

Advanced Solid State and Surface Characterization

CH-633 Chemistry and Chemical Engineering (edoc)

Mounir Mensi, Emad Oveisi, Pascal Schouwink

2025

<https://www.epfl.ch/schools/sb/research/isic/platforms/x-ray-diffraction-and-surface-analytics>
<https://www.epfl.ch/research/facilities/cime/>

14/14	Nom Prénom	Sciper	Genre	Section	Courriel
1	Ameres Marie-Gabrielle	397033	Féminin	EDMX	
2	Fabbiano Marco	383203	Masculin	EDCH	
3	Gupta Riya	390573	Féminin	EDCH	
4	Liu Wai Kwan	390681	Féminin	EDCH	
5	Meoli Matthieu	282576	Masculin	EDCH	
6	Naderasli Pardis	377802	Féminin	EDCH	
7	Ouyang Boyu	366580	Masculin	EDCH	
8	Prakash Vivek	371567	Masculin	EDCH	
9	Salehi Rozveh Zahra	397220	Féminin	EDCH_ECH	
10	Smith Olivier Thomas	372870	Masculin	EDCH	
11	Tritschler Moritz	390743	Masculin	EDCH	
12	Venkatachalam Sanjay	323482	Masculin	EDCH	
13	Wang Shaoyu	371652	Masculin	EDCH	
14	Warkentin Hugh Andrew	398693	Masculin	EDCH	

Dates

- Wednesdays 10:15 – 12:00, 12.02. – 30.04.2024 (exception: 19.03. session moved to 18.03.)
- <https://epfl.zoom.us/s/62989985578>

Content

- 1 session intro + 3 X-ray scattering methods (Surface XRD, HRXRD, SAXS, PDF)
- 2 sessions electron microscopy
- 6 sessions surface spectroscopy/microscopy
- Lecture notes + miscellaneous on moodle

Exam

- Written, questions + exercises, date tbd

EPFL X-ray diffraction and Surface Analytics XRDSAP

EPFL • Valais Wallis

- 3 diffractometers
- 1 MicroRaman 4 lasers
- 1 XPS/UPS
- 1 AFM



EPFL X-ray diffraction and Surface Analytics XRDSAP

EPFL • Lausanne campus

- 5 diffractometers
- SAXS beamline
- Multipurpose AFM (soon)

- Aim of the course: know your way around basic concepts of state-of-the art methods and when to use which.
 - Long range vs. short range order
 - Length scale
 - Resolution of experiment, resolution given by data
 - Bulk vs. surface
 - Phase sensitive?
 - Oxidation state sensitive?
 - Chemical composition
 - Detection limit, impurities?
 - ...
 - ..
 - This course does not include instrument training on any method!
 - But: training on most discussed methods is done at our facilities.
- In-depth theory and analysis of XRD, SCD and EM are taught in CH-632 and CIME courses

➤ CH-633 – my part:

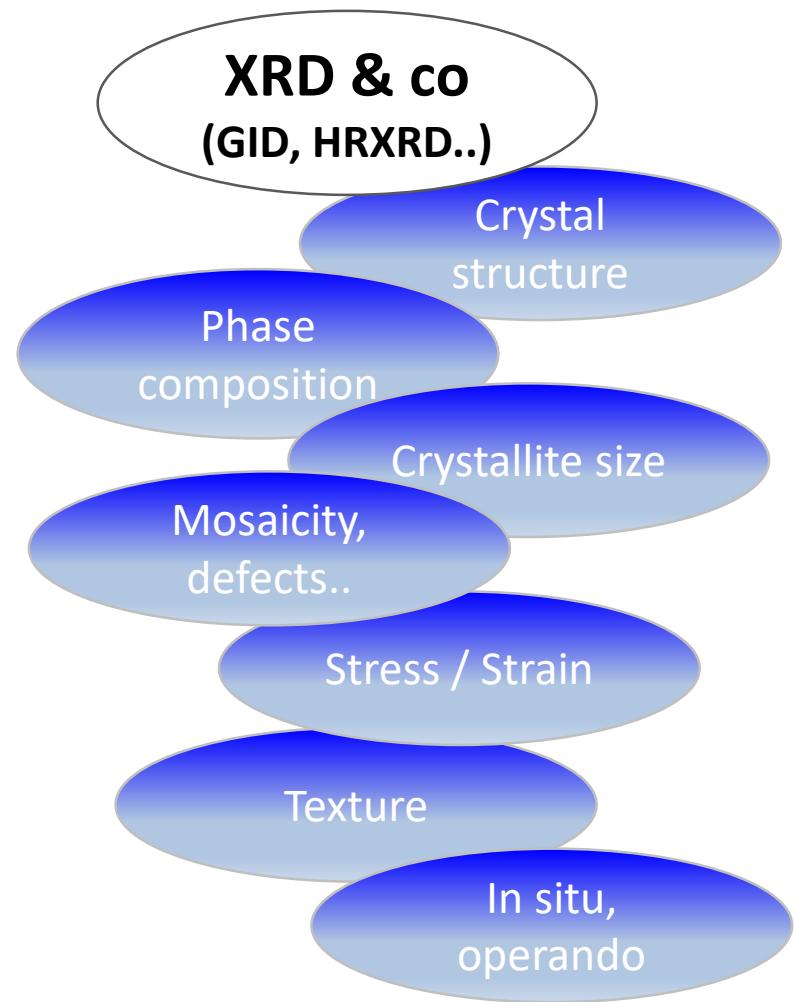
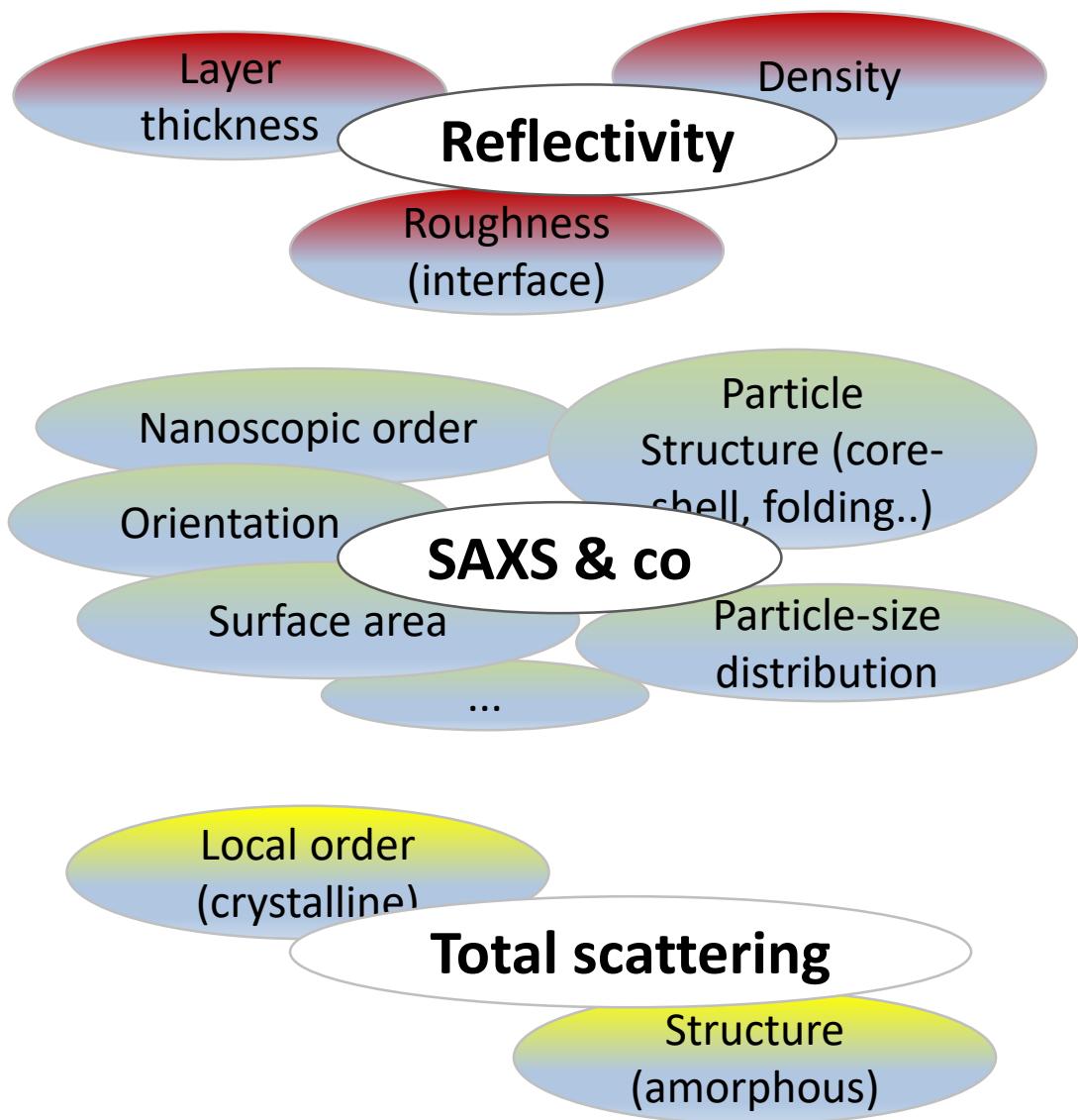
1. **Introduction and XRD recap, surface diffraction**

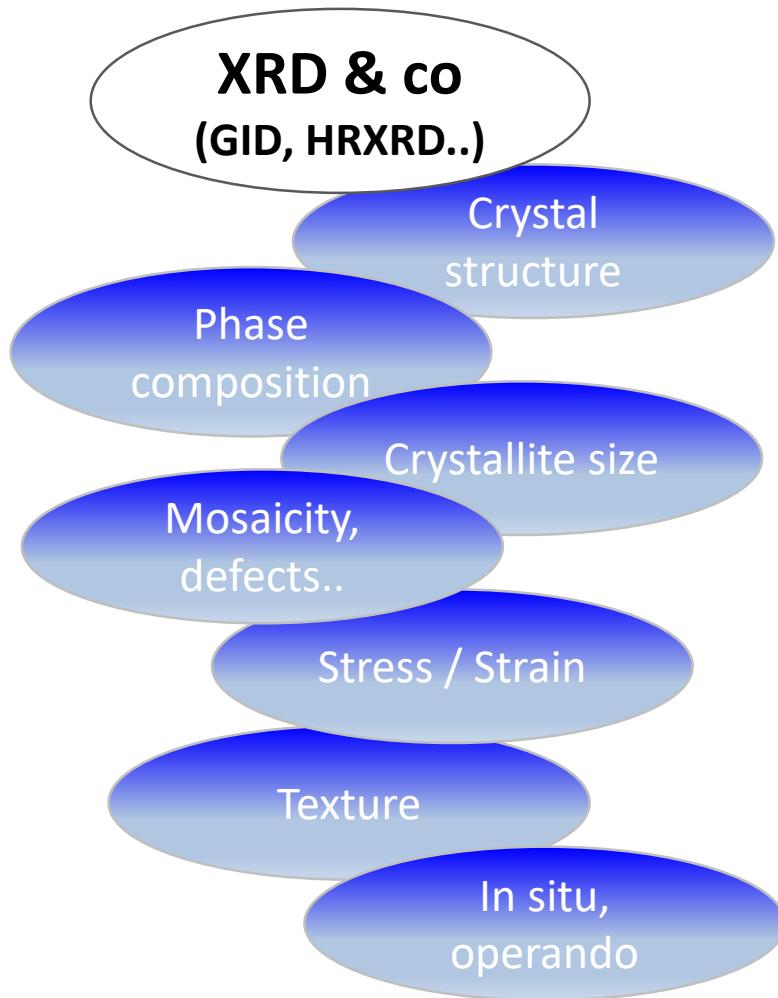
- Condensed matter: atomic structure, periodicity and symmetry
- Interaction of X-rays with solids
- From bulk (CH-632) to surface diffraction

