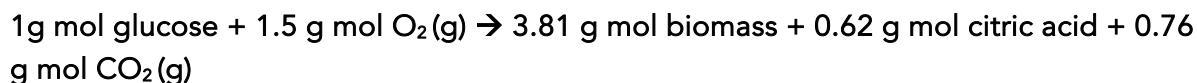
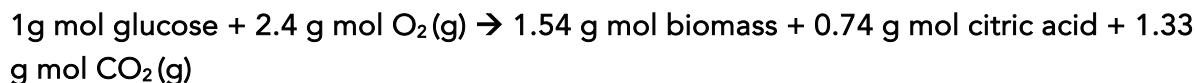


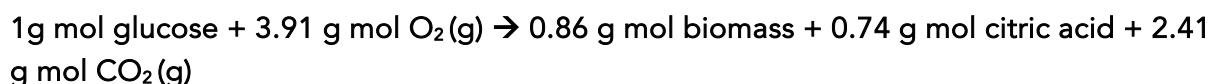
Introduction to Chemical Engineering


Problem Sheet 9 – Week 12 – Friday 06 December 2024

Problem 1: Chemical Engineering for Biological Process (Energy Balance – Reactive)


Citric acid is a well-known compound that occurs in living cells for both plants and animals. The citric acid cycle is a series of chemical reactions occurring in a living cell that is essential for the oxidation of glucose, a major source of energy for the cells.

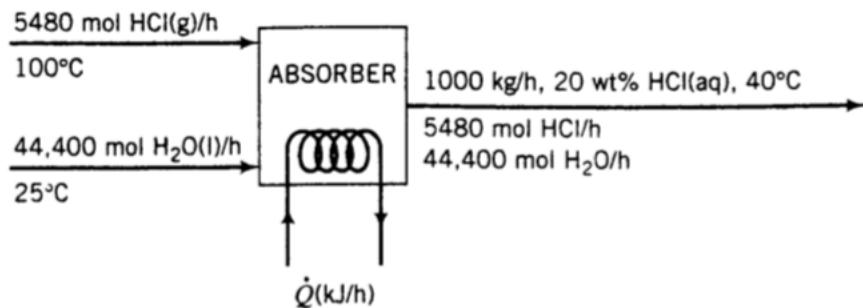
The reaction scheme is far too complicated to show here, but from a macroscopic (overall) viewpoint, for the commercial production of citric acid in a batch process, three different phases occur for which the stoichiometries are slightly different:


Early idophase (occurs between 80 and 120 hours), the initial reaction:

Medium idophase (occurs between 120 and 180 hours), additional glucose consumed

Late idophase (occurs between 180 and 220 hours), additional glucose consumed

In an aerobic (the presence of air) batch process, a 30% glucose solution at 25°C is introduced into a fermenter. Citric acid is to be produced by using the fungus *Aspergillus niger*. Stoichiometric sterile air is mixed with the culture solution by a 100-horsepower aerator. Only 60% overall of the glucose supplied is expected to be converted to citric acid. The early phase is run at 32°C, the middle phase at 35°C, and the late phase at 25°C.

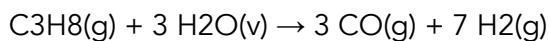

Based on the given data, how much heat must be added or removed from the fermenter during the production of a batch of 10,000 kg of citric acid? Ignore any slight effects of solution on the value of the heat of formation.

Data

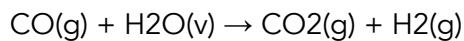
	MW (g/mol)	$-\Delta\widehat{H}_f^\circ$ (kJ/g mol)
Glucose	180.16	1266
Citric acid	192.12	1544.8
Dry cells (biomass)	28.6	91.4

Problem 2: Heat of Solution (Energy Balance – Reactive)

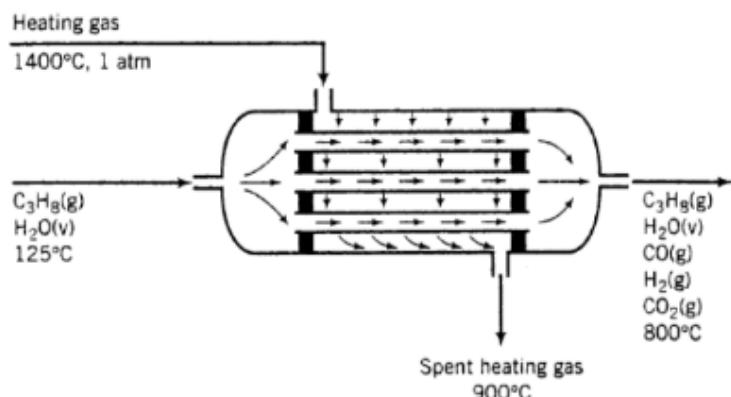
Hydrochloric acid is produced by absorbing gaseous HCl in water. Calculate the heat that must be transferred to or from an absorption unit if HCl(g) at 100°C and water at 25°C are fed to produce 1000kg/h of 20.0 wt% HCl(aq) at 40°C?


Table B.11 Integral Heats of Solution and Mixing at 25°C

r (mol H ₂ O/mol solute)	$(\Delta\hat{H}_s)_{\text{HCl(g)}}$ kJ/mol HCl	$(\Delta\hat{H}_s)_{\text{NaOH(s)}}$ kJ/mol NaOH	$(\Delta\hat{H}_m)_{\text{H}_2\text{SO}_4}$ kJ/mol H ₂ SO ₄
0.5	—	—	-15.73
1	-26.22	—	-28.07
1.5	—	—	-36.90
2	-48.82	—	-41.92
3	-56.85	-28.87	-48.99
4	-61.20	-34.43	-54.06
5	-64.05	-37.74	-58.03
10	-69.49	-42.51	-67.03
20	-71.78	-42.84	—
25	—	—	-72.30
30	-72.59	-42.72	—
40	-73.00	-42.59	—
50	-73.26	-42.51	-73.34
100	-73.85	-42.34	-73.97
200	-74.20	-42.26	—
500	-74.52	-42.38	-76.73
1000	-74.68	-42.47	-78.57
2000	-74.82	-42.55	—
5000	-74.93	-42.68	-84.43
10000	-74.99	-42.72	-87.07
50000	-75.08	-42.80	—
100000	-75.10	—	-93.64
500000	—	—	-95.31
∞	-75.14	-42.89	-96.19


^aFrom J. C. Whitwell and R. K. Toner, *Conservation of Mass and Energy*, pp. 344–346.
Copyright © 1969 by McGraw-Hill, Inc. Used with permission of McGraw-Hill.

Problem 3: El Classico (Energy Balance – Reactive)


Hydrogen is produced in the steam reforming of propane:

The water-gas shift reaction also takes place in the reactor, leading to the formation of additional hydrogen:

The reaction is carried out over a nickel catalyst in the tubes of a shell-and-tube reactor. The feed to the reactor contains steam and propane in a 6:1 molar ratio at 125°C, and the products emerge at 800°C. The excess steam in the feed assures essentially complete consumption of the propane. Heat is added to the reaction mixture by passing a hot gas over the outside of the tubes that contain the catalyst. The gas is fed at 4.94 m³/mol C3H8, entering the unit at 1400°C and 1 atm and leaving at 900°C. The unit may be considered adiabatic.

Calculate the molar composition of the product gas, assuming that the heat capacity of the heating gas is 0.040 kJ/(mol·°C).