, and multiplying them by a factor less than 2.0 does not make much
difference. When the velocity and thus the kinetic energy are high, the flow
turns turbulent, and a unity correction factor is more appropriate. However,
you should keep in mind that you may encounter some situations for which
these factors are significant, especially when the flow is laminar. Therefore,
we recommend that you always include the kinetic energy correction factor
when analyzing fluid flow problems. When the kinetic energy correction
factors are included, the energy equations for steady incompressible flow
(Egs. 5-66 and 5-67) become

2

(P Vi . (P, V3 . .
m ; + o, E + 871 + VV])ump =m ; + 2%) ? + 822 + Verbine + Emech, loss

(5-69)

P, V? P, V3
— 4 a—+z, t+h =—+4a—+z,+h
2¢g P8 2g

08 pump, u turbine, e + hL (5-70)

If the flow at an inlet or outlet is fully developed turbulent pipe flow, we
recommend using & = 1.05 as a reasonable estimate of the correction fac-
tor. This leads to a more conservative estimate of head loss, and it does not
take much additional effort to include « in the equations.
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A V(r)
—_—
= pV,A, p = constant

avg

KEact :[keam = [A % V2 (N[pV(r) dA]

=1 pfAV3(r) dA

2
KEu.= L mv2 =1 pav3
g ag= o avg
. KE, o =L[ <V(r)>3dA
KEavg A Van
FIGURE 5-48

The determination of the kinetic
energy correction factor using the
actual velocity distribution V(r) and
the average velocity V,,, at a cross
section.
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Water
T 50L/s

300 kPa

Mmotor = 90%

Motor
15 kW

FIGURE 549

Schematic for Example 5-8.

EXAMPLE 5-8 Pumping Power and Frictional Heating

in a Pump

The pump of a water distribution system is powered by a 15-kW electric
motor whose efficiency is 90 percent (Fig. 5-49). The water flow rate
through the pump is 50 L/s. The diameters of the inlet and outlet pipes are
the same, and the elevation difference across the pump is negligible. If the
absolute pressures at the inlet and outlet of the pump are measured to be
100 kPa and 300 kPa, respectively, determine (a) the mechanical efficiency
of the pump and (b) the temperature rise of water as it flows through the
pump due to the mechanical inefficiency.

SOLUTION The pressures across a pump are measured. The mechanical effi-
ciency of the pump and the temperature rise of water are to be determined.
Assumptions 1 The flow is steady and incompressible. 2 The pump is driven
by an external motor so that the heat generated by the motor is dissipated to
the atmosphere. 3 The elevation difference between the inlet and outlet of
the pump is negligible, z; = z,. 4 The inlet and outlet diameters are the
same and thus the average inlet and outlet velocities are equal, V; = V,.
5 The kinetic energy correction factors are equal, a; = as.

Properties We take the density of water to be 1 kg/L = 1000 kg/m3 and its
specific heat to be 4.18 kJ/kg - °C.

Analysis (a) The mass flow rate of water through the pump is

m= pV = (1 kg/L)(50 L/s) = 50 kg/s
The motor draws 15 kW of power and is 90 percent efficient. Thus the
mechanical (shaft) power it delivers to the pump is
Wpump, shaft — nmotorwelectric = (090)(15 kW) = 13.5kW

To determine the mechanical efficiency of the pump, we need to know the
increase in the mechanical energy of the fluid as it flows through the pump,
which is

: : : (P> Vi (P vi
AE‘mech,ﬂuid = Emech,out - Emech,in =m ; + aZ? + gZZ -m ; + al 7 + gzl

Simplifying it for this case and substituting the given values,

. P,—P 300 — 100) kP
AE e nuia = m<72 l> ~ (50 kg/s)<( L a)( .
' p 1000 kg/m

Then the mechanical efficiency of the pump becomes

174 !
npump - pump, u _ AE mech, fluid _ 100 kW 0741 or 741%
WP“qu shaft Wpump, shaft 13.5kW
(b) Of the 13.5-kW mechanical power supplied by the pump, only 10.0 kW
is imparted to the fluid as mechanical energy. The remaining 3.5 kW is con-
verted to thermal energy due to frictional effects, and this “lost” mechanical
energy manifests itself as a heating effect in the fluid,

E = W pump, shatt — AE mech, g = 13.5 — 10.0 = 3.5kW

oy m3> =10.0 kW

mech, loss

The temperature rise of water due to this mechanical inefficiency is deter-
mined from the thermal energy balance, E .. oss = MUy — U7) = mcAT.
Solving for AT,



Emech, loss _ 35 kW

AT = —mehlow .
me (50 kg/s)(@.18 k/kg - °C)

= 0.017°C

Therefore, the water experiences a temperature rise of 0.017°C due to me-
chanical inefficiency, which is very small, as it flows through the pump.
Discussion In an actual application, the temperature rise of water will prob-
ably be less since part of the heat generated will be transferred to the casing
of the pump and from the casing to the surrounding air. If the entire pump
motor were submerged in water, then the 1.5 kW dissipated to the air due to
motor inefficiency would also be transferred to the surrounding water as
heat. This would cause the water temperature to rise more.

EXAMPLE 5-9 Hydroelectric Power Generation from a Dam

In a hydroelectric power plant, 100 m3/s of water flows from an elevation of
120 m to a turbine, where electric power is generated (Fig. 5-50). The total
irreversible head loss in the piping system from point 1 to point 2 (excluding
the turbine unit) is determined to be 35 m. If the overall efficiency of the
turbine—generator is 80 percent, estimate the electric power output.

