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cePFL CH-633

Dates
 Wednesdays 10:15—-12:00, 12.02. — 30.04.2024 (exception: 19.03. session moved
to 18.03.)

e https://epfl.zoom.us/s/62989985578

Content
e 1 session intro + 3 X-ray scattering methods (Surface XRD,HRXRD,SAXS,PDF)
e 2 session electron microscopy
* 6 sessions surface spectroscopy/microscopy

* Lecture notes + miscellaneous on moodle

Exam
* Written, questions + exercises, date thd
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https://epfl.zoom.us/s/62989985578

EPFL X-ray diffraction and Surface Analytics XRDSAP

E P F L - Velais Walls

-
2\ B

3 diffractometers
* 1 MicroRaman 4 lasers
* 1 XPS/UPS

 1AFM
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EPFL X-ray diffraction and Surface Analytics XRDSAP
EPFL' Lausanne campus

5 diffractometers
e SAXS beamline
* Multipurpose AFM (soon)
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cPFL Contents

» Aim of the course: know your way around basic concepts of
state-of-the art methods and when to use which.

* Long range vs. short range order

* Length scale

* Resolution of experiment, resolution given by data
* Bulk vs. surface

* Phase sensitive?

* Oxidation state sensitive?

* Chemical composition

* Detection limit, impurities?

This course does not include instrument training on any method!
But: training on most discussed methods is done at our facilities.

» In-depth theory and analysis of XRD, SCD and EM are taught in CH-632 and CIME
courses
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cPFL Contents

» CH-633 — my part:

1. Introduction and XRD recap, surface diffraction
. Condensed matter: atomic structure, periodicity and symmetry
. Interaction of X-rays with solids
. From bulk (CH-632) to surface diffraction

2. Thin film diffraction and reflectometry
Small angle X-ray scattering
4. Total scattering

o
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cPFL Contents: session1 -4

thickness ReflectiVitV

XRD & co
(GID, HRXRD..)

(interface)

Particle
Structure (core-

Ori : hel|, folding..)
rientation SAXS & Co

Surface area Particle-size
distribution

Nanoscopic order

Local order
(crystalline)
Total scattering

Structure
(amorphous)
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cPFL Contents: session 1

» Some relevant XRD methods possible
in XRDSAP labs

XRD & co
(GID, HRXRD..)

Grazing incidence diffraction geometries

 GID, IP-GID, GIWAXS and derivatives

Texture methods

* Pole figures, ODF, GIWAXS
High Resolution Diffraction HRXRD

* Reciprocal space maps, RC

X-ray reflectometry

 Not a diffraction method
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“PFL Introduction

» Feasibility often depends on sample type

* Not all techniques are possible in reflection AND transmission geometries
* Grazing incidence-experiments require flat surfaces

» Texture methods (usually) require mechanically stable sample

* Transmission methods depend on sample absorption and/or thickness

» X-ray reflectometry requires extremely flat surface

» Transmission: PDF, SAXS, WAXS (texture)
» Reflection: GID, GIWAXS, GISAXS, HRXRD, XRR (PDF at specialised

beamlines)

» Multi-method: SAXS-WAXS, PDF-PXRD, PDF-XRD-XAS, XRD-Raman.....
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“PFL Introduction

‘ SEM: BSE detector, BSED / SAED detector

‘ SEM: SE detector

SEM: EDX detector
EMPA: EDX / WDX

Anode M

» Similar setups

» Very different analytical tools .

= | XRD (WAXS)
SAXS, XRR

Absorption:
XAS, EXAFS, XANES

Sample

XPS

XRF

Beam energy
Beam shape

Beam flux
Machine geometry

11

Advanced Solid State Characterization — 2025



“PFL Introduction
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ZPFL Introduction

Condensed Matter Systems

Soft Matter
Hard Matter
\
. Colloidal Polymer Melts
Crystalline Solids Non-crystalline _ : Y ‘
_ . Dispersion and Solutions
(metals, insulators, Solids
conductors)
Quasi I A o Liquid
uasicrystals morpnhous Crvstals .
_ Solids (glass) y Biomatter
Crystalllne (proteins’
Solids + : membranes,
Defects (point, Polymer Solids nucleic acids...)
dislocations, (Glass and
surfaces, Rubber)
interfaces)
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“PFL Introduction

A crystallographer’s definition of solids:

Crystal: A material is a crystal if it has essentially a sharp diffraction pattern (IUCr). This arises
from the periodicity of the lattice.

The amorphous solid lacks this because it lacks long range order.

Multi-phase sample

» Patterns are additive, you see everything in your data.
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=PrL

Introduction

A crystallographer’s definition of solids:

Crystal: A material is a crystal if it has essentially a sharp diffraction pattern (IUCr). This arises
from the periodicity of the lattice.

The amorphous solid lacks this because it lacks long range order.
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{ o |
—
—
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10000 -:\/

Ta 0,
Crystalline
= As Deposited 500nm Film

struMk

fingerprint
Quarz
B P A
Cristobalite fingerprint \
. 'y

8
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12 16

Scientific Reports volume 6, Article number: 32170
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structure
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pure lysozyme
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ZPFL Introduction

Crystalline solid
Constituents are arranged in periodic manner on the A length
scale (several to 10s of A). A crystal lattice is formed in 3D.

Q: How do we measure atomic structure?