2. **Thin film diffraction and reflectometry**

3. **Small angle X-ray scattering**

4. **Total scattering**



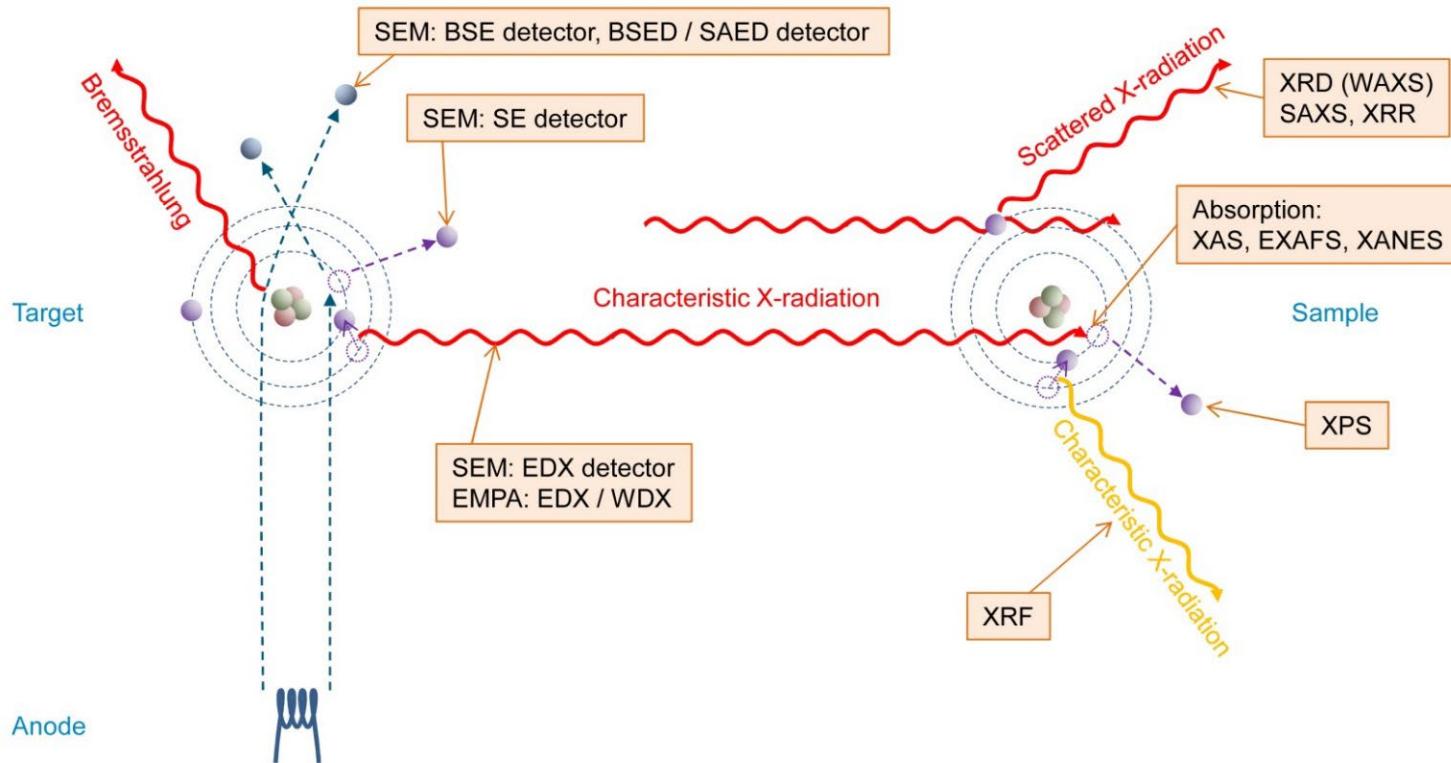


➤ **Some relevant XRD methods possible in XRDSAP labs**

- **Grazing incidence diffraction geometries**
 - GID, IP-GID, GIWAXS and derivatives
- **Texture methods**
 - Pole figures, ODF, GIWAXS
- **High Resolution Diffraction HRXRD**
 - Reciprocal space maps, RC
- **X-ray reflectometry**
 - Not a diffraction method

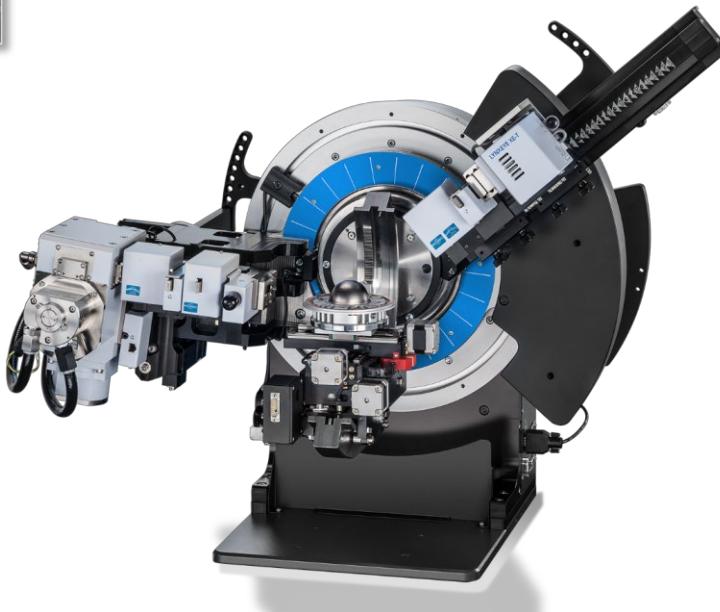
➤ Feasibility often depends on sample type

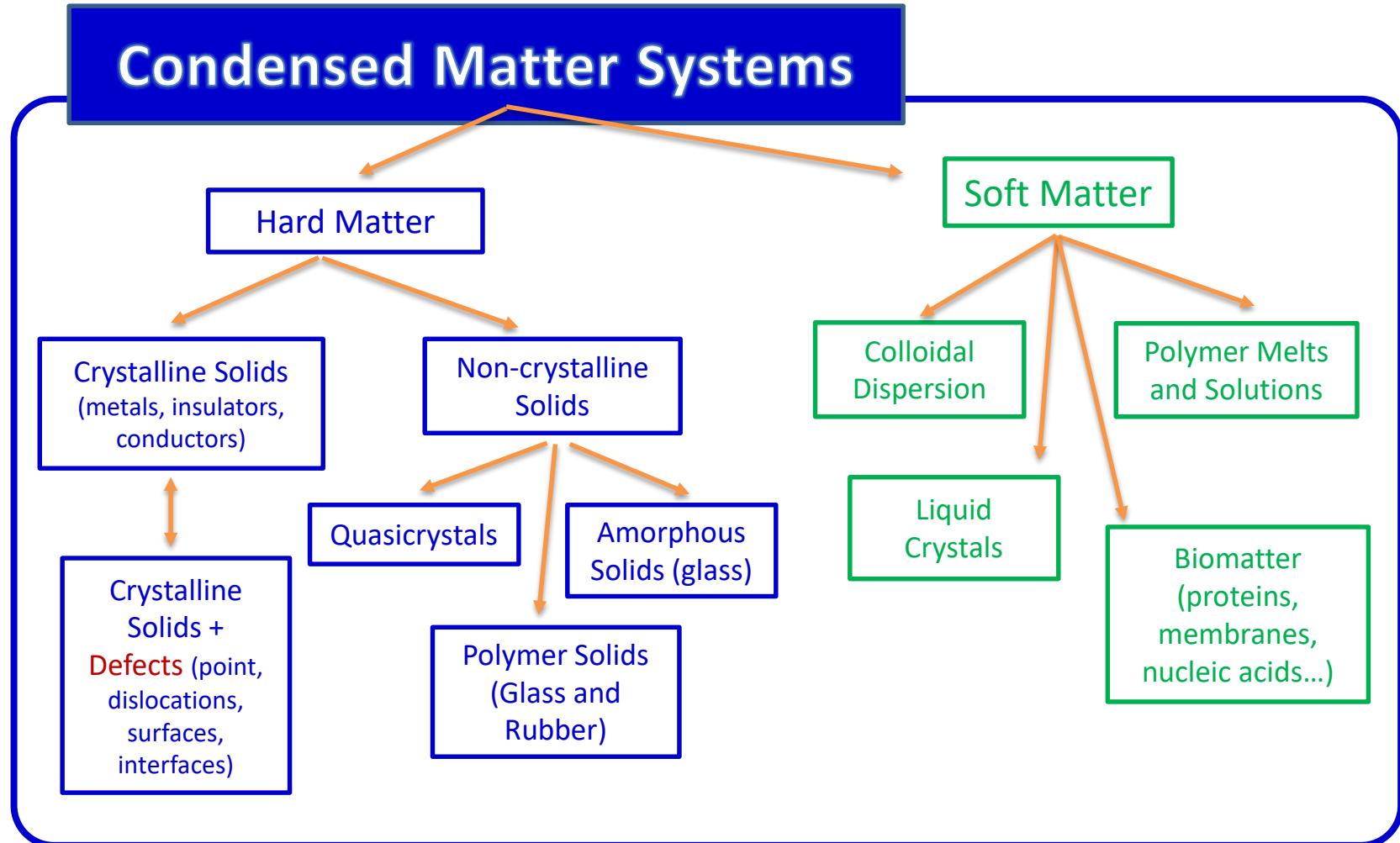
- Not all techniques are possible in reflection AND transmission geometries
 - Grazing incidence-experiments require flat surfaces
 - Texture methods (usually) require mechanically stable sample
 - Transmission methods depend on sample absorption and/or thickness
 - X-ray reflectometry requires extremely flat surface
-
- Transmission: PDF, SAXS, WAXS (texture)
 - Reflection: GID, GIWAXS, GISAXS, HRXRD, XRR (PDF at specialised beamlines)
 - Multi-method: SAXS-WAXS, PDF-PXRD, PDF-XRD-XAS, XRD-Raman....



- Similar setups
- Very different analytical tools

- Beam energy
- Beam shape
- Beam flux
- Machine geometry

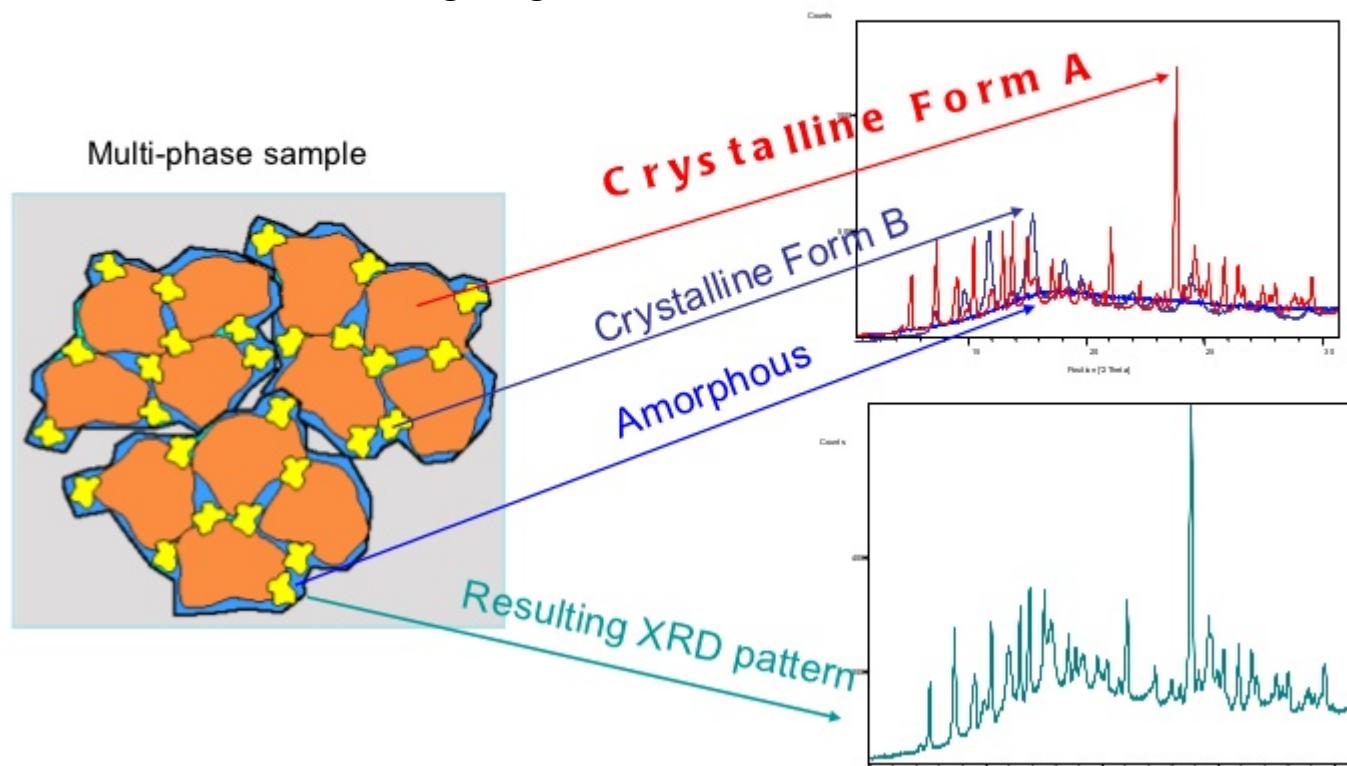




A crystallographer's definition of solids:

Crystal: A material **is a crystal** if it has essentially a sharp diffraction pattern (IUCr). This arises from the periodicity of the lattice.

The **amorphous solid** lacks this because it lacks long range order.

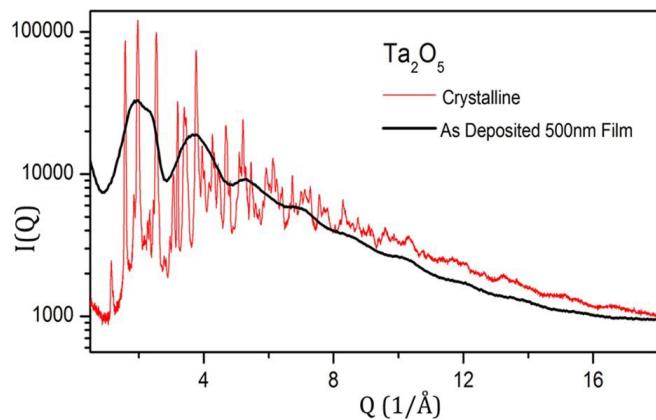


- Patterns are additive, you see everything in your data.

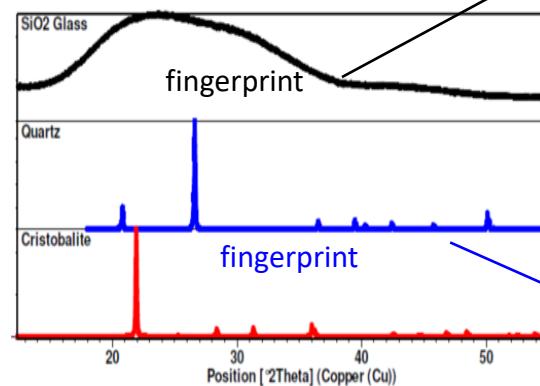
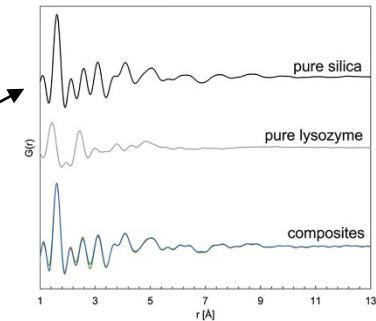
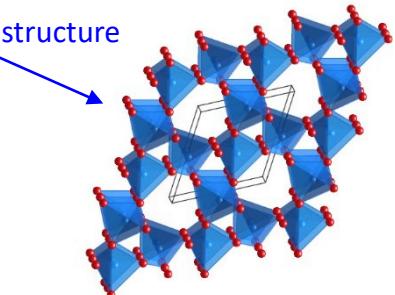
A crystallographer's definition of solids:

Crystal: A material **is a crystal** if it has essentially a sharp diffraction pattern (IUCr). This arises from the periodicity of the lattice.

The **amorphous solid** lacks this because it lacks long range order.



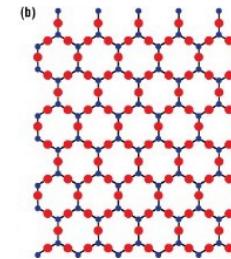
Scientific Reports volume 6, Article number: 32170



Crystalline solid

Constituents are arranged in periodic manner on the Å length scale (several to 10s of Å). A crystal lattice is formed in 3D.

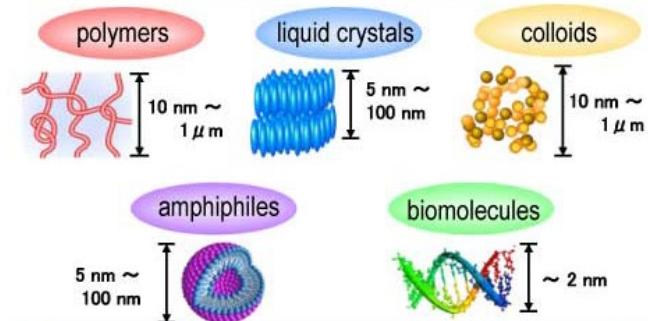
Q: How do we measure atomic structure?



Soft matter:

Intermediate length scales between atomic and macroscopic sizes (10s to 100s of nm).

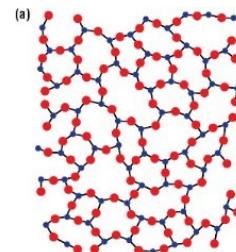
Q: How do we measure atomic structure?



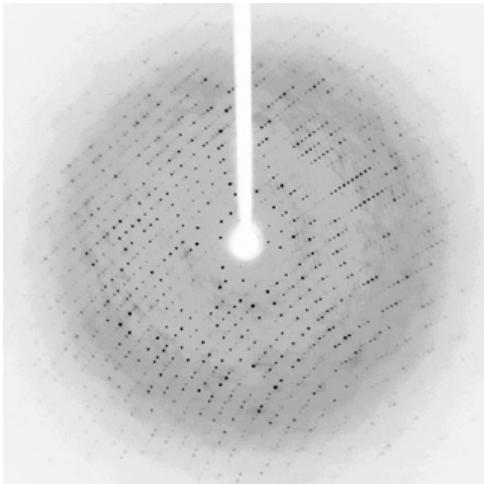
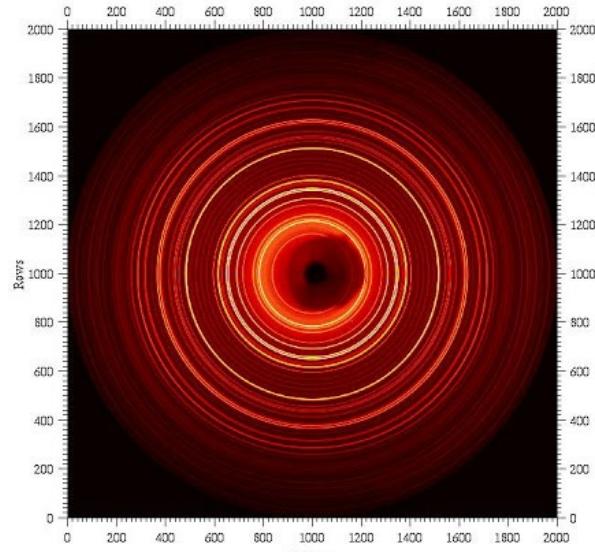
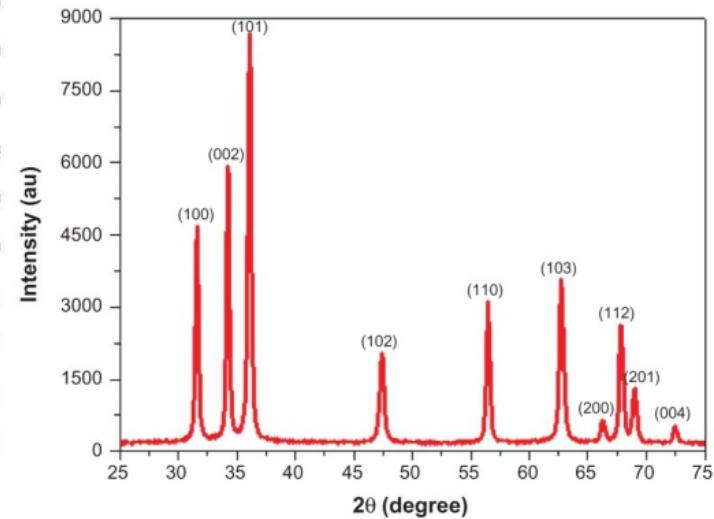
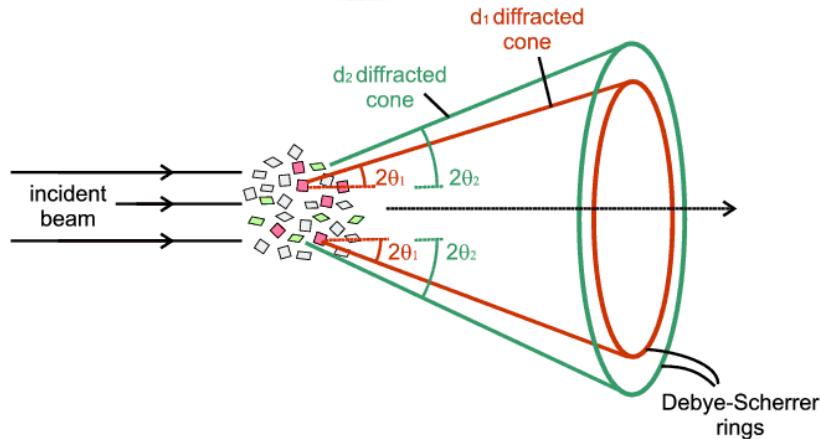
Amorphous solid:

No long range order, no sharp melting point.