SOLUTION The available head, flow rate, head loss, and efficiency of a hydro-
electric turbine are given. The electric power output is to be determined.
Assumptions 1 The flow is steady and incompressible. 2 Water levels at the
reservoir and the discharge site remain constant.

Properties We take the density of water to be 1000 kg/m3.

Analysis The mass flow rate of water through the turbine is

m = pV = (1000 kg/m*)(100 m*/s) = 10° kg/s

We take point 2 as the reference level, and thus z, = 0. Also, both points 1
and 2 are open to the atmosphere (P, = P, = P,,) and the flow velocities
are negligible at both points (V; = V, = 0). Then the energy equation for
steady, incompressible flow reduces to

p : 0 _»p ;A
Zé—i— (e5} % + 21 + hPump, u = g + 2% 2 + 22 + hturbine,e + hL
or h 21 — hL

turbine,e:
Substituting, the extracted turbine head and the corresponding turbine
power are

h =z —h =120-35=85m

. . s 5 1 kJ/kg
erbine,g = mghmrbine,e = (10 kg/S)(9.81 m/s )(85 m) m = 83,400 kW

turbine, e

Therefore, a perfect turbine—generator would generate 83,400 kW of elec-
tricity from this resource. The electric power generated by the actual unit is
14 W, = (0.80)(83.4 MW) = 66.7 MW

electric — nlurbine—gen turbine, e

Discussion Note that the power generation would increase by almost 1 MW
for each percentage point improvement in the efficiency of the turbine—
generator unit. You will learn how to estimate A, in Chap. 8.
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Generator
nturbine—gen

=80%

FIGURE 5-50
Schematic for Example 5-9.
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FIGURE 5-51

Schematic for Example 5-10.

EXAMPLE 5-10 Fan Selection for Air Cooling of a Computer

A fan is to be selected to cool a computer case whose dimensions are 12 cm
X 40 cm X 40 cm (Fig. 5-51). Half of the volume in the case is expected
to be filled with components and the other half to be air space. A 5-cm-
diameter hole is available at the back of the case for the installation of the
fan that is to replace the air in the void spaces of the case once every sec-
ond. Small low-power fan—-motor combined units are available in the market
and their efficiency is estimated to be 30 percent. Determine (a) the wattage
of the fan—motor unit to be purchased and (b) the pressure difference across
the fan. Take the air density to be 1.20 kg/m3.

SOLUTION A fan is to cool a computer case by completely replacing the air
inside once every second. The power of the fan and the pressure difference
across it are to be determined.

Assumptions 1 The flow is steady and incompressible. 2 Losses other than
those due to the inefficiency of the fan—-motor unit are negligible. 3 The flow
at the outlet is fairly uniform except near the center (due to the wake of the
fan motor), and the kinetic energy correction factor at the outlet is 1.10.
Properties The density of air is given to be 1.20 kg/m3.

Analysis (a) Noting that half of the volume of the case is occupied by the
components, the air volume in the computer case is

V = (Void fraction)(Total case volume)
= 0.5(12 cm X 40 cm X 40 cm) = 9600 cm®
Therefore, the volume and mass flow rates of air through the case are

_ X ~ 9600 cm’
At 1s

m = pV = (1.20 kg/m*)(9.6 X 1073 m¥/s) = 0.0115 kg/s

= 9600 cm®/s = 9.6 X 103 m%/s

The cross-sectional area of the opening in the case and the average air
velocity through the outlet are

. wD* _ m(0.05 m)?
4 4
V_9.6X 1073 m¥s

AT 196 x 102 m roomhs

A =1.96 X 10 > m?

We draw the control volume around the fan such that both the inlet and the
outlet are at atmospheric pressure (P, = P, = P,.), as shown in Fig. 5-51,
and the inlet section 1 is large and far from the fan so that the flow velocity
at the inlet section is negligible (V; = 0). Noting that z; = z, and frictional
losses in flow are disregarded, the mechanical losses consist of fan losses
only and the energy equation (Eq. 5-69) simplifies to

0
(P v : (B V3 . A0
m(% + al? +/gf1 + Wfan =m b + Cl27 + % + Wturbfe + Emech loss, fan

Solving for VI'/fan =

; Kg—(00115k/)(1 10)(4'9()“1/5)2( IN
(TR E 2 1 kg - m/s

Emech s, = Wfam , and substituting,

Wi o = 2) =0.152W
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Then the required electric power input to the fan is determined to be

Wfan,u _ 0152 \%%
Mfan-motor 0.3

Welect =

= 0.506 W

Therefore, a fan—-motor rated at about a half watt is adequate for this job.

(b) To determine the pressure difference across the fan unit, we take points
3 and 4 to be on the two sides of the fan on a horizontal line. This time
again z; = z, and V3 = V, since the fan is a narrow cross section, and the

energy equation reduces to

Wi g o_ .4 -
m;-f- Wfan—m;_’_Emechloss,fan -

Solving for P, — P; and substituting,

Wfan, u=

P, — Py =

m 0.0115 kg/s 1 Ws

Therefore, the pressure rise across the fan is 15.8 Pa.

PWiaw (12 kg/m*)(0.152 W) (1 Pa-m’

Py — Py
Wm—_

p

) = 15.8 Pa

Discussion The efficiency of the fan-motor unit is given to be 30 percent,
which means 30 percent of the electric power W, .., consumed by the unit
is converted to useful mechanical energy while the rest (70 percent) is
“lost” and converted to thermal energy. Also, a more powerful fan is required
in an actual system to overcome frictional losses inside the computer case.
Note that if we had ignored the kinetic energy correction factor at the outlet,
the required electrical power and pressure rise would have been 10 percent

lower in this case (0.460 W and 14.4 Pa, respectively).