S Oft m atte r: polymers liquid crystals colloids

A S5nm ~ '.‘d})»
. . . i S0 @ |10 nm ~
Intermediate legth scales between atomic and macroscopic %_\%%_Im n =~ MIWOM %qgl e

sizes (10s to 100s of nm).
. a_mphiphiles biomolecules
Q: How do we measure atomic structure? I : KI
~ 2 nm

5 nm ~
100 nm

Amorphous solid:
No long range order, no sharp melting point.

Q: How do we measure atomic structure?
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“PFL Introduction

;%€ = s, e_ZB(T)SZLk(Q)Pk(H)A(Q)y PO py, S(26; — 26y )|Fy|*+bkg;
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“PFL Introduction

e =5,y Le(©)P(O)A©)y PO py. S(26; = 20,)|Fi[2+bkg;
k

Powder diffraction pattern

B%ckground /R/efleltm{.
/\ Position Intensity Profile

Sample Scattering from

sample holder, air, (FWHM, pgak shape)

etc.
‘ Inelastic scattering: Instrument  Sample
Compton scattering function broadening
Elastic diffuse scattering: Lattice parameters, Crystal structure: Real structure:
. Space group:
Local structure Macrostrain Atomic positions Microstrain
Amorphous fractio Qualitative phase Magnetic moments Domain size
Lattice dynamic analysis Temperature factor Stacking disorder
I\ Occupancy
et g |

o~ A N _ Texture
A AL A o Quantitative
phase analysis
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ZPFL Introduction

L =5, ) Li(6)P(O)A(8)y PO py S(26; — 20{)|Fc|*bkg;
k

e Lorentz-Polarization correction

e Absorption correction A(8), extinction y (SCD only)

e Preferred orientation (PXRD only) Related to actual
e I\/Iu|t|p||C|ty (PXRD Oﬂ'Y) structure

e Profile shape function (line broadening)

e Squared structure factor (atomic form factor, unit cell + content)

e k: scattering vector

F(hkl) — z fN eZTCi(th+kyN+lZN)
N

F(hkl) is the structure factor of the reflection hkl of the unit cell, f, is the atomic scattering
factor (form factor) for each of the N planes

e Electronic property — information about atom types in structure (Amplitude)

e Structural property — information about atom position in the unit cell (Phase)
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ZPFL Introduction

e =5, ) Le(©)P(O)A©)y PO py. S(26; = 20,)|Fi[2+bkg;
k

Lorentz-Polarization correction

Absorption correction A(@), extinction y (SCD only)

Preferred orientation (PXRD only)

Multiplicity (PXRD only)

Profile shape function (line broadening)

Squared structure factor (atomic form factor, unit cell + content)
k: scattering vector

F(hkl) — z fN eZTCi(th+kyN+lZN)

Sinqhy,,
I(q) = P(Q)S(Q) I(q) = szmf" QTmn

SAXS :
Total scattering (PDF)
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“PFL Introduction

calc __ 2
e =5, ) L ()P (9)A(O)y PO py, S(26; — 26,)|Fy|*+bkg;
k
Real or direct space Reciprocal space
CFB’SH" Direct cell o« . *  Reciprocal cell
Ef Dlrect symmetry A SRy 4w Reciprocal symmetry
e w W @ s x -
. Fourier : g N
transform
+—>
'f'./gl )
y . reciprocal cell vs.
¢ T e direct cell
Atoms, structure Structure factors = Amplitudes and phases

p(xyz) = v Z |F(hkD)|. e ~2milhx+ky+iz—¢(hkD)]

. Phases?
Amplitudes
hki P
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“PFL Introduction

Some necessary basics:

=  Symmetry
= Diffraction condition
= Structure factor and extinctions

22
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cePFL  Symmetry

The crystal lattice

=  Periodicity gives rise to discrete signals in the diffraction pattern
=  Asolid lacking long range order does not “diffract”
=  Bravais lattice: regular arrangement of points generated by translation

> R=nja, +n,a,+n;a,

=  Periodicity gives rise to the unit cell: smallest repetitive unit of a lattice that
contains all the information - defines the symmetry and structure of the entire

crystal lattice.
(a) (b)

SRR % % %,
IR S S %
ce ffffffﬁ

Basis Lattice = Crystal

+ L ®

amorphous crystalline (unit cell)
(no unit cell)
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cePFL  Symmetry

The crystal lattice

=  Bravais lattice: regular arrangement of points generated by translation
> R=nja, +n,a,+n;a,

=  Unit cell: smallest repetitive unit of a lattice that contains all the information -
defines the symmetry and structure of the entire crystal lattice.

Unit cell content:

05 x.

0.5 x

Wrong selection
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ePFL  Symmetry

The crystal lattice

=  Bravais lattice: regular arrangement of points generated by translation
> R=nja, +n,a,+n;a,

=  Unit cell: smallest repetitive unit of a lattice that contains all the information -
defines the symmetry and structure of the entire crystal lattice.

- $agate:

» Periodicity gives rise to symmetry in the lattice

25 Advanced Solid State Characterization — 2025



cEPFL Symmetry

A closer look at symmetry (more detailed treatment CH 632)

*  How do you describe the symmtrey of a molecule (gas, liquid..)