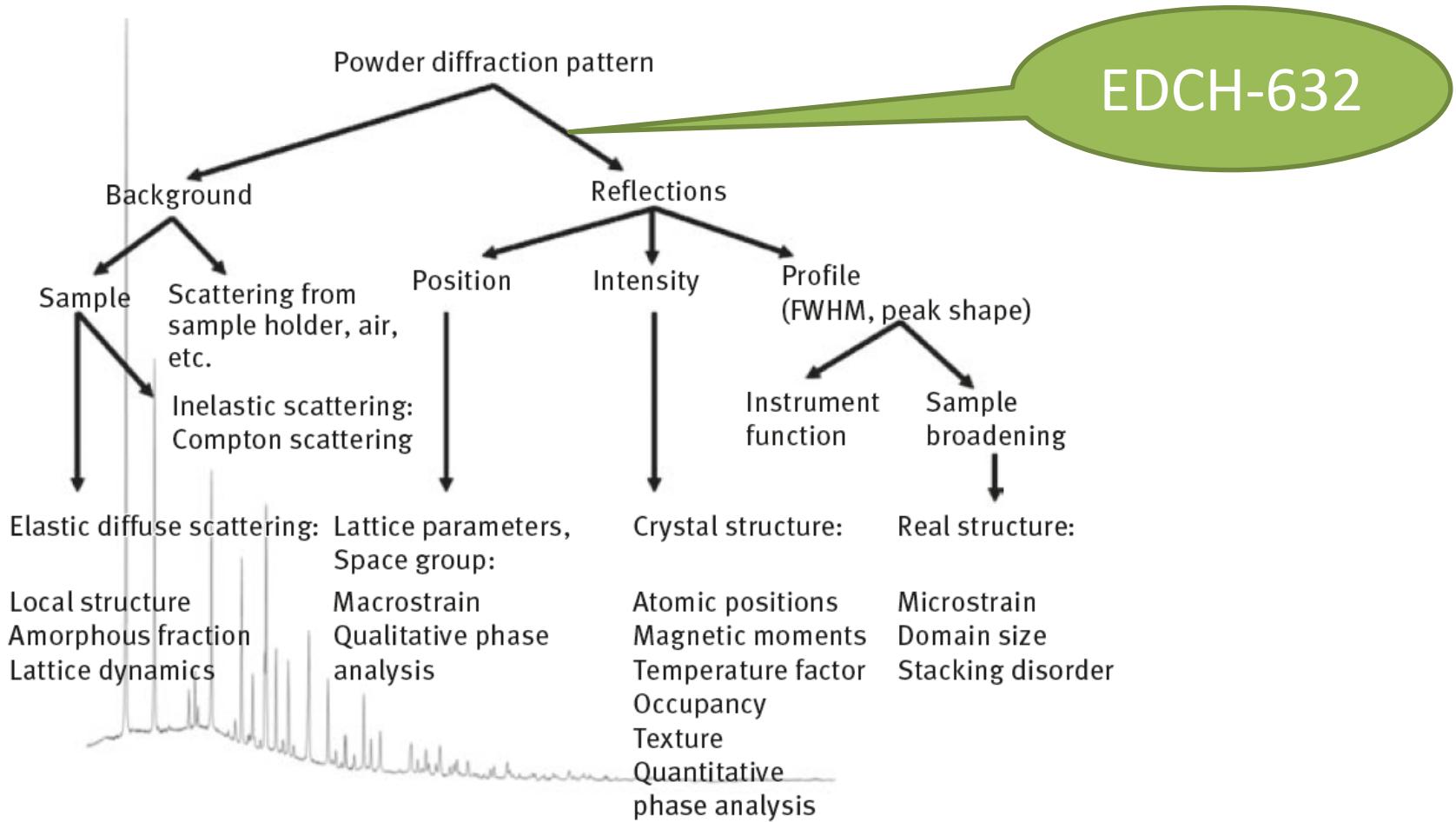
Q: How do we measure atomic structure?



$$I_i^{calc} = S_F \sum_k e^{-2B(T)s^2} L_k(\theta) P_k(\theta) A(\theta) y_{PO} p_k S(2\theta_i - 2\theta_k) |F_k|^2 + bkg_i$$



$$I_i^{calc} = S_F \sum_k e^{-2B(T)s^2} L_k(\theta) P_k(\theta) A(\theta) y PO p_k S(2\theta_i - 2\theta_k) |F_k|^2 + bkg_i$$



$$I_i^{calc} = S_F \sum_k e^{-2B(T)s^2} L_k(\theta) P_k(\theta) A(\theta) y PO p_k S(2\theta_i - 2\theta_k) |F_k|^2 + bkg_i$$

- Debye-Waller factor
- Lorentz-Polarization correction
- Absorption correction $A(\theta)$, extinction y (SCD only)
- Preferred orientation (PXRD only)
- Multiplicity (PXRD only)
- Profile shape function (line broadening)
- **Squared** structure factor (atomic form factor, unit cell + content)
- k : scattering vector

Related to actual structure

$$F(hkl) = \sum_N f_N e^{2\pi i(hx_N + ky_N + lz_N)}$$

$F(hkl)$ is the structure factor of the reflection hkl of the unit cell, f_N is the atomic scattering factor (form factor) for each of the N planes

- Electronic property – information about atom types in structure (Amplitude)
- Structural property – information about atom position in the unit cell (Phase)

$$I_i^{calc} = S_F \sum_k e^{-2B(T)s^2} L_k(\theta) P_k(\theta) A(\theta) y PO p_k S(2\theta_i - 2\theta_k) |F_k|^2 + bkg_i$$

- Debye-Waller factor
- Lorentz-Polarization correction
- Absorption correction $A(\theta)$, extinction y (SCD only)
- Preferred orientation (PXRD only)
- Multiplicity (PXRD only)
- Profile shape function (line broadening)
- **Squared** structure factor (atomic form factor, unit cell + content)
- k : scattering vector

$$F(hkl) = \sum_N f_N e^{2\pi i(hx_N + ky_N + lz_N)}$$

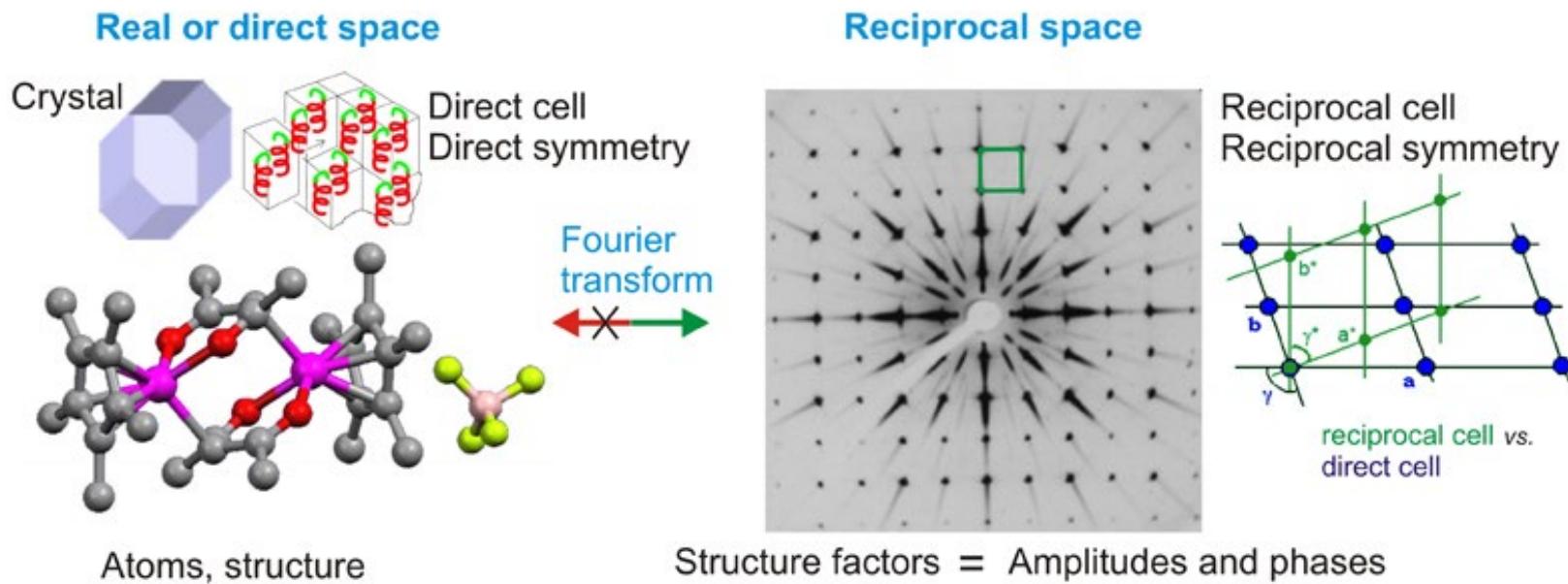
$$I(q) = P(Q)S(Q)$$

$$I(q) = \sum_n \sum_m f_m f_n \frac{\sin qr_{mn}}{qr_{mn}}$$

SAXS

Total scattering (PDF)

$$I_i^{calc} = S_F \sum_k e^{-2B(T)s^2} L_k(\theta) P_k(\theta) A(\theta) y PO p_k S(2\theta_i - 2\theta_k) |F_k|^2 + bkg_i$$



$$\rho(xyz) = \frac{1}{V} \sum_{hkl}^{+\infty} |F(hkl)| \cdot e^{-2\pi i [hx + ky + lz - \phi(hkl)]}$$

Phases?

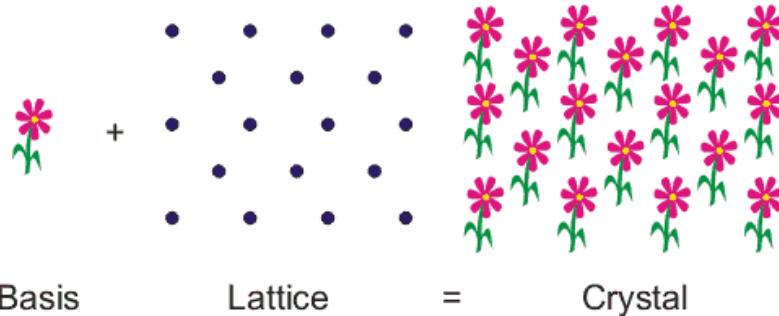
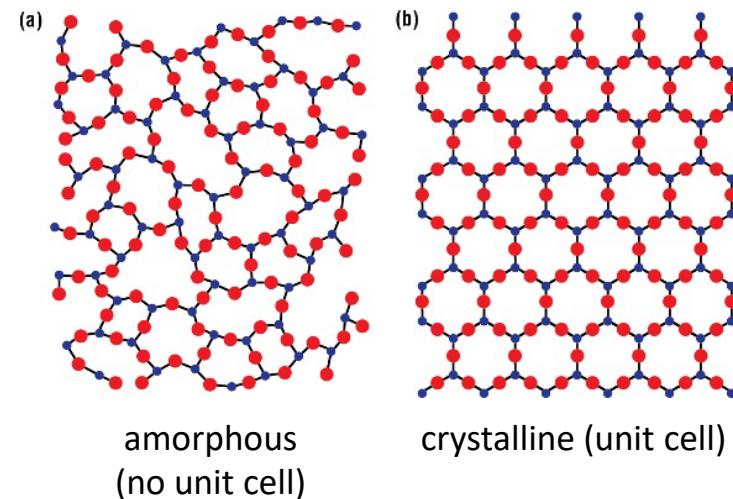
Amplitudes

Some necessary basics:

- **Symmetry**
- Diffraction condition
- Structure factor and extinctions

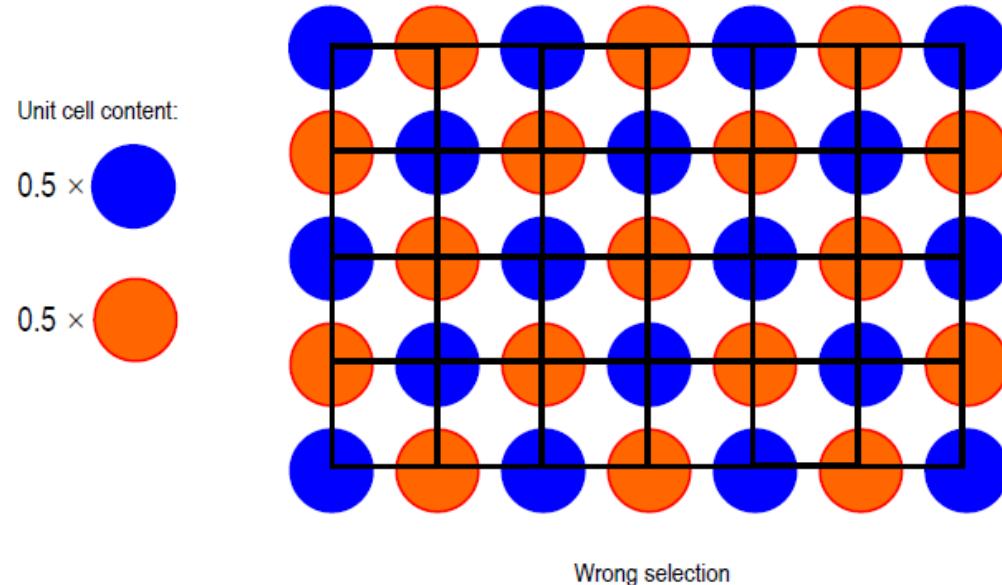
The crystal lattice

- Periodicity gives rise to discrete signals in the diffraction pattern
- A solid lacking long range order does not “diffract”
- Bravais lattice: regular arrangement of points generated by translation
 - $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$
- Periodicity gives rise to the unit cell: smallest repetitive unit of a lattice that contains all the information - defines the symmetry and structure of the entire crystal lattice.