SUMMARY

This chapter deals with the mass, Bernoulli, and energy equa-
tions and their applications. The amount of mass flowing
through a cross section per unit time is called the mass flow
rate and is expressed as

m :pVAC:pV

where p is the density, V is the average velocity, V is the vol-
ume flow rate of the fluid, and A, is the cross-sectional area
normal to the flow direction. The conservation of mass rela-
tion for a control volume is expressed as

d N
*J’ pd\/+J p(V-n)dA =0 or
dt Jey cs

It states that the time rate of change of the mass within the
control volume plus the net mass flow rate through the con-
trol surface is equal to zero.

For steady-flow devices, the conservation of mass principle
is expressed as

Steady flow: E m= E m

out

Steady flow (single stream):

my=n, —  p VA

Sv=2XvV

out

= pVoA,
Steady, incompressible flow:

Steady, incompressible flow (single stream):
\./1 = \./2 —> VlAl = V2A2

The mechanical energy is the form of energy associated with
the velocity, elevation, and pressure of the fluid, and it can be
converted to mechanical work completely and directly by an



CHAPTER 5

ideal mechanical device. The efficiencies of various devices
are defined as

AEmech, fluid Wpump, u

Mpump =
Wshaft, in Wpump

Wshal'l, out Wturbine

|AE mech, ﬂuid| Wturbine, e

Mechanical power output W gus our

Mmotor — .
Welect, in

Turbine —

Electric power input

Electric power output — Wejeer, out

ngeneralor -

Mechanical power input Wshaf[ in

AEmech, fluid _ Wpump, u
Welect, in Welect, in

Mpump-motor — Tlpump?motor =

Welecl, out Welect, out

‘AEmech, ﬂuid| Wturbine, e

nturbinc—gcn = nturbincngcncrator -

The Bernoulli equation is a relation between pressure, veloc-
ity, and elevation in steady, incompressible flow, and is
expressed along a streamline and in regions where net vis-
cous forces are negligible as

P + v + = t

P gz = constant
The Bernoulli equation is an expression of mechanical energy
balance and can be stated as: The sum of the kinetic, poten-
tial, and flow energies of a fluid particle is constant along a
streamline during steady flow when the compressibility and
frictional effects are negligible. Multiplying the Bernoulli
equation by density gives

V2
P+p E + pgz = constant

where P is the static pressure, which represents the actual
pressure of the fluid; pV?/2 is the dynamic pressure, which
represents the pressure rise when the fluid in motion is
brought to a stop; and pgz is the hydrostatic pressure, which
accounts for the effects of fluid weight on pressure. The sum
of the static, dynamic, and hydrostatic pressures is called the
total pressure. The Bernoulli equation states that the rotal
pressure along a streamline is constant. The sum of the static
and dynamic pressures is called the stagnation pressure,

which represents the pressure at a point where the fluid is
brought to a complete stop in a frictionless manner. The
Bernoulli equation can also be represented in terms of
“heads” by dividing each term by g,

PV

— + — + z = H = constant

Pg 28

where P/pg is the pressure head, which represents the height
of a fluid column that produces the static pressure P; V?/2g is
the velocity head, which represents the elevation needed for a
fluid to reach the velocity V during frictionless free fall; and z
is the elevation head, which represents the potential energy
of the fluid. Also, H is the total head for the flow. The curve
that represents the sum of the static pressure and the eleva-
tion heads, P/pg + z, is called the hydraulic grade line (HGL),
and the curve that represents the total head of the fluid, P/pg
+ V2/2¢ + z, is called the energy grade line (EGL).

The energy equation for steady, incompressible flow is ex-
pressed as

P, Vi

—ta—+z th
. pump, u
P8 2g
Py Vi
=—+ a2? + 2 + hturbine,e + hL
P8 8
where
Wpump, u Wpump, u npumprump
hpump,u - - . - .
8 mg mg
_ Wiurbine, e _ Wturbine,e _ Wlurbine
hturbinc, e - . - .
8 mg TNurbine/ME
h €mech loss, piping Emech loss, piping
L — = .
8 mg
emech, loss — Uy — Up — qnel in

The mass, Bernoulli, and energy equations are three of the
most fundamental relations in fluid mechanics, and they are
used extensively in the chapters that follow. In Chap. 6, either
the Bernoulli equation or the energy equation is used together
with the mass and momentum equations to determine the
forces and torques acting on fluid systems. In Chap. 8, the
mass and energy equations are used to determine the pumping
power requirements in fluid systems and in the design and
analysis of turbomachinery. In Chap. 11, the energy equation is
also used to some extent in the analysis of open-channel flow.

1. R. C. Dorf, ed. in chief. The Engineering Handbook. Boca
Raton, FL: CRC Press, 1995.

2. R. L. Panton. Incompressible Flow, 2nd ed. New York:
Wiley, 1996.

3. M. Van Dyke. An Album of Fluid Motion. Stanford, CA:
The Parabolic Press, 1982.
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Conservation of Mass

5-1C Name four physical quantities that are conserved and
two quantities that are not conserved during a process.

5-2C Define mass and volume flow rates. How are they
related to each other?

5-3C Does the amount of mass entering a control volume
have to be equal to the amount of mass leaving during an
unsteady-flow process?

5-4C  When is the flow through a control volume steady?

5-5C Consider a device with one inlet and one outlet. If the
volume flow rates at the inlet and at the outlet are the same,
is the flow through this device necessarily steady? Why?