T,—tetrahedral group (point group)

Schoenfliss notation: point symmetry, used to describe molecular symmetry (point groups)

Hermann-Mauguin notation: used to describe to describe translational symmetry (space

groups)
A crystal is an extended solid!
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ePFL  Symmetry

Space group symmetry

Cubic Lattice

Hexagonal Lattice

a#c

14 Bravais
Add points __ W | itices
& “centering”
7 crystal
systems <
Rotation

32 point
groups

Reflection
Inversion

yw.globalsino.cg

Screw ~h 230 space
i AV groups

a=f=y # vu-
P Monoclinic
(A
g a Molecular c
b
h a symmetry A
a a Orthorhombic  C
Tetragonal Lattice Rhombohedral Lattice @ ﬁzgc;l:k;:mﬂ
| B #90° i
: a#b#c ay_goo aﬂy$90° ﬂ\ b
m _ Trigonal / Hexagonal P
Symmetry underlies all properties of a solld| \ :
b = ' — g —
|
Orthorhombic Lattice Monoclinic Lattice Triclinic Lattice Cubic

27
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cePFL  Symmetry

Space group symmetry

PG symmetry (32 groups) + translation results in SG symmetry (230 groups).
* SG symmetry defines which peaks you see for a given unit cell!

7 crystallographic systems and their symmetry point groups
triclinic Cq C
1 I
monoclinic C. Ca Czn
2 m 2/m
ortorhombic D, Ca D2n
222 mm2 mmm
tetragonal C, S Can D4 Cav ng D.p
4 4 4/m 442 4mm 42m | 4/mmm
trigonal Cs G Ds Ca D34
(rhombohedral) 3 3 32(1) 3m 3m
hexagonal Cs Can Cen Ds Cev Dan Den
6 6 6/m 622 Bmm 6m2 | 6/mmm
cubic T T4 0] Ty O,
23 m?3 432 43m m3m
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cEPFL Symmetry

Space group symmetry

PG symmetry (32 groups) + translation results in SG symmetry (230 groups).
* SG symmetry defines which peaks you see for a given unit cell, as well as the
crystal structure!

Screw axis 3,
* 3 equivalent positions
* 3 symmetry operations (order)

2 2, 2 2
X x X
4 4, 4, 4, 4 1
LR B

c glide plane
* 2 equivalent positions
* 2 symmetry operations (order)

0 T=1/2 _ °
e ; a—_-
o N

N
w
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ePFL  Symmetry

Space group symmetry

PG symmetry (32 groups) + translation results in SG symmetry (230 groups).
* SG symmetry defines which peaks you see for a given unit cell, as well as the
crystal structure!

» Different types of materlal "like" different types of symmetry

Aurivillius Ruddlesden-Popper  Dion-Jacobson
{M(IID);0,}- {M(1D);}- {MD)}-
{An1BuOsma}  {AniBuOamii} {An1BuOsmsr }
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cePFL  Symmetry

i3t

Real solids contain defects at finite temperature.

Conventional 0D, 1D, 2D

Self-interstitial

Interstitial impurity

Vacancy

Missing linkers or non-periodic sorption sites (MOFs)

e Structural disorder (polymers)

0D

358

» What type, is defined by processing, topology, symmetry,

Frenkel defect

Substitution impurity

bonding...
» Hard to quantify, but have different signatures (EM, XRD, XPS...)

1D

o

bt b )

)

1)
O

N

%
&
Zr

SLELLELRSS

AL
-’- TR

Tt h

L

)
(T3

AN

-

Collapsed vacancy disc
= stacking fault

Advanced Solid State Characterization — 2025
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cPFL Diffraction

Some necessary basics:

= Symmetry
= Diffraction condition i H
. . n=2
= Structure factor and extinctions
I |/ <oV
n=1
Double - slit experiment: ) I 0~
* Maxima are registered due to interference. _
¢ Per|0d|C|ty mclnc:hrornatic
* Spacing between detected maxima: y = nDA/d e.g.a laser)
*Gwo site optica Rront view)"

» Crystal is a 3D diffraction grating
» With XRD we measure the reciprocal lattice

Q: Why do we use X-rays?
Q: When do X-rays interfere constructively?
Q: How do we get the direct lattice (atomic structure)?
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cPFL Diffraction

NaCl crystal

NaCl, Fm-3m:

Incident X-ray beam, A = 1.54 A
—

(111) planes, d = 3.25 A

20=27.4°

.
-
Incident X-ray beam, A = 1.54 A 0”

7

8 = arcsin(V2d) = 13.7°

(002) planes, d = 2.81 A
- 20=31.8°

Incident X-ray beam, A = 1.54 A

6 = arcsin(M2d) = 15.9°

(022) planes, d = 1.99 A

Incident X-ray beam, A = 1.54 A

8 = arcsin(A/2d) = 22.8°

Intensity

001

002

022
111

011 311

26 /°

Bragg law: 2dsinf = nAi

Q:
*  Where is (200)?
*  Where are (001), (011)...