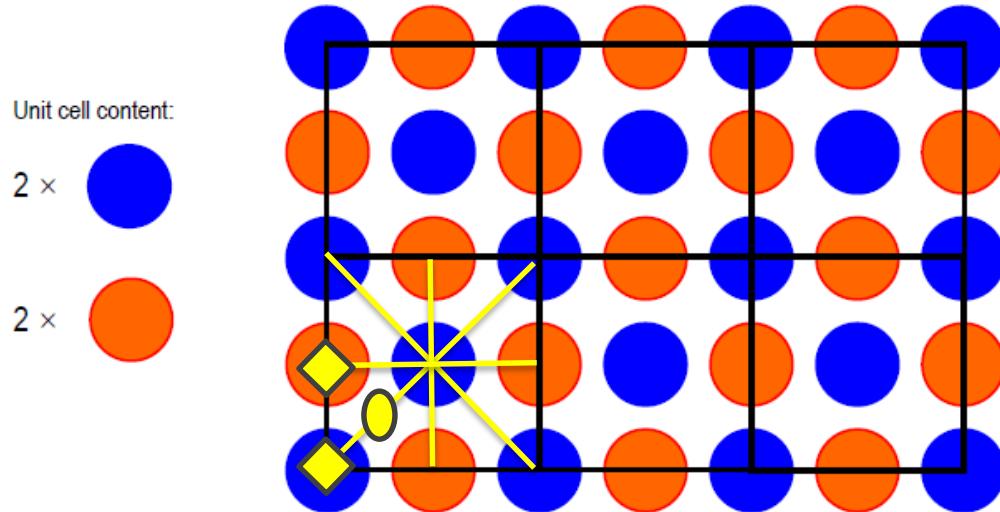
The crystal lattice

- Bravais lattice: regular arrangement of points generated by translation
 - $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$
- Unit cell: smallest repetitive unit of a lattice that contains all the information - defines the symmetry and structure of the entire crystal lattice.



The crystal lattice

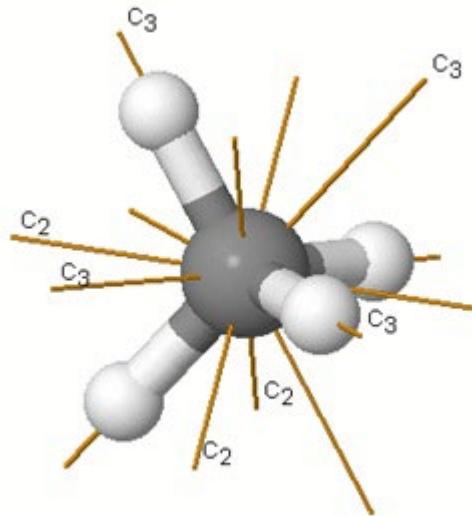
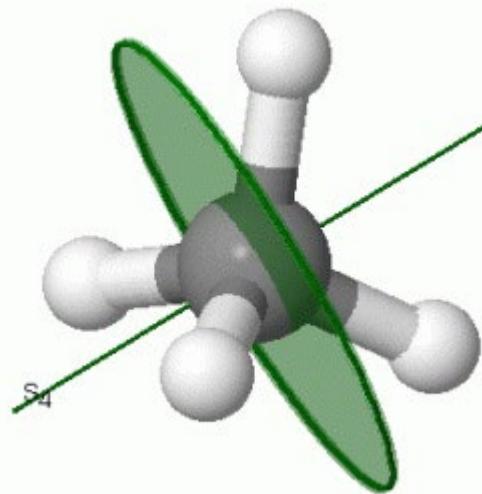
- Bravais lattice: regular arrangement of points generated by translation
 - $\mathbf{R} = n_1 \mathbf{a}_1 + n_2 \mathbf{a}_2 + n_3 \mathbf{a}_3$
- Unit cell: smallest repetitive unit of a lattice that contains all the information - defines the symmetry and structure of the entire crystal lattice.



➤ Periodicity gives rise to symmetry in the lattice

A closer look at symmetry (more detailed treatment CH 632)

- How do you describe the symmetry of a molecule (gas, liquid..)



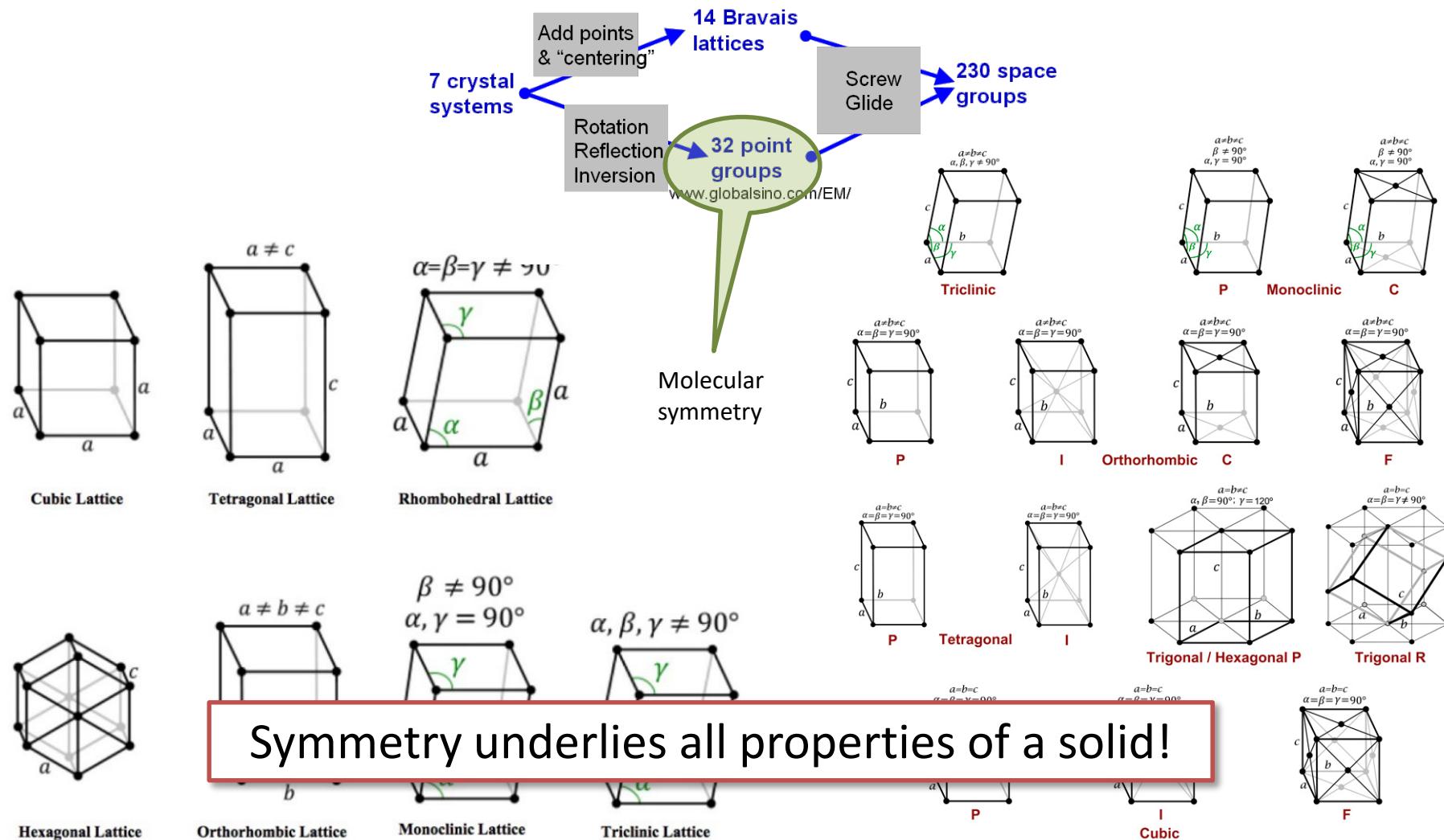
T_d – tetrahedral group (point group)

Schoenflies notation: point symmetry, used to describe molecular symmetry (point groups)

Hermann-Mauguin notation: used to describe translational symmetry (space groups)

A crystal is an extended solid!

Space group symmetry



Space group symmetry

- PG symmetry (32 groups) + translation results in SG symmetry (230 groups).
- SG symmetry defines which peaks you see for a given unit cell!

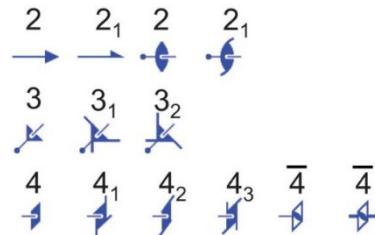
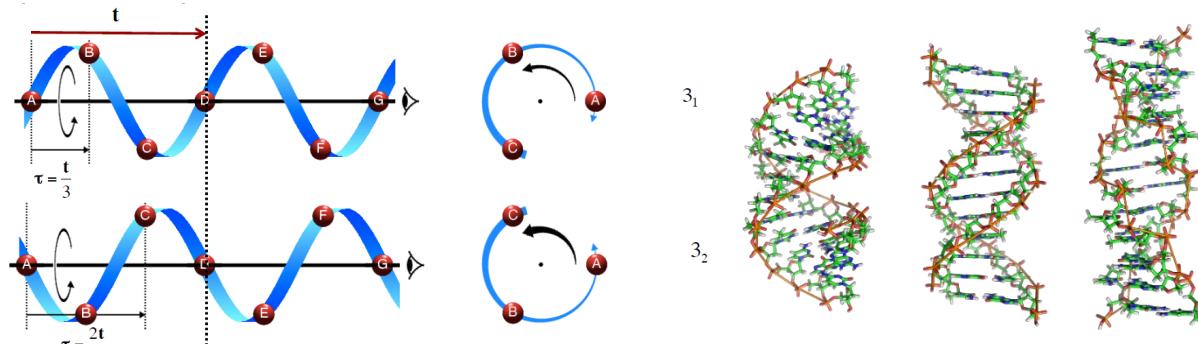
7 crystallographic systems and their symmetry point groups							
triclinic	C_1	C_i					
	1	I					
monoclinic	C_2	C_s	C_{2h}				
	2	m	$2/m$				
orthorhombic	D_2	C_{2v}	D_{2h}				
	222	mm2	mmm				
tetragonal	C_4	S_{4i}	C_{4h}	D_4	C_{4v}	D_{2d}	D_{4h}
	4	$\bar{4}$	4/m	442	4mm	$\bar{4}2m$	4/mmm
trigonal (rhombohedral)	C_3	C_{3i}	D_3	C_{3v}	D_{3d}		
	3	$\bar{3}$	32(1)	3m	$\bar{3}m$		
hexagonal	C_6	C_{3h}	C_{6h}	D_6	C_{6v}	D_{3h}	D_{6h}
	6	$\bar{6}$	6/m	622	6mm	$\bar{6}m2$	6/mmm
cubic	T	T_4	O	T_d	O_h		
	23	$m\bar{3}$	432	$\bar{4}3m$	$m3m$		

Space group symmetry

- PG symmetry (32 groups) + translation results in SG symmetry (230 groups).
- SG symmetry defines which peaks you see for a given unit cell, as well as the crystal structure!