5-6E A garden hose attached with a nozzle is used to fill a
20-gal bucket. The inner diameter of the hose is 1 in and it
reduces to 0.5 in at the nozzle exit. If the average velocity in
the hose is 8 ft/s, determine (a) the volume and mass flow
rates of water through the hose, (b) how long it will take to
fill the bucket with water, and (c) the average velocity of
water at the nozzle exit.

5-7 Air enters a nozzle steadily at 2.21 kg/m? and 30 m/s
and leaves at 0.762 kg/m? and 180 m/s. If the inlet area of the
nozzle is 80 cm?, determine (a) the mass flow rate through
the nozzle, and (b) the exit area of the nozzle. Answers:
(a) 0.530 kg/s, (b) 38.7 cm?

5-8 A hair dryer is basically a duct of constant diameter in
which a few layers of electric resistors are placed. A small

-—

1.05 kg/m3 |—\/\/\/\_|

FIGURE P5-8

1.20 kg/m?

* Problems designated by a “C” are concept questions, and students
are encouraged to answer them all. Problems designated by an “E”
are in English units, and the Sl users can ignore them. Problems
with the @ icon are solved using EES, and complete solutions
together with parametric studies are included on the enclosed DVD.
Problems with the icon are comprehensive in nature and are
intended to be solved with a computer, preferably using the EES
software that accompanies this text.

fan pulls the air in and forces it through the resistors where it
is heated. If the density of air is 1.20 kg/m? at the inlet and
1.05 kg/m? at the exit, determine the percent increase in the
velocity of air as it flows through the dryer.

5-9E Air whose density is 0.078 Ibm/ft’ enters the duct
of an air-conditioning system at a volume flow rate of 450
ft3/min. If the diameter of the duct is 10 in, determine the
velocity of the air at the duct inlet and the mass flow rate
of air.

5-10 A 1-m? rigid tank initially contains air whose density
is 1.18 kg/m3. The tank is connected to a high-pressure sup-
ply line through a valve. The valve is opened, and air is
allowed to enter the tank until the density in the tank rises to
7.20 kg/m®. Determine the mass of air that has entered the
tank. Answer: 6.02 kg

5-11 The ventilating fan of the bathroom shown in Fig.
P5-11 has a volume flow rate of 30 L/s and runs continu-
ously. If the density of air inside is 1.20 kg/m?, determine the
mass of air vented out in one day.

30L/s

!

Fan =
Bathroom / K
22°C
FIGURE P5-11

5-12 A desktop computer is to be cooled by a fan whose
flow rate is 0.34 m3/min. Determine the mass flow rate of air
through the fan at an elevation of 3400 m where the air den-
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sity is 0.7 kg/m>. Also, if the average velocity of air is not to
exceed 110 m/min, determine the diameter of the casing of
the fan. Answers: 0.238 kg/min, 0.063 m

Air
outlet = |
Air

inlet
I~

Exhaust
fan

FIGURE P5-12

5-13 A smoking lounge is to accommodate 15 heavy
smokers. The minimum fresh air requirement for smoking
lounges is specified to be 30 L/s per person (ASHRAE, Stan-
dard 62, 1989). Determine the minimum required flow rate of
fresh air that needs to be supplied to the lounge, and the
diameter of the duct if the air velocity is not to exceed 8 m/s.

Smoking
lounge

15 smokers

FIGURE P5-13

5-14 The minimum fresh air requirement of a residential
building is specified to be 0.35 air change per hour
(ASHRAE, Standard 62, 1989). That is, 35 percent of the

entire air contained in a residence should be replaced by
fresh outdoor air every hour. If the ventilation requirement of
a 2.7-m-high, 200-m? residence is to be met entirely by a fan,
determine the flow capacity in L/min of the fan that needs to
be installed. Also determine the diameter of the duct if the
average air velocity is not to exceed 6 m/s.

Mechanical Energy and Efficiency

5-15C What is mechanical energy? How does it differ from
thermal energy? What are the forms of mechanical energy of
a fluid stream?

5-16C What is mechanical efficiency? What does a mechan-
ical efficiency of 100 percent mean for a hydraulic turbine?

5-17C How is the combined pump-motor efficiency of a
pump and motor system defined? Can the combined pump—
motor efficiency be greater than either the pump or the motor
efficiency?

5-18C Define turbine efficiency, generator efficiency, and
combined turbine—generator efficiency.

5-19 Consider a river flowing toward a lake at an average
velocity of 3 m/s at a rate of 500 m*s at a location 90 m
above the lake surface. Determine the total mechanical energy
of the river water per unit mass and the power generation
potential of the entire river at that location. Answer: 444 MW

River s 3 m/s

FIGURE P5-19

5-20 Electric power is to be generated by installing a
hydraulic turbine—generator at a site 70 m below the free
surface of a large water reservoir that can supply water at a
rate of 1500 kg/s steadily. If the mechanical power output of
the turbine is 800 kW and the electric power generation is
750 kW, determine the turbine efficiency and the combined
turbine—generator efficiency of this plant. Neglect losses in
the pipes.

5-21 At a certain location, wind is blowing steadily at
12 m/s. Determine the mechanical energy of air per unit mass
and the power generation potential of a wind turbine with
50-m-diameter blades at that location. Also determine the
actual electric power generation assuming an overall effi-
ciency of 30 percent. Take the air density to be 1.25 kg/m>.



5-22 Reconsider Prob. 5-21. Using EES (or other)

=== software, investigate the effect of wind velocity
and the blade span diameter on wind power generation. Let
the velocity vary from 5 to 20 m/s in increments of 5 m/s,
and the diameter to vary from 20 to 80 m in increments of
20 m. Tabulate the results, and discuss their significance.