33
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EPFL The reciprocal lattice

Direct and reciprocal lattice:

L(r)=25[r—(Ua+Vb+Wc)] — FT — R(Q)=Z§[Q—( 2 + kb + Lt
uvw \ o P hkl

e Construct reciprocal:
* Vectors r* normal to planes in lattice with distance d from origin

Miller indices:
Notation to describe reciprocal lattice points r* = ha® + kb™ + Ic”

a* orthogonal to b
\b* orthogonal to a

3D
s
b — 9 cxXa < — o axb
b (c x a) c-(axb) T 4mtsin@

2 o
= o _1
Q=- 7 /A
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EPFL The reciprocal lattice

Direct and reciprocal lattice:

L(r)=25[r—(Ua+Vb+Wc)] — FT — R(Q)=Z§[Q—( 2 + kbt + Lt
uvw \ o P hkl

e Construct reciprocal:
* Vectors r* normal to planes in lattice with distance d from origin

Miller indices:
Notation to describe reciprocal lattice points r* = ha® + kb™ + Ic”

Real or direct space Reciprocal space
Crystal 88, 372 Direct cell N Reciprocal cell -
g.gs_';gz Direct symmetry + » « Reciprocal symmetry Structure Solut|0n:
3 ¢ 4
¥ Fourier Lty FT-l
[ transform Ak —
".’ 3 1}' a
3 é reciprocal cell vs.
direct cell
Atoms, structure Structure. factc-nrs — Amblitudes and phases
+00 . -
T - Q: Why is this different from
s =2milhx+ +iz— 1 .
p(xyz) = v |F(hkD]|. e [ % ﬁgases??] electron microscopy?
Amplitudes ;
hkl
—co
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EPFL Recap — intensity equation

Some necessary basics:

=  Symmetry
= Diffraction condition
=  Structure factor and extinctions

36 Advanced Solid State Characterization — 2025



cPFL Recap — intensity equation

[;° = s, Z e 26", (9)P(0)A(8)y PO pj S(26; — 26 ybkg

Related to actual structure — Structure Factor
000 100 1400 100 1800 2000
2000 — 00
9000 o7
1800 1800
1400 1800 7500
- i 1400 1400 6000 (002)
iy =
1200 o M8
el > (100}
# £ 10m wo @ 45007
# & c
E i 3
i e c
) s B 3000
5 SRR - J_: =i 00 40 1 (102)
T 1500 - J
e 400 400
b _" J -
X s 0 v T T T v T v T ¥ T v T v

r T —T—T—
25 30 35 40 45 50 55 60 65 70 75

0 W0 40 600 BOD 100D 1200 1400 100 1600 2000 20 (degree)

Space group symmetry

= Space group symmetry symmetry defines which peaks you see for a given unit cell!
= When are Bragg peaks “allowed/forbidden”?
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=PFL The structure factor

Systematic absences / extinctions

I011 I I I I I | L= L S L R oo e random (O Int within exp error)
101 P T T T T exactly O due to SG symmetry
- « P 8 = = [ ] [ ] 9 -
. . e oo e .
- « P 8 = = [ ] [ ] 9 -
020 040 .. e s e e R
010 110 030 - » L] L]
. O ® =& - - = .+ . .
10 15 20 25 30 35 40 45 50
deg(2theta)
£ Z Z
C c c
a - Fe (bec), Im-3m o °
| 4t 4 Y

Q: Where is 100, 210..

Intensity (relative)

(200)

L‘w““w""ﬂff}'hﬂf“-ﬁ'r%'\*f“‘"‘ I"E l_l,wr.r_.-n.w,\mﬂw&,,“q, Iql b w-‘-.-.'*.n-.'- sy ;ﬂ-r---‘-"h'p'nr h-f,,,‘,n..lml.ﬂl.-;rwlr.mhw. ,.1
20 30 40 50 6l

60 70 80 50 100
Diffraction angle 28
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=PFL The structure factor

Systematic absences / extinctions

» Translational symmetry (screw, glide, centering) generates extinction
conditions, where Bragg intensity is = 0 due to destructive interference of

scattered waves.

F(hkl) — z fN eZT[i(th+kyN+lZN)
N

F(hkl) is the structure factor of the reflection hkl of the unit cell, f is the atomic scattering
factor (form factor) for each of the N planes
Electronic property — information about atom types in structure (Amplitude)
Structural property — information about atom position in the unit cell (Phase)

b*

»
»

» 010, 030, 050... no intensity

39
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=PFL The structure factor F(hkD) =wa6“"”’"’“*”’”*”“

X

_____/Z\_J__

Systematic absences / extinctions

Example: Cubic primitive lattice, 1 atom at (0,0,0) and equivalent.
Space group Pm-3m.

eniﬁ — (_l)n
OOIAbi 011
IOI/ / i ] X N N
Bl Fhikl — fie®i = fjez[Zn(hx] +ky ' +1z;))]
reciprocal
P > F = i[2m(h0+k0+10)] — 0 —
space = fe = fe = f
010
000 ‘5;. F2 = fz
5[-
IV 110

100

Structure factor calculation

The structure factor of a plane (hkl) is weighted by the contributing atomic form factors f;
Perform summation of fexp(i¢p)
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=PFL The structure factor F(hkD) =wa6“"”’"’“*”’”*”“

Systematic absences / extinctions

Example: Orthorhombic body-centred, 2 atoms at (0,0,0) and
(1/5,%/,, 1/,) and equivalent. Space group Immm.

eniﬁ — (_l)n

’53 /022

002 . . ’ ’ /

@112 P hkl _ r ji@; _ £ i|2n(hxj +ky; +1z;
2‘)2/ 222 FY = fie J_f]e[(f j iz
0011 . , 1 .1 .1
reciproca R i1 | o
space 000 2:.20. — feO +fel[2-7T(T)] = f[1 + eimthricrn]

