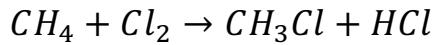


Introduction to Chemical Engineering


Problem Sheet 2 – Week 4 – October 4 2024

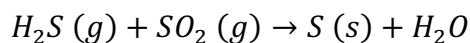
Goals:

Introduction to reactive systems

Problem 1: Reactive Systems (Fraction Conversion Specified)

The chlorination of methane occurs by the following reaction:

Determine the product composition if the conversion of the limiting reactant is 67%, and the feed composition in mole % is given as: 40% CH₄, 50% Cl₂, and 10% N₂.


Suggested Steps:

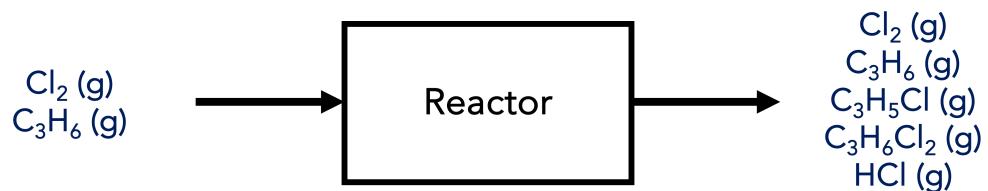
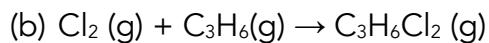
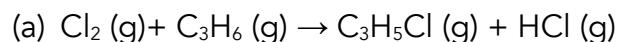
1. Draw diagram process with known data inserted
2. Select a basis
3. Determine limiting reactant:
Compare maximum extent of reaction for each reactant
4. Degree-of-freedom analysis (good practice)
5. Obtain composition

Problem 2: Reactive Systems (Fraction Conversion to be calculated)

Mercaptans, hydrogen sulfide, and other sulfur compounds are removed from natural gas by various so-called "sweetening processes" that make available otherwise useless "sour" gas. H_2S is known to be toxic in very small quantities and is quite corrosive to process equipment.

A proposed process to remove H_2S is by reaction with SO_2 :

In a test of the process, a gas stream containing 20% H_2S and 80% CH_4 was combined with a stream of pure SO_2 . The process produced 5000 kg of S (s), and in the product gas the ratio of SO_2 to H_2S was equal to 3, and the ratio of H_2O to H_2S was 10. **Determine the fractional conversion of the limiting reactant.**




(Hint: ξ will have to be calculated from the material balance equations before calculating the fractional conversion)

Suggested Steps:

1. Draw diagram process with known data inserted
2. Determine Basis
3. Degree-of-freedom analysis (good practice)
4. Balance Species, form equations, and solve ☺

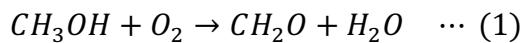
Problem 3: Reactive Systems 101 (Reactive system)

Let's take a quick look at the chemistry of allyl chlorides. The two reactions of interest for this example are:

Species involved:

- C_3H_6 is propylene (propene) (MW = 42.08)
- $\text{C}_3\text{H}_5\text{Cl}$ is allyl chloride (3-chloropropene) (MW = 76.53)
- $\text{C}_3\text{H}_6\text{Cl}_2$ is propylene chloride (1,2-dichloropropane) (MW = 112.99)

The species recovered after the reaction takes place for some time are listed in the table below:


Species	mol
Cl_2	141.0
C_3H_6	651.0
$\text{C}_3\text{H}_5\text{Cl}$	4.6
$\text{C}_3\text{H}_6\text{Cl}_2$	24.5
HCl	4.6

Based on the product distribution, assuming that no allyl chlorides were present in the feed, calculate the following:

- a. How much Cl_2 and C_3H_6 were fed to the reactor in mol?
- b. What was the limiting reactant?
- c. What was the excess reactant?
- d. What was the fraction conversion of C_3H_6 to $\text{C}_3\text{H}_5\text{Cl}$?
- e. What was the selectivity of $\text{C}_3\text{H}_5\text{Cl}$ relative to $\text{C}_3\text{H}_6\text{Cl}_2$?
- f. What was the yield of $\text{C}_3\text{H}_5\text{Cl}$ expressed in grams of $\text{C}_3\text{H}_5\text{Cl}$ to the grams of C_3H_6 fed to the reactor?
- g. What was the extent of reaction of the first and second reactions?
- h. In the application of green chemistry, you would like to identify classes of chemical reactions that have the potential for process improvement, particularly waste reduction. In this example, the waste is $\text{HCl}(g)$. The Cl_2 is not considered to be a waste because it is recycled. What is the mole efficiency, i.e., the fraction of an element in the entering reactants that emerges in the exiting products, for chlorine?

Problem 4: Reactive Systems (Simultaneous Reactions)

Formaldehyde (CH_2O) is produced industrially by the catalytic oxidation of methanol according to the following reaction:

Unfortunately, under the conditions used to produce formaldehyde at a profitable rate, a significant portion of the formaldehyde reacts with oxygen to produce CO and H_2O , that is:

Assume that methanol is twice the stoichiometric amount of air needed for complete conversion of the CH_3OH to the desired products (CH_2O and H_2O) are fed to the reactor. Also, assume that 90% conversion of the methanol results, and that a 75% yield of the formaldehyde occurs based on the theoretical production of CH_2O by Reaction 1. Determine the composition of the product gas leaving the reactor.