5-23E A differential thermocouple with sensors at the inlet
and exit of a pump indicates that the temperature of water rises
0.072°F as it flows through the pump at a rate of 1.5 ft¥/s. If
the shaft power input to the pump is 27 hp, determine the
mechanical efficiency of the pump. Answer: 64.7 percent

AT =0.072°F
—

Pump

FIGURE P5-23E

5-24 Water is pumped from a lake to a storage tank 20 m
above at a rate of 70 L/s while consuming 20.4 kW of elec-
tric power. Disregarding any frictional losses in the pipes and
any changes in kinetic energy, determine (a) the overall effi-
ciency of the pump—motor unit and (b) the pressure differ-
ence between the inlet and the exit of the pump.

Storage tank

20 m

Pump

FIGURE P5-24

Bernoulli Equation

5-25C What is streamwise acceleration? How does it differ
from normal acceleration? Can a fluid particle accelerate in
steady flow?

5-26C Express the Bernoulli equation in three different
ways using (a) energies, (b) pressures, and (c) heads.

5-27C What are the three major assumptions used in the
derivation of the Bernoulli equation?

5-28C Define static, dynamic, and hydrostatic pressure.
Under what conditions is their sum constant for a flow
stream?
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5-29C What is stagnation pressure? Explain how it can be
measured.

5-30C Define pressure head, velocity head, and elevation
head for a fluid stream and express them for a fluid stream
whose pressure is P, velocity is V, and elevation is z.

5-31C What is the hydraulic grade line? How does it differ
from the energy grade line? Under what conditions do both
lines coincide with the free surface of a liquid?

5-32C How is the location of the hydraulic grade line deter-
mined for open-channel flow? How is it determined at the
outlet of a pipe discharging to the atmosphere?

5-33C The water level of a tank on a building roof is 20 m
above the ground. A hose leads from the tank bottom to the
ground. The end of the hose has a nozzle, which is pointed
straight up. What is the maximum height to which the water
could rise? What factors would reduce this height?

5-34C 1In a certain application, a siphon must go over a
high wall. Can water or oil with a specific gravity of 0.8 go
over a higher wall? Why?

5-35C Explain how and why a siphon works. Someone
proposes siphoning cold water over a 7-m-high wall. Is this
feasible? Explain.

5-36C A student siphons water over a 8.5-m-high wall at
sea level. She then climbs to the summit of Mount Shasta
(elevation 4390 m, P,,, = 58.5 kPa) and attempts the same
experiment. Comment on her prospects for success.

5-37C A glass manometer with oil as the working fluid
is connected to an air duct as shown in Fig. P5-37C. Will
the oil levels in the manometer be as in Fig. P5-37Ca or b?
Explain. What would your response be if the flow direction is
reversed?

Flow Flow

(a) )
FIGURE P5-37C

5-38C The velocity of a fluid flowing in a pipe is to be
measured by two different Pitot-type mercury manometers
shown in Fig. P5-38C. Would you expect both manometers
to predict the same velocity for flowing water? If not, which
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would be more accurate? Explain. What would your response
be if air were flowing in the pipe instead of water?

FIGURE P5-38C

5-39 In cold climates, water pipes may freeze and burst if
proper precautions are not taken. In such an occurrence, the
exposed part of a pipe on the ground ruptures, and water
shoots up to 34 m. Estimate the gage pressure of water in the
pipe. State your assumptions and discuss if the actual pres-
sure is more or less than the value you predicted.

5-40 A Pitot-static probe is used to measure the velocity of
an aircraft flying at 3000 m. If the differential pressure read-
ing is 3 kPa, determine the velocity of the aircraft.

5-41 While traveling on a dirt road, the bottom of a car hits
a sharp rock and a small hole develops at the bottom of its
gas tank. If the height of the gasoline in the tank is 30 cm,
determine the initial velocity of the gasoline at the hole. Dis-
cuss how the velocity will change with time and how the flow
will be affected if the lid of the tank is closed tightly.
Answer: 2.43 m/s

5-42E The drinking water needs of an office are met

by large water bottles. One end of a 0.25-in-
diameter plastic hose is inserted into the bottle placed on a
high stand, while the other end with an on/off valve is main-
tained 2 ft below the bottom of the bottle. If the water level

H 1.5 ft

Water

2 ft

U

FIGURE P5—42E

in the bottle is 1.5 ft when it is full, determine how long it
will take at the minimum to fill an 8-oz glass (= 0.00835 ft?)
(a) when the bottle is first opened and (b) when the bottle is
almost empty. Neglect frictional losses.

5-43 A piezometer and a Pitot tube are tapped into a 3-cm-
diameter horizontal water pipe, and the height of the water
columns are measured to be 20 cm in the piezometer and
35 cm in the Pitot tube (both measured from the top surface
of the pipe). Determine the velocity at the center of the pipe.

5-44 The diameter of a cylindrical water tank is D, and its
height is H. The tank is filled with water, which is open to the
atmosphere. An orifice of diameter D with a smooth entrance
(i.e., no losses) is open at the bottom. Develop a relation for
the time required for the tank (a) to empty halfway and () to
empty completely.

5-45 A pressurized tank of water has a 10-cm-diameter ori-
fice at the bottom, where water discharges to the atmosphere.
The water level is 3 m above the outlet. The tank air pressure
above the water level is 300 kPa (absolute) while the atmos-
pheric pressure is 100 kPa. Neglecting frictional effects,
determine the initial discharge rate of water from the tank.