20 110 B
Y 220

(h+k+1)=2n > F=2f - F?=4f?
(h+k+D)#2n - F=0 > F?=0

> (110), (200), (211)... observed; (100), (001), (111)... extinct
» Lattice centring is an integral extinction, valid for all Bravais lattices. hkl: h+k+l = 2n

41
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EPFL The structure factor FOkD) = ) fe?ritansiontion

Systematic absences / extinctions

Example: Screw axis 2, Il ¢, operation (—x, —y,z + 1/,)

eniﬁ — (_ l)n

Fhkl — fjeupj _ fjei[Zn(hxj’+kyj’+lzj’)]

_ . 1
F = fel[Zn'(h 0+k 0+10)] 4 fel[Zﬂ(—h —k+l§)]

e e
003 008 007 008 005 00F 003 002 007 000 001 002 003 004 005 006 007 008 009
L ] L ]

PRTTTETFTTITTVLVTDL poot = oo 1 ol = f[1 4 cn0)

e e
I e e e
' 008 . 008 ., 004 . 002 . 000 . 002 . 004 . 006 . 008 |
NN SR B e ,$i L I . D [=2n - F=2f —» F2?=4f2
1 1 1 1 1 1 1 1 1L €% 1 1 1 1 1 1 1

l£2n - F=0 - F?=0

> Serial extinction — affects one direction

> For (00l): (002), (004), (006)... observed; (001), (003), (005)... extinct. 00I: | = 2n
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EPFL Introduction & Recap: Summary

= Perodicity of a crystalline solid gives rise to the unit cell, which allows to
fully describe an atomic structure.

= Periodicity gives rise to translational symmetry (space group symmetry).
= Periodicity is at the origin of the diffraction condition.

= The diffraction experiment "takes place" in reciprocal space, which is
related to real space by Fourier transform.

= The intensity registered on the detector is proportional to the amplitude
of the structure factor.

= Translational symmetry leads to extinctions conditions of the observable
structure factor.

43 Advanced Solid State Characterization — 2025



EPFL Orbitals and periodicity...

= Chemical bonding

Chemist’s picture: chemical bonding in molecules based on concept of orbitals
LCAO method: usual approximations of molecular orbitals (no translational symmetry!)

Molecular orbitals: The more atoms in the molecule the more MO (n,,,(MO) = n(valence AO) used to
make them).

Solid: huge, but finite number of MO (“crystal orbitals”, with small energy spacing (wavenumber k is
guasi-continuous) — formation of “bands”

Shape of the bands can be derived using LCAO or the free electron model — what is the form of the
wave function of an electron moving along a row of atoms?

Periodic boundary conditions (crystal) mean that Values of k outside —% <k< % do provide are
repetitions of already generated orbitals.
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EPFL Orbitals and periodicity...

= Band structure

» Increasing density of orbitals leads to non-uniform distribution within allowed bands:
Density of states N(E)dE (number of allowed energy levels per unit volume of solid in E..E + dE)
* N(E) =0in band gap E,.

* Width of a band depends on degree of interaction and separation, lattice parameter.
 Width <0.1 eV (no contribution to bonding, e.g. core levels)....several eV
* E,range (top-filled to bottom empty band): £,>12 eV (ionic solids) ... 0.1 eV semiconductors

(6,940,004 0 000
e LCAO theOFy Antibonding 2p, o *

» Example: monatomic chain Doubly degenerate

Ee

Antibonding 2p,/2p, Tt *
Doubly degenerate
Antibonding 2s o *

3838838 00000
Bonding OCD(DCDCDO
2p,/2p, Bonding 2p, o

00000
Bonding 2s o 0 k T[/a
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EPFL Orbitals and periodicity...

= Band structure

 LCAO theory —square lattice
» Example 2D: Ba,Sn0O,, Ruddlesden-Popper phase, /4/mmm, consider building unit SnO,

Sn 5s-0 2p Sn 5s5-0 2p
Valence Band Conduction Band
Majority O 2p character Majority Sn 5s character
Q Q Q Q Q Q
c><@><@>o <><8><8>o o@x@x) OO
o<©>q@)>o o <%>o o<@>dg>o " lolo
O O O O O O

Sn 5s Nonbonding
’&Iﬁ%‘o Sn5p-02po/c*
- Sn 5p,-02p, 0 / o*

O 2p nonbondin
O p B

Sn 5s-0 2p i i
Antibonding Sni5s-0 2p 6\
in phase o 6 r X M r
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EPFL Orbitals and periodicity...

= Band structure

* LCAO theory —square lattice

» Example 2D: Ba,Sn0O,, Ruddlesden-Popper phase,
14/mmm, consider building unit SnOg

» Example 3D: ReO,, Im-3

* All metal-based bands are disperse due to 3D structural nature r X M T
* Only flat bands generated by non-bonding O 2p states
*  Fermi Level cuts T bands — metallic conductor

A

Energy |

FEM T R XE M

Wave=-vector Kk Density of slotes
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=PrL

5 min break?
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EPFL Grazing incidence diffraction — GID

X-ray beam

‘ (hokily)
5

Para“m;f > : _,;/. -
(o o .