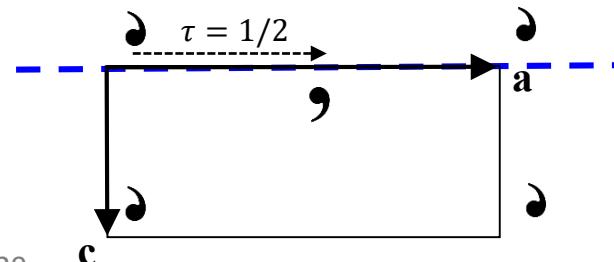
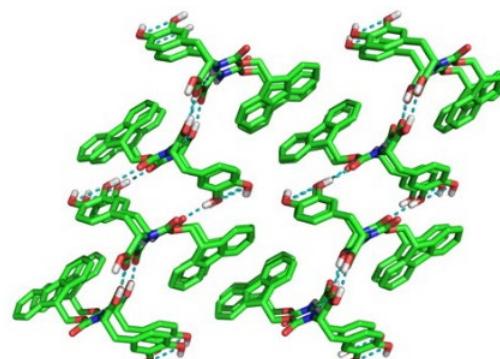
Screw axis 3_1

- 3 equivalent positions
- 3 symmetry operations (order)



c glide plane

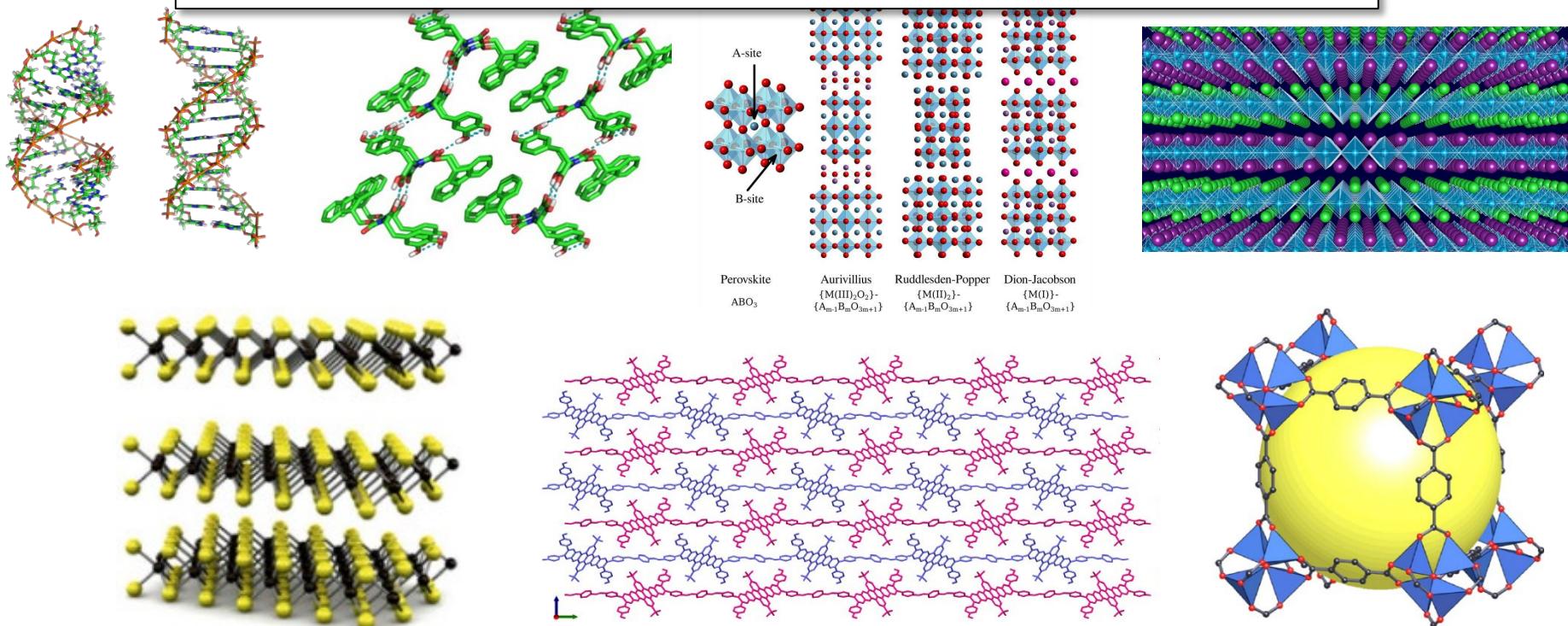
- 2 equivalent positions
- 2 symmetry operations (order)



Space group symmetry

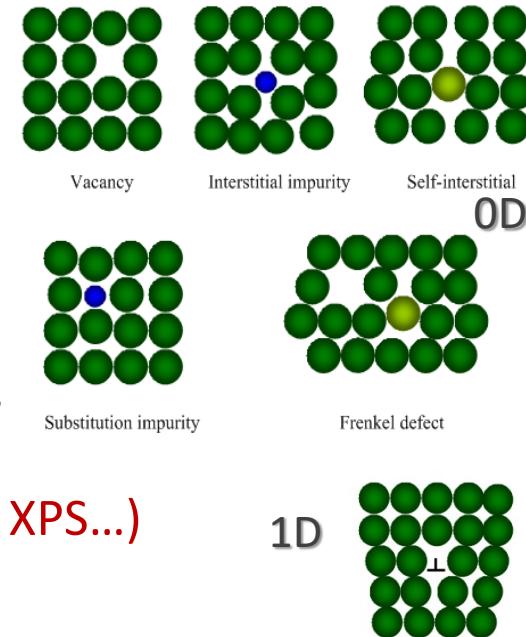
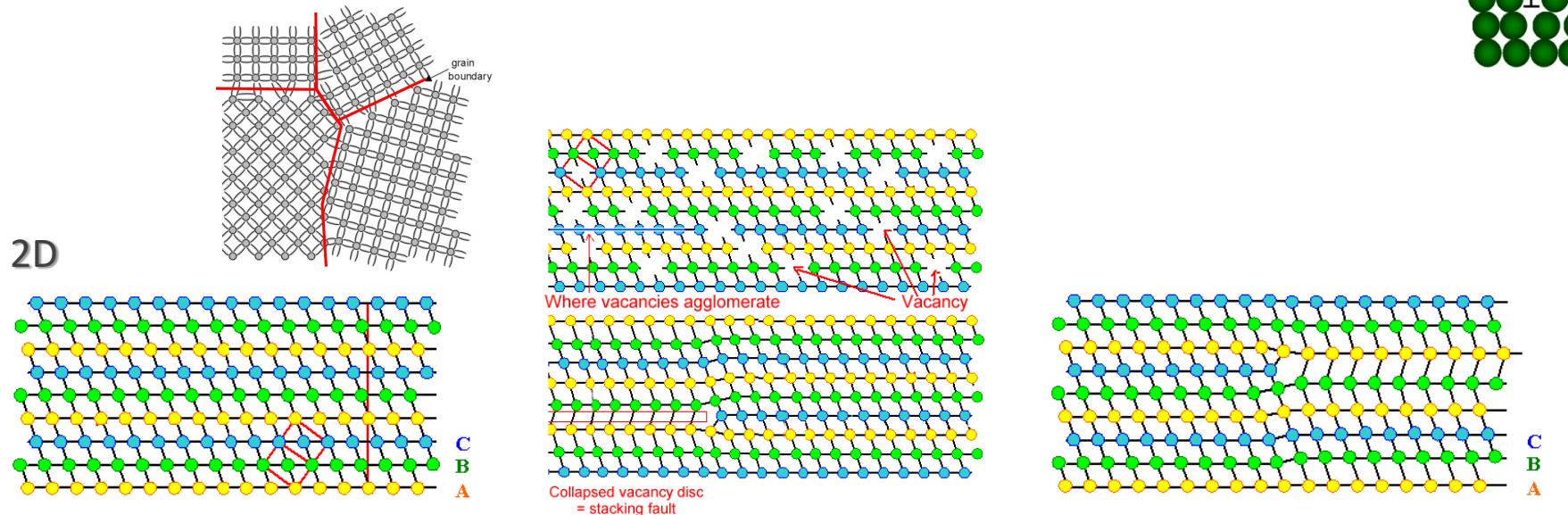
- PG symmetry (32 groups) + translation results in SG symmetry (230 groups).
- SG symmetry defines which peaks you see for a given unit cell, as well as the crystal structure!

➤ Different types of material "like" different types of symmetry



Real solids contain defects at finite temperature.

- Conventional 0D, 1D, 2D
- Missing linkers or non-periodic sorption sites (MOFs)
- Structural disorder (polymers)
- ...
- What type, is defined by processing, topology, symmetry, bonding...
- Hard to quantify, but have different signatures (EM, XRD, XPS...)

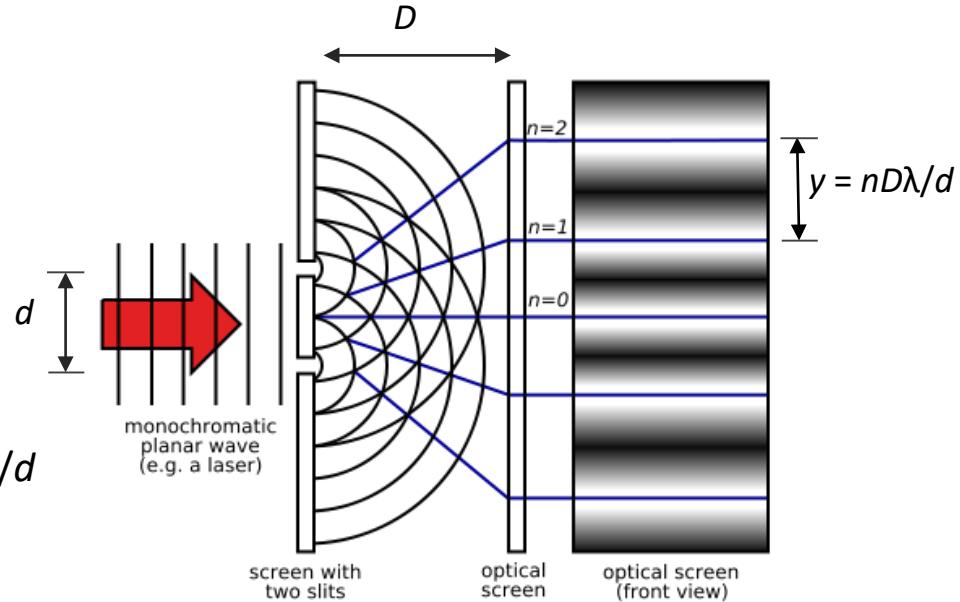
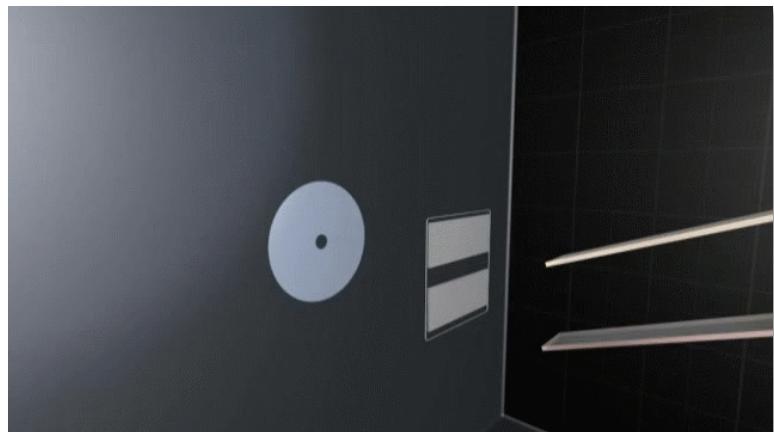


Some necessary basics:

- Symmetry
- **Diffraction condition**
- Structure factor and extinctions

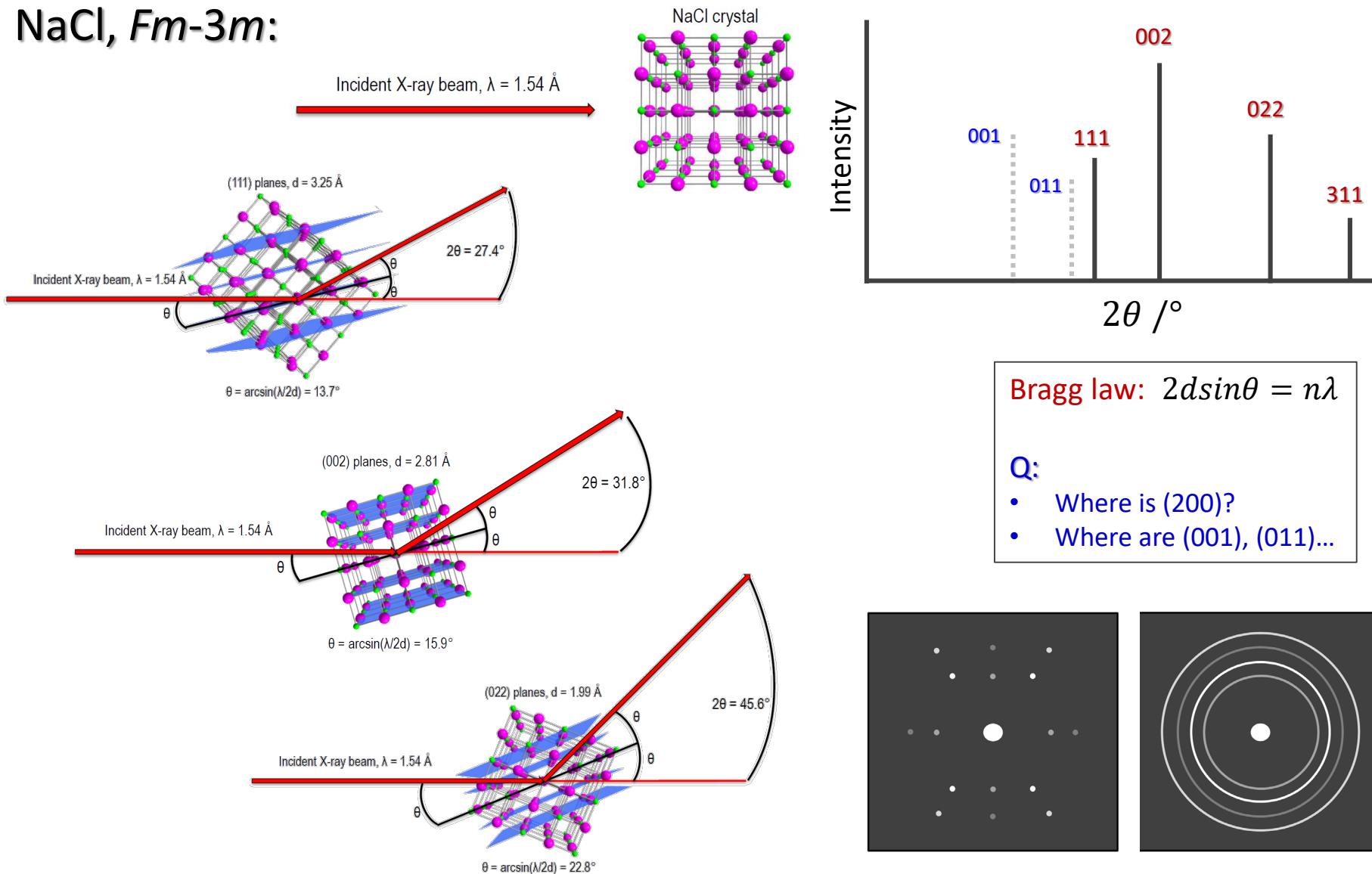
Double – slit experiment:

- Maxima are registered due to interference.
- Periodicity
- Spacing between detected maxima: $y = nD\lambda/d$



- Crystal is a 3D diffraction grating
 - With XRD we measure the reciprocal lattice
- Q: Why do we use X-rays?
 Q: When do X-rays interfere constructively?
 Q: How do we get the direct lattice (atomic structure)?

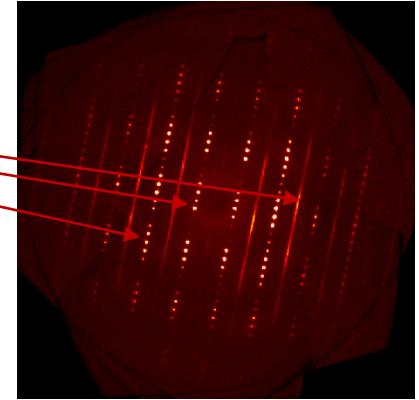
NaCl, $Fm-3m$:



Direct and reciprocal lattice:

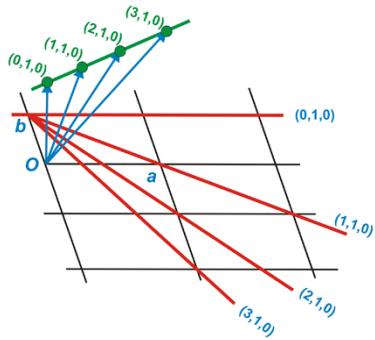
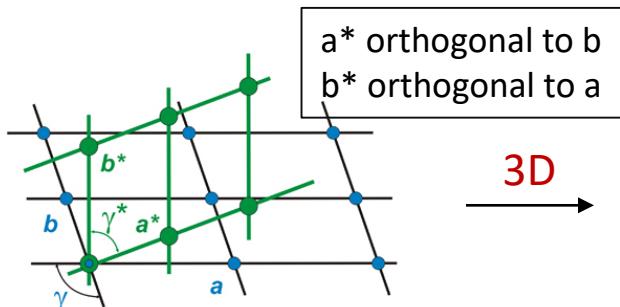
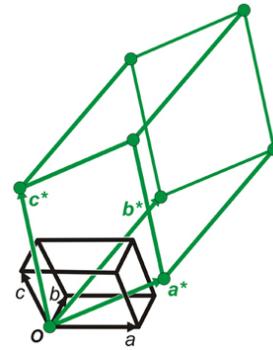
$$\mathcal{L}(\mathbf{r}) = \sum_{UVW} \delta[\mathbf{r} - (U\mathbf{a} + V\mathbf{b} + W\mathbf{c})] \rightarrow FT \rightarrow R(\mathbf{Q}) = \sum_{hkl} \delta[\mathbf{Q} - (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*)]$$

- Construct reciprocal:
- Vectors \mathbf{r}^* normal to planes in lattice with distance d from origin



Miller indices:

Notation to describe reciprocal lattice points $\mathbf{r}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$



$$\mathbf{a}^* = 2\pi \frac{\mathbf{b} \times \mathbf{c}}{\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})},$$

$$\mathbf{b}^* = 2\pi \frac{\mathbf{c} \times \mathbf{a}}{\mathbf{b} \cdot (\mathbf{c} \times \mathbf{a})},$$

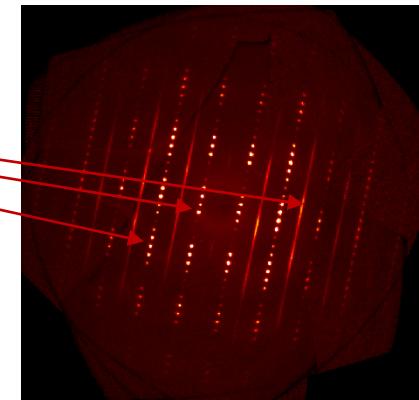
$$\mathbf{c}^* = 2\pi \frac{\mathbf{a} \times \mathbf{b}}{\mathbf{c} \cdot (\mathbf{a} \times \mathbf{b})}$$

$$Q = \frac{2\pi}{d} = \frac{4\pi \sin \theta}{\lambda} / \text{\AA}^{-1}$$

Direct and reciprocal lattice:

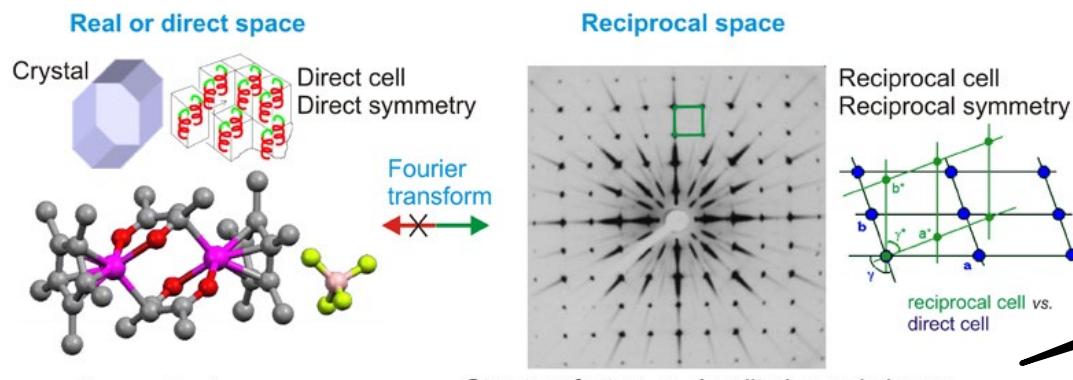
$$\mathcal{L}(\mathbf{r}) = \sum_{uvw} \delta[\mathbf{r} - (U\mathbf{a} + V\mathbf{b} + W\mathbf{c})] \rightarrow FT \rightarrow R(\mathbf{Q}) = \sum_{hkl} \delta[\mathbf{Q} - (h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*)]$$

- Construct reciprocal:
- Vectors \mathbf{r}^* normal to planes in lattice with distance d from origin



Miller indices:

Notation to describe reciprocal lattice points $\mathbf{r}^* = h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*$



$$\rho(xyz) = \frac{1}{V} \sum_{hkl}^{+\infty} |F(hkl)| \cdot e^{-2\pi i [hx + ky + lz - \phi(hkl)]}$$

Amplitudes

Phases?

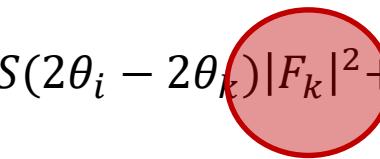
Structure solution:
 FT^{-1}

Q: Why is this different from electron microscopy?