Answer: 0.168 m3/s
Air

10 cm

\_/%'}:;

FIGURE P5-45

5-46 Reconsider Prob. 5-45. Using EES (or other)

=== software, investigate the effect of water height in
the tank on the discharge velocity. Let the water height vary
from O to 5 m in increments of 0.5 m. Tabulate and plot the
results.

5-47E A siphon pumps water from a large reservoir to a
lower tank that is initially empty. The tank also has a rounded
orifice 15 ft below the reservoir surface where the water
leaves the tank. Both the siphon and the orifice diameters are
2 in. Ignoring frictional losses, determine to what height the
water will rise in the tank at equilibrium.

5-48 Water enters a tank of diameter D, steadily at a mass
flow rate of m;,. An orifice at the bottom with diameter D,
allows water to escape. The orifice has a rounded entrance, so



FIGURE P5-48

the frictional losses are negligible. If the tank is initially
empty, (a) determine the maximum height that the water will
reach in the tank and (b) obtain a relation for water height z
as a function of time.

5-49E Water flows through a horizontal pipe at a rate of 1
gal/s. The pipe consists of two sections of diameters 4 in and
2 in with a smooth reducing section. The pressure difference
between the two pipe sections is measured by a mercury
manometer. Neglecting frictional effects, determine the dif-
ferential height of mercury between the two pipe sections.
Answer: 0.52 in

FIGURE P5-49E

5-50 An airplane is flying at an altitude of 12,000 m.
Determine the gage pressure at the stagnation point on the
nose of the plane if the speed of the plane is 200 km/h. How
would you solve this problem if the speed were 1050 km/h?
Explain.

5-51 The air velocity in the duct of a heating system is to
be measured by a Pitot-static probe inserted into the duct par-
allel to flow. If the differential height between the water
columns connected to the two outlets of the probe is 2.4 cm,
determine (a) the flow velocity and (b) the pressure rise at the
tip of the probe. The air temperature and pressure in the duct
are 45°C and 98 kPa, respectively.
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5-52 The water in a 10-m-diameter, 2-m-high aboveground
swimming pool is to be emptied by unplugging a 3-cm-
diameter, 25-m-long horizontal pipe attached to the bottom of
the pool. Determine the maximum discharge rate of water
through the pipe. Also, explain why the actual flow rate will
be less.

5-53 Reconsider Prob. 5-52. Determine how long it will
take to empty the swimming pool completely. Answer: 19.7 h

5-54 Reconsider Prob. 5-53. Using EES (or other)

=== software, investigate the effect of the discharge
pipe diameter on the time required to empty the pool com-
pletely. Let the diameter vary from 1 to 10 cm in increments
of 1 cm. Tabulate and plot the results.

5-55 Air at 110 kPa and 50°C flows upward through a
6-cm-diameter inclined duct at a rate of 45 L/s. The duct
diameter is then reduced to 4 cm through a reducer. The
pressure change across the reducer is measured by a water
manometer. The elevation difference between the two points
on the pipe where the two arms of the manometer are
attached is 0.20 m. Determine the differential height between
the fluid levels of the two arms of the manometer.

\

FIGURE P5-55

5-56E Air is flowing through a venturi meter whose diame-
ter is 2.6 in at the entrance part (location 1) and 1.8 in at the
throat (location 2). The gage pressure is measured to be 12.2
psia at the entrance and 11.8 psia at the throat. Neglecting
frictional effects, show that the volume flow rate can be

expressed as
. 2P, — P
N ER Py
p(l — AYAY)

and determine the flow rate of air. Take the air density to be
0.075 1bm/ft3.

12.2 psia

11.8 psia

FIGURE P5-56E
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5-57 The water pressure in the mains of a city at a particu-
lar location is 400 kPa gage. Determine if this main can serve
water to neighborhoods that are 50 m above this location.

5-58 A handheld bicycle pump can be used as an atomizer
to generate a fine mist of paint or pesticide by forcing air at a
high velocity through a small hole and placing a short tube
between the liquid reservoir and the high-speed air jet whose
low pressure drives the liquid up through the tube. In such an
atomizer, the hole diameter is 0.3 cm, the vertical distance
between the liquid level in the tube and the hole is 10 cm,
and the bore (diameter) and the stroke of the air pump are
5 cm and 20 cm, respectively. If the atmospheric conditions
are 20°C and 95 kPa, determine the minimum speed that the
piston must be moved in the cylinder during pumping to initi-
ate the atomizing effect. The liquid reservoir is open to the
atmosphere.

|
‘ 20cm “/0.3 cm
I%LI S5cm  Air o -
| I Liquid
rising 10 cm

N

FIGURE P5-58

5-59 The water level in a tank is 20 m above the ground. A
hose is connected to the bottom of the tank, and the nozzle at
the end of the hose is pointed straight up. The tank cover is
airtight, and the air pressure above the water surface is 2 atm
gage. The system is at sea level. Determine the maximum
height to which the water stream could rise. Answer: 40.7 m

2 atm

20 m

i

FIGURE P5-59

5-60 A Pitot-static probe connected to a water manometer
is used to measure the velocity of air. If the deflection (the
vertical distance between the fluid levels in the two arms) is

Pitot-static
probe

Air
—_—
 —

 —
Manometer

FIGURE P5-60

7.3 cm, determine the air velocity. Take the density of air to
be 1.25 kg/m>.