’
d

o \
____________ V=0, s Sample

¥ ... tilt angle of the lattice planes 0 ... Bragg angle

* Tube at fixed incident angle
* Bragg conditions collected by moving detector only (26 scan)

Theta — 2Theta scan GID — 2Theta scan
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=P-L Surface Diffraction

= Surface diffraction: GID, IP-GID

* Information obtained

* Provides same information as bulk XRD, but at lower resolution
* Visible diffraction vector can rotate in diffraction plane

e Surface sensitive

* Depth information on refinable parameters

* |P-GID allows accessing the in-plane diffraction pattern

* Type of sample

e Thin films (samples), layers. Poly or monocrystalline.

*  Minimum thickness depends on crystallinity and scattering power
(usually at least 5-6 nm on lab sources)

= Surface diffraction: 2D-GIWAXS

« Same information as GID, but still lower resolution
* Texture at a snapshot
 Sample can be smaller since beam is smaller
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EPFL Grazing incidence diffraction — GID

14nm RuO, on Si(001)

Offset 8/6 scan
i: T Si(004)
' q ] _
6°offset scattering 8-
2°offset scattering ;!
Symmetric i
scattering

CPS

10 ZIO 3|0 4‘0 50 60 ?‘0 BIG QIO 1?0 1“10 12‘0 1(‘40 1110 1?0
L .

T T T T T T I T T T J T T T T
30 40 50 60 70 80 %0 100
2Theta WL=1.54060

Possible to strongly reduce Si (004) but layer signal still weak
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EPFL Grazing incidence diffraction — GID

14nm RuO, on Si(001)
Grazing incidence (20 scan)

' Q

variable scattering
orientation

» Possible to remove substrate signal

» Significant gain for layer signal

CPS

1000

9?0

v

GIXRD vs 6

7
2Theta WL=1.54060

° Offset B/0 scan

52
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EPFL Grazing incidence diffraction — GID

14nm RuO, on Si(001)
Grazing incidence (20 scan)

5,000+
hkl_Fhase 0.00 %

4:»5005 Profile fit in TOPAS

2500 P4,/mnm
a=4.5241A

3,400 o
32901 c=3.0777 A
3,000
2,800
25004

Lo~ 1B =12.5 nm
2200 80 = Ad/d - 045 %

2,000

1,800 \

1,600

o Layer not fully
1,000 relaxed (session 2)

200

G004
400
2004

o

T
25 30 35 4l 45 50 55 60 65 70 75 &0 85 80 95 100 105 110 115

20 san at fixed incident angle 0,45°c
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EPFL Grazing incidence diffraction — GID

Refraction effect
Additional peak shift

Penetration depth (1.54 A)

u (micron)

o ...incidentangle  ay ... refraction angle 6 ... Bragg angle
B ... emergent angle

- 2 2
> Incident beam refracted at air/layer interface ANO=a-a, =« & —Cc
» Apparent peak position to be corrected from refraction ac...critical angle
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EPFL Grazing incidence diffraction — GID

Penetration depth

calculate penetration depth (and optical properties) for X-rays

Formula: | | Pt (e.g.: Si1,5i1102 or Hf102)
Density: [g/cm3]

Energy: [eV]

Angle: [deg]

5 5.188993459040156E-5

B 5.095781845479082E-6

€ (0.9998962227974175, -1.0191034851384866E-5)
p[1/cm] 4157.670528325295

Critical angle [deg] = 0.5836858860295738

100.0
80.0

60.0

40.0

10.0

depth [nm]

6.0

4.0

2.0

1.0

https://gixa.ati.tuwien.ac.at/tools/

penetration depth for Pt1 (p=21.45) @ 8050.0eV

——___’f

0.000 0.038 0.077 0.115 0.154 0.192 0.231 0.269 0.308 0.346

0.385

0.423

0.462 0.500 0.538

incident angle [deg]

0.577

0.615

0.654

0.692 0.731 0.769 0.808 0.846 0.885 0.923 0.962 1.
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EPFL Grazing incidence diffraction — GID

Grazing incidence diffraction
Phase ID depth profile on glass coating

Counts (Square Root)

Incident angles
Theta=0.25, 0.3, 0.35, 1.5 .
NiO (50 nm)
Sn0, (350 nm)

Glass

| ARRARRAASY AAAAS LSS RARASRARAS RAAAE LARAS AARSA LARAN RAMA) RALES AALAD RAASH RALAD RALA) RARGIRALA] AAAADSRARS NARSDRARA LARAI RALLY IARLI LEA

38 39 40 41 42 43 44 45 48 47 48 49

2Theta (TwoTheta) WL=1.54060

Coating on glass (St Gobain)
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EPFL Grazing incidence diffraction — GID

Grazing incidence diffraction
Stress gradient depth profile: CdTe layer of solar cell

. . . dp—d |
* Measure strain (lattice parameter shift) € = "d 0 NO STRAIN d Jk
0 :
e (Calcuate residual stres. g
UNIFORM STRAIN = d . '
ating_2 \ \
Substrate NONUNIFORM STRAIN @ /\
. om0
-20 -
) Q: How does stress arise in films?
-4 “ s , ‘T 40+
o
e Py - o A o - o P ke edn eha eia eka E
..... ! g 604 (m]
aaaaa =1 g
9 .80
©
o= |
_-JJ g -100
- L..U\.J'UL..«ULJUWU-W s
B M T TP T T T TP R TR P A A -120
®=5 o 2 4 6 8 10 12
[J Grazing Angle [degrees]
., LUUUuuUuwubL_«
s 90 e i 1o 130 o

|||||||||
22 % 40 so e 70
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EPFL In-plane —GID

In-plane grazing incidence diffraction

Scattering geometry How do we measure layer spacing?

Out-of-plane XRD
Conventional 26/6

M_h(
 hin i 4
\
/’ .

<+ | Incident X-ray
<+— |Diffracted X-ray

¢ Scattering
vector

A
Out-of-plane
- ), | Asymmetric
20/6 or GID
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EPFL In-plane — GID

Optimized setup for IP surface diffraction
Scattering geometry

e Line focus is parallel to the sample surface: Good depths control.

e Angle of incidence is controlled by an separate drive.
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EPFL In-plane —GID

In-plane grazing incidence diffraction
Applications

Polycrystalline, oriented samples

Strained polycrystalline films (also with no orientation)

Epitaxially grown samples

In general samples showing anisotropy in and out of plane

» Anything that can be measured with an out of plane scan, but on highly oriented samples
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EPFL In-plane — GID

In-plane grazing incidence diffra
Examples:
Structure determination of poly

-
S

Polycrystalline, Polycrystalline, )
biaxially textured. uniaxial texture. Poncrysta!Ime,
1400 Fixed orientation Fixed orientation ~ "andomly oriented.
001 e
1200 - in- P P
film thickness.
1000 (002)
El * In-plane crystallite size is
o, 8001 about 6.5nm
B‘ ] .
@ 600 (200) * In-plane fiber textured around
2 (001)
=
400
200 - (220) & i
. FePt nanoparticle 710 nm
0
20 30 40 50 60 70
20 [deg] Disk substrate
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EPFL In-plane —GID

In-plane grazing incidence diffraction
Examples:
Structure determination of MOF film

250 ] o
] SG#225 a=26.314 A

200_5 Bulk sample

g ] PXRD scan (T2T or transmission)
3 150
S ]
= ]
O 100 U
) ]
50 U
-'I""I""I""I"'I"'I""I"'
05 1,0 15 2,0 2,5 3,0 3,5 4,0
2 -1
q [A]

* Measurement of HKUST-1 powder provides structure information.

e  Crystallite size is about 195nm.
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EPFL In-plane —GID

In-plane grazing incidence diffraction
Examples:
Structure determination of MOF film

50
co-planar
002) co-planar (q))

— in-plane (q”)
S
3, (001)
%)
c
3 (003)
O
= (004)
O
(7))

0 T T T T T T T T T T T T

0,5 1,0 1,5 2,0
q [A]

sgri{Counts) [a.u.]

150

100

50

— in-plane measurement
full-profile fit

» Use the resolution function

T T T T T
0,5 1,0 1,56 2,0 2,5
-1
q [nm’]

*  Measurement of HKUST-1 thin film: (001) surface normal and size of about 90nm.

*  Fiber textured with 120nm crystallite size parallel to the surface

3,0
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=PrL

In-plane — GID

In-plane grazing incidence diffraction
Examples:
Structure determination of MOF film

sqrt(Intensity) [a.u.]

300 -

] (001) (002) Powder
250 B =— film co-planar
200_2 film in-plane
150 -
100 - (003)

50 - \
: | | |
0,5 10 1,5
o -1
q [A]

Measurement of HKUST-1 thin film: (001) surface normal and size of about 90nm.

Fiber textured with 120nm crystallite size parallel to the surface

In-plane lattice paramete” 26.482A (tensile strain)

Co-planar lattice parametes.: 26.0055A (compressive strair)

64

(powder: 26.314 A)

Advanced Solid State Characterization — 2025



EPFL In-plane —GID

In-plane grazing incidence diffraction
Examples:
Structure determination of MOF film

64.2 nm

100.6 nm

-85.3 nm

0.0 Height Sensor 1.0 pml 0.0 Height Sensor 5.0 pm‘

go T e
e The AFM pictures yield particles with = Sg /\ /\ ) /
size of 250-350nm. = 20 / \ M /\ { : f/\ /f m\ /
5 o n \
e Thisis not the cystallite size. = 2 b) w“w W‘J L\k/ \L/L \L}’w\/ ”\M/ﬂw w/\
T e
X [um]
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In-plane — GID

In-plane grazing incidence diffraction
Examples: Gas-sieving zeolitic membranes by the condensation of
precursor nanosheets. In-plane coherence maintained?

b

Gas transport across as-filtered films

— As-filtered
After calcination

--------- Background

Intensity (a.u.)

4 6 8 101214 16 18 20 22 24 26 28
20(°)

Intensity (a.u.)

c

e

IXENI B

020

IP-GID'

— As-filtered
After calcination
002 o Background

022

10 12 14 16 18 20 22 24 26 28 30

20()

Gas transport across calcined films

9 d=7.4A
- . . 'l

IP-GID proves coherence between
sheets, membranes are crystalline.

Layer spacing (out-of-plane) decreases
after condensation, intra-layer structure
unchanged (peak position IP).

No turbostratic disorder due to
fabrication (peak presence IP).