5-61E The air velocity in a duct is measured by a Pitot-static
probe connected to a differential pressure gage. If the air is
at 13.4 psia absolute and 70°F and the reading of the differ-
ential pressure gage is 0.15 psi, determine the air velocity.
Answer: 143 ft/s

5-62 In a hydroelectric power plant, water enters the tur-
bine nozzles at 700 kPa absolute with a low velocity. If the
nozzle outlets are exposed to atmospheric pressure of 100 kPa,
determine the maximum velocity to which water can be
accelerated by the nozzles before striking the turbine blades.

Energy Equation

5-63C Consider the steady adiabatic flow of an incom-
pressible fluid. Can the temperature of the fluid decrease dur-
ing flow? Explain.

5-64C Consider the steady adiabatic flow of an incom-
pressible fluid. If the temperature of the fluid remains con-
stant during flow, is it accurate to say that the frictional
effects are negligible?

5-65C What is irreversible head loss? How is it related to
the mechanical energy loss?

5-66C What is useful pump head? How is it related to the
power input to the pump?

5-67C What is the kinetic energy correction factor? Is it
significant?

5-68E In a hydroelectric power plant, water flows from an
elevation of 240 ft to a turbine, where electric power is gen-
erated. For an overall turbine—generator efficiency of 83 per-
cent, determine the minimum flow rate required to generate
100 kW of electricity. Answer: 370 Ibm/s

5-69E Reconsider Prob. 5-68E. Determine the flow rate of
water if the irreversible head loss of the piping system between
the free surfaces of the source and the sink is 36 ft.

5-70 > A fan is to be selected to ventilate a bathroom

%& whose dimensions are 2 m X 3 m X 3 m. The
air velocity is not to exceed 8 m/s to minimize vibration and
noise. The combined efficiency of the fan—motor unit to be
used can be taken to be 50 percent. If the fan is to replace the
entire volume of air in 10 min, determine (a) the wattage of
the fan—motor unit to be purchased, (b) the diameter of the



- Exhaust
. fan

Air —

FIGURE P5-70

fan casing, and (c) the pressure difference across the fan.
Take the air density to be 1.25 kg/m? and disregard the effect
of the kinetic energy correction factors.

5-71 Water is being pumped from a large lake to a reser-
voir 25 m above at a rate of 25 L/s by a 10-kW (shaft) pump.
If the irreversible head loss of the piping system is 7 m,
determine the mechanical efficiency of the pump. Answer:
78.5 percent

5-72 Reconsider Prob. 5-71. Using EES (or other)

<< software, investigate the effect of irreversible
head loss on the mechanical efficiency of the pump. Let the
head loss vary from O to 15 m in increments of 1 m. Plot the
results, and discuss them.

5-73 A 7-hp (shaft) pump is used to raise water to a 15-m
higher elevation. If the mechanical efficiency of the pump is
82 percent, determine the maximum volume flow rate of
water.

5-74 Water flows at a rate of 0.035 m%/s in a horizontal pipe
whose diameter is reduced from 15 cm to 8 cm by a reducer.
If the pressure at the centerline is measured to be 470 kPa
and 440 kPa before and after the reducer, respectively, deter-
mine the irreversible head loss in the reducer. Take the
kinetic energy correction factors to be 1.05. Answer: 0.68 m

5-75 The water level in a tank is 20 m above the ground. A
hose is connected to the bottom of the tank, and the nozzle at
the end of the hose is pointed straight up. The tank is at sea
level, and the water surface is open to the atmosphere. In the
line leading from the tank to the nozzle is a pump, which
increases the pressure of water. If the water jet rises to a

27 m
20 m

FIGURE P5-75
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height of 27 m from the ground, determine the minimum
pressure rise supplied by the pump to the water line.

5-76 A hydraulic turbine has 85 m of head available at a
flow rate of 0.25 m¥/s, and its overall turbine—generator effi-
ciency is 78 percent. Determine the electric power output of
this turbine.

5-77 The demand for electric power is usually much higher
during the day than it is at night, and utility companies often
sell power at night at much lower prices to encourage con-
sumers to use the available power generation capacity and to
avoid building new expensive power plants that will be used
only a short time during peak periods. Utilities are also will-
ing to purchase power produced during the day from private
parties at a high price.

Suppose a utility company is selling electric power for
$0.03/kWh at night and is willing to pay $0.08/kWh for
power produced during the day. To take advantage of this
opportunity, an entrepreneur is considering building a large
reservoir 40 m above the lake level, pumping water from the
lake to the reservoir at night using cheap power, and letting
the water flow from the reservoir back to the lake during
the day, producing power as the pump—motor operates as a
turbine—generator during reverse flow. Preliminary analysis
shows that a water flow rate of 2 m%/s can be used in either
direction, and the irreversible head loss of the piping system
is 4 m. The combined pump—motor and turbine—generator
efficiencies are expected to be 75 percent each. Assuming the
system operates for 10 h each in the pump and turbine modes
during a typical day, determine the potential revenue this
pump—turbine system can generate per year.

Reservoir

40 m

Pump-
turbine

Lake

FIGURE P5-77

5-78 Water flows at a rate of 20 L/s through a horizontal
pipe whose diameter is constant at 3 cm as shown in Fig.
P5-78. The pressure drop across a valve in the pipe is mea-
sured to be 2 kPa. Determine the irreversible head loss of the
valve, and the useful pumping power needed to overcome the
resulting pressure drop. Answers: 0.204 m, 40 W
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AP =2 kPa
FIGURE P5-78

5-79 Water enters a hydraulic turbine through a 30-cm-
diameter pipe at a rate of 0.6 m%/s and exits through a 25-cm-
diameter pipe. The pressure drop in the turbine is measured
by a mercury manometer to be 1.2 m. For a combined turbine—
generator efficiency of 83 percent, determine the net electric
power output. Disregard the effect of the kinetic energy cor-
rection factors.

FIGURE P5-79

5-80 The velocity profile for turbulent flow in a circular
pipe is usually approximated as u(r) = u,, (1 — /R,
where n = 7. Determine the kinetic energy correction factor
for this flow. Answer: 1.06

5-81 An oil pump is drawing 35 kW of electric power
while pumping oil with p = 860 kg/m? at a rate of 0.1 m?/s.

T 35 kW

Oil AP =400 kPa
0.1 m¥s

FIGURE P5-81

The inlet and outlet diameters of the pipe are 8 cm and 12 cm,
respectively. If the pressure rise of oil in the pump is mea-
sured to be 400 kPa and the motor efficiency is 90 percent,
determine the mechanical efficiency of the pump. Take the
kinetic energy correction factor to be 1.05.

5-82E A 73-percent efficient 12-hp pump is pumping water
from a lake to a nearby pool at a rate of 1.2 ft¥/s through a
constant-diameter pipe. The free surface of the pool is 35 ft
above that of the lake. Determine the irreversible head loss of
the piping system, in ft, and the mechanical power used to
overcome it.

5-83 A fireboat is to fight fires at coastal areas by drawing
seawater with a density of 1030 kg/m? through a 20-cm-diam-
eter pipe at a rate of 0.1 m%s and discharging it through a
hose nozzle with an exit diameter of 5 cm. The total irre-
versible head loss of the system is 3 m, and the position of the
nozzle is 4 m above sea level. For a pump efficiency of 70
percent, determine the required shaft power input to the pump
and the water discharge velocity. Answers: 201 kW, 50.9 m/s

FIGURE P5-83

Review Problems

5-84 Underground water is being pumped into a pool whose
cross section is 3 m X 4 m while water is discharged through
a 5-cm-diameter orifice at a constant average velocity of 5
m/s. If the water level in the pool rises at a rate of 1.5 cm/min,
determine the rate at which water is supplied to the pool,
in m¥s.

5-85 The velocity of a liquid flowing in a circular pipe of
radius R varies from zero at the wall to a maximum at the
pipe center. The velocity distribution in the pipe can be repre-
sented as V(r), where r is the radial distance from the pipe
center. Based on the definition of mass flow rate m, obtain a
relation for the average velocity in terms of V(r), R, and r.

5-86 Air at 4.18 kg/m? enters a nozzle that has an inlet-to-
exit area ratio of 2:1 with a velocity of 120 m/s and leaves
with a velocity of 380 m/s. Determine the density of air at the
exit. Answer: 2.64 kg/m3

5-87 The air in a 6-m X 5-m X 4-m hospital room is to be
completely replaced by conditioned air every 20 min. If the
average air velocity in the circular air duct leading to the
room is not to exceed 5 m/s, determine the minimum diame-
ter of the duct.



5-88 A pressurized 2-m-diameter tank of water has a 10-
cm-diameter orifice at the bottom, where water discharges to
the atmosphere. The water level initially is 3 m above the
outlet. The tank air pressure above the water level is main-
tained at 450 kPa absolute and the atmospheric pressure is
100 kPa. Neglecting frictional effects, determine (a) how
long it will take for half of the water in the tank to be dis-
charged and () the water level in the tank after 10 s.

5-89 Air flows through a pipe at a rate of 200 L/s. The pipe
consists of two sections of diameters 20 cm and 10 cm with a
smooth reducing section that connects them. The pressure
difference between the two pipe sections is measured by a
water manometer. Neglecting frictional effects, determine the
differential height of water between the two pipe sections.
Take the air density to be 1.20 kg/m?.  Answer: 3.7 cm

Air
200 L/s

FIGURE P5-89

5-90 A wind tunnel draws atmospheric air at 20°C and
101.3 kPa by a large fan located near the exit of the tunnel. If
the air velocity in the tunnel is 80 m/s, determine the pressure
in the tunnel.

20°C
101.3 kPa

— —— 80m/s
FIGURE P5-90

5-91 Water flows at a rate of 0.025 m?s in a horizontal
pipe whose diameter increases from 6 to 11 cm by an

165
MASS, BERNOULLI, AND ENERGY

enlargement section. If the head loss across the enlargement
section is 0.45 m and the kinetic energy correction factor at
both the inlet and the outlet is 1.05, determine the pressure
change.

Design and Essay Problems

5-92 Computer-aided designs, the use of better materials,
and better manufacturing techniques have resulted in a
tremendous increase in the efficiency of pumps, turbines, and
electric motors. Contact several pump, turbine, and motor
manufacturers and obtain information about the efficiency of
their products. In general, how does efficiency vary with
rated power of these devices?

5-93 Using a handheld bicycle pump to generate an air jet,
a soda can as the water reservoir, and a straw as the tube,
design and build an atomizer. Study the effects of various
parameters such as the tube length, the diameter of the exit
hole, and the pumping speed on performance.

5-94 Using a flexible drinking straw and a ruler, explain
how you would measure the water flow velocity in a river.

5-95 The power generated by a wind turbine is propor-
tional to the cube of the wind velocity. Inspired by the accel-
eration of a fluid in a nozzle, someone proposes to install a
reducer casing to capture the wind energy from a larger area
and accelerate it before the wind strikes the turbine blades, as
shown in Fig. P5-95. Evaluate if the proposed modification
should be given a consideration in the design of new wind
turbines.

Wind

NHJZ
L

FIGURE P5-95