66 NATURE MATERIALS | VOL 20 | MARCH 2021 | 362-369
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EPFL In-plane — GID

In-plane grazing incidence diffraction
Examples: epilayer
Probing in-plane symmetry directly

(100)

3.93A

>
541 A SrRuO; (Pnma)

CeO, (Fm-3m)

e Aim: determine the epitaxial relationship.

e Based on lattice mismatch one would expect the unit cells to exhibit a twisted cube on cube
epitaxy.
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EPFL In-plane — GID

In-plane grazing incidence diffraction
Examples: epilayer
Probing in-plane symmetry directly

e 0/26-scan at SrRu0O3 (220)
(100)

800

700—-

600 - ot
E 500- §
;g. 400—-
% 300—-
= ] —
B 200 - 5.41 A SI’RUO3 (ana)

‘°°‘: CeO, (Fm-3m)

04

20 [degree]

e SrRuO3 (220) | | CeO2 (100) .

e C(Clearisolation of SrRuO3 (220) reflection
by depth control.
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In-plane — GID

In-plane grazing incidence diffraction

Examples: epilyer

Probing in-plane symmetry directly

0/26-scan at SrRu03 (220)

800

700 -
600 —
500 —
400 —

300

Intensity [cps]

200

20 [degree]

e SrRu03(220) || CeO2 (100) .
e (Clearisolation of SrRuO3 (220) reflection

by depth control.

Intensity [cps]

® (-scan at 206 of SrRuO3 (220): 4 peaks
(should be 2 according to orth symmetry)

4
40

e

® mn
o

150

Major domains
¢ [degree]

10Q.4

200 250

350

A simple rotation of the sample around the surface
normal directly reveals the in-plane symmetry.

Experimental: Requires surface normal || ¢-axis.
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ePFL  GIWAXS

Grazing incidence wide angle scattering
Formally identical to GID, but term GIWAXS misused for 2D application

D detector Area observed by
o Polycrystalline Singl stal
rings dots
Gz Gz
X: orientation
_______;r;a observed by ." \ Axy Axy
a point detector - -
Amorphous Strained Textured
no special feature stretched rings / dots partial rings
9z Gz i
A \ A
"‘,--———-._\‘ —{’,--'——--h\* "‘,--'—_'-\-
strain dfr:t‘\'nn
EXY .': .'. EI_W .-'J ". Qxy

» As GID, but with additional information along the azimuth (gamma or in-
plane direction) = 2 angle coordinates to reconstruct film architecture.
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EPFL  GIWAXS

Grazing incidence wide angle scattering
Examples: crystallite (and structure) orientation MAPl,, Pm-3m

Out-of-plane

Q: What about (100): IP or OP?

In-plane

Q: What if in-plane disorder around [110]
direction (edge-direction)

» Strong spots in out-of-plane direction (qu =
0), rings for rest.

71
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ePFL  GIWAXS

Grazing incidence wide angle scattering

Examples: FAPI, solar cells — texture with a snapshot , , ,
Azimuthal integration at

constant 2Theta = 12.9°

i B Pbl,

Intensity (a. u.)

(110) (1aD)’ IR

6H polytype
0 10 20 30 40 50 60 70 80 90
Azimuthal angle (°)

A 3C 3C B -
—— Eq. PbI, I s —Eq. Pbl, PbI, 100 _
—— Ex. PbI, -3 —Ex POl 80 3
@ =
g L 2
& 02
c 2H 40 P
—_— 6H =
[ X 6 L - A L —
! ] A \\n_. 2
[ T~ 0
T T T T T I T T T T T 1
10 20 30 40 50 60 10 11 12 13
20 (degree) 20 (degree)

» Photoactive (3C) and non-active FAPbI; polymorphs
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ePFL  GIWAXS

Grazing incidence wide angle scattering
Examples: FAPI, solar cells — texture with a snapshot

» Reconstruct complex film interfaces and connectivity between phases

3C polytype 2.0-
B . . / : . .
4 z-axis | _ AAR ' 1.5

100000000 2P S0

1666660050 DIPs IV g o
::::::’r‘ :"”‘JJ.’ ‘\‘ - - h;ig:gﬁ

)80000 0000008

[ Unitcell of 6H
o Corner-sharing @ 3C/6H
e Corner-sharing @ 6H(16°)/6H(54°)

Xy plane
(substrate)
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cePFL  Summary

= Surface diffraction (GID) is measured at fixed low incidence angle using a
detector scan. It is a comparatively low resolution diffraction geometry.

= Depth control is achieved by varying the incident angle.

= The accessible diffraction-vector rotates within the scattering plane,
allowing to access Bragg peaks invisible in conventional PXRD.

= Diffraction vectors lying in the sample place cannot by accessed by normal
XRD nor GID. They can be measured with in plane GID.

" |n-plane grazing incidence diffraction is useful on thin oriented samples in
particular when anisotropy is expected.

= GIWAXS a GID experiment with a 2D detector. GIWAXS is particularly
useful for qualitative texture analysis, and for kinetic studies on thin films.
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cPFL Contents

» CH-633 — X-ray scattering:

1. Introduction and XRD recap, surface diffraction

2. Thin film diffraction and reflectometry
. High resolution diffraction

*  Texture analysis

e  X-ray reflectometry

Small angle X-ray scattering

4. Total scattering

o
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