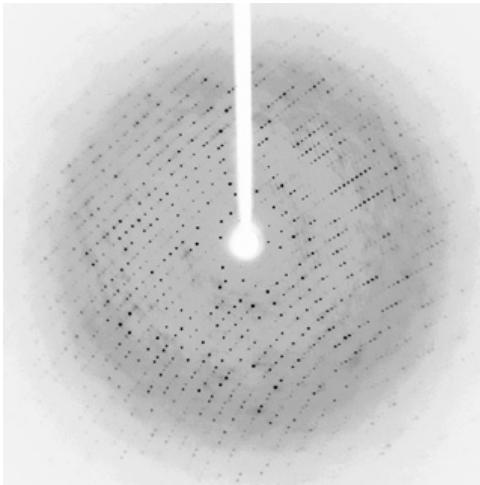
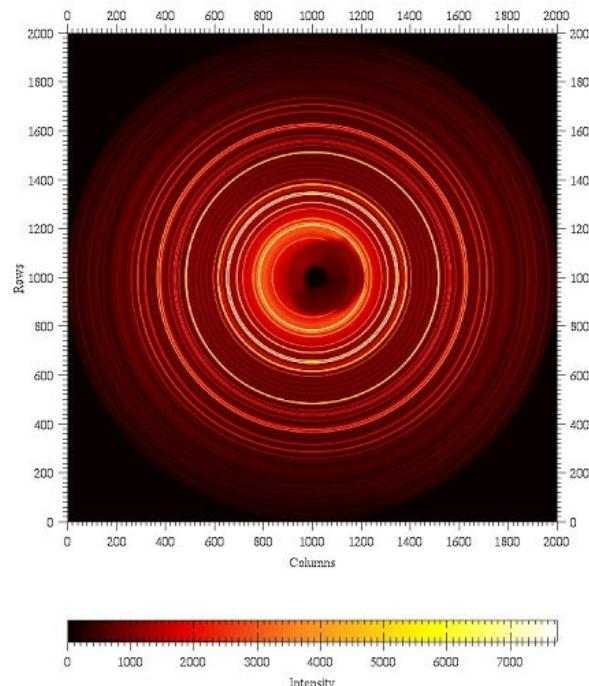
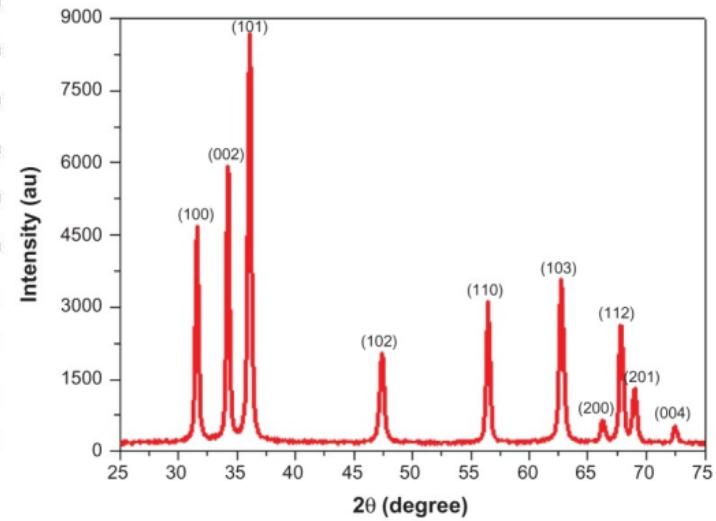
Some necessary basics:

- Symmetry
- Diffraction condition
- **Structure factor and extinctions**

$$I_i^{calc} = S_F \sum_k e^{-2B(T)s^2} L_k(\theta) P_k(\theta) A(\theta) y PO p_k S(2\theta_i - 2\theta_k) |F_k|^2 + bkg_i$$



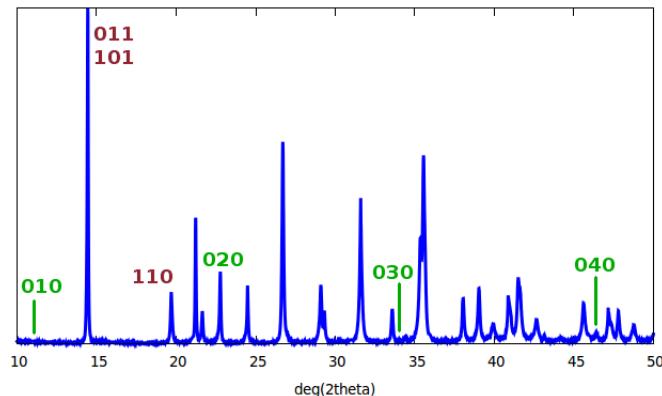
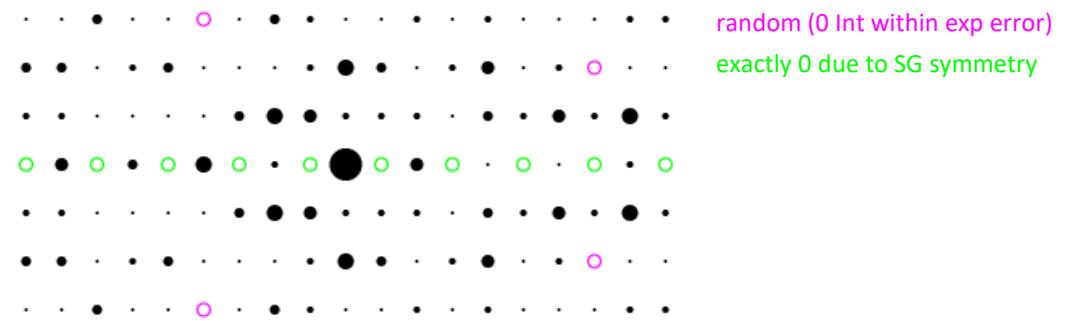
Related to actual structure – Structure Factor



Space group symmetry

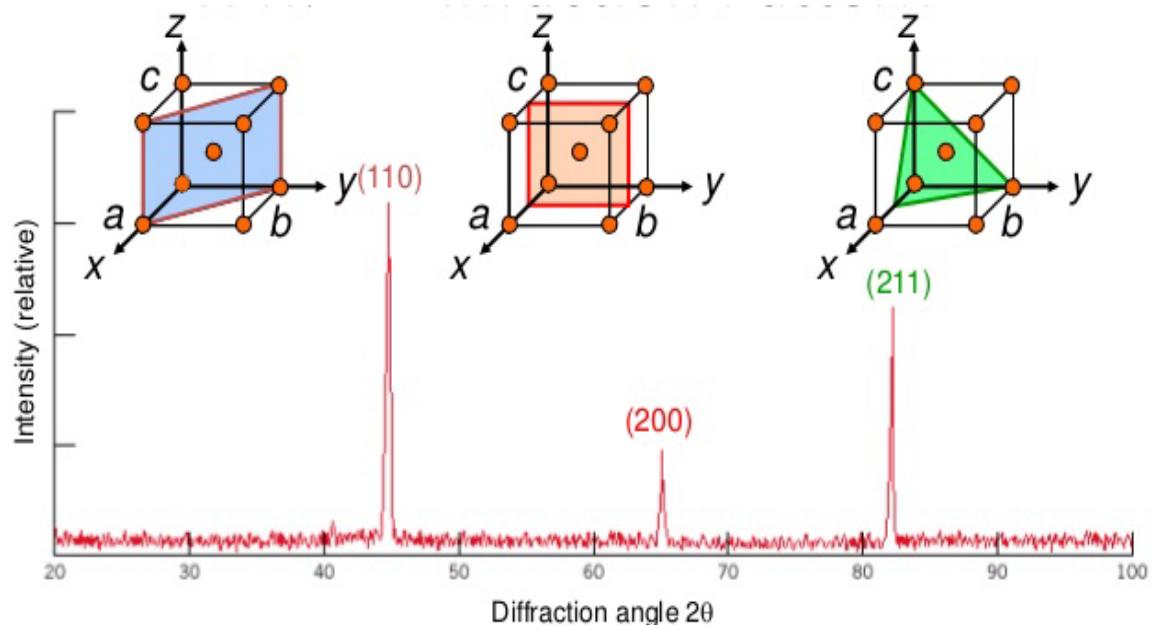
- Space group symmetry defines which peaks you see for a given unit cell!
- When are Bragg peaks “allowed/forbidden”?

Systematic absences / extinctions



α – Fe (bcc), $Im\bar{3}m$

Q: Where is 100 , 210 ...



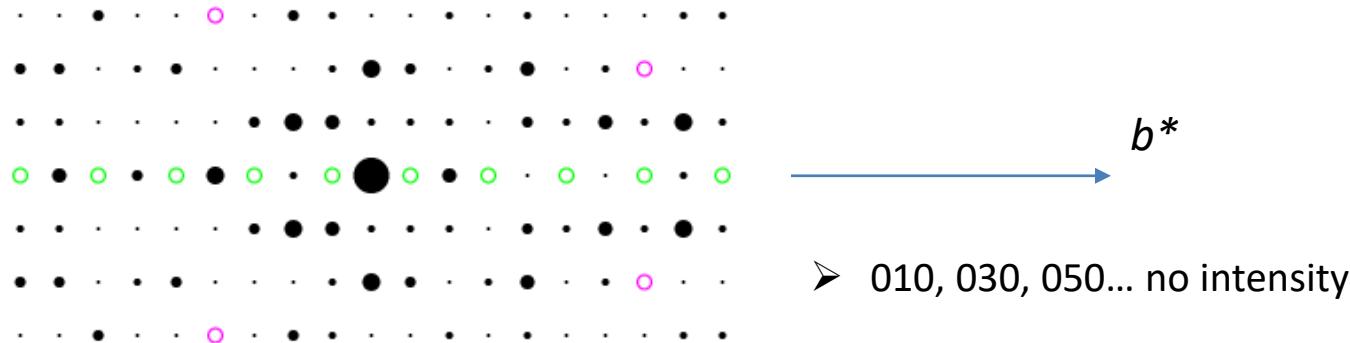
Systematic absences / extinctions

- Translational symmetry (screw, glide, centering) generates extinction conditions, where Bragg intensity is = 0 due to destructive interference of scattered waves.

$$F(hkl) = \sum_N f_N e^{2\pi i(hx_N + ky_N + lz_N)}$$

$F(hkl)$ is the structure factor of the reflection hkl of the unit cell, f_N is the atomic scattering factor (form factor) for each of the N planes

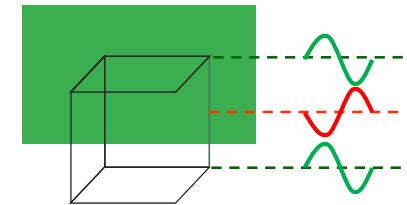
- Electronic property – information about atom types in structure (Amplitude)
- Structural property – information about atom position in the unit cell (Phase)



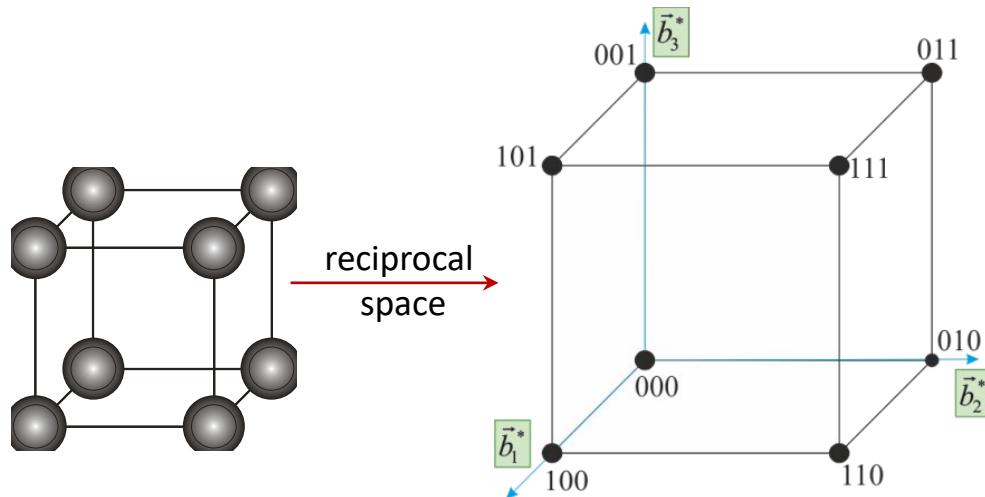
$$F(hkl) = \sum_N f_N e^{2\pi i(hx_N + ky_N + lz_N)}$$

Systematic absences / extinctions

Example: **Cubic primitive lattice**, 1 atom at (0,0,0) and equivalent.
Space group *Pm-3m*.



$$e^{ni\pi} = (-1)^n$$



$$F^{hkl} = f_j e^{i\varphi_j} = f_j e^{i[2\pi(hx_j' + ky_j' + lz_j')]} \quad F = f e^{i[2\pi(h0 + k0 + l0)]} = f e^0 = f$$

$$F^2 = f^2$$

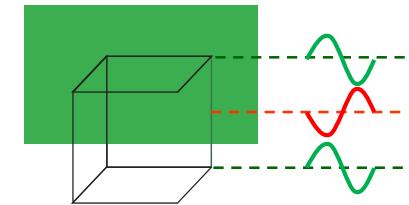
Structure factor calculation

The structure factor of a plane (hkl) is weighted by the contributing atomic form factors f_j
Perform summation of $f \exp(i\varphi)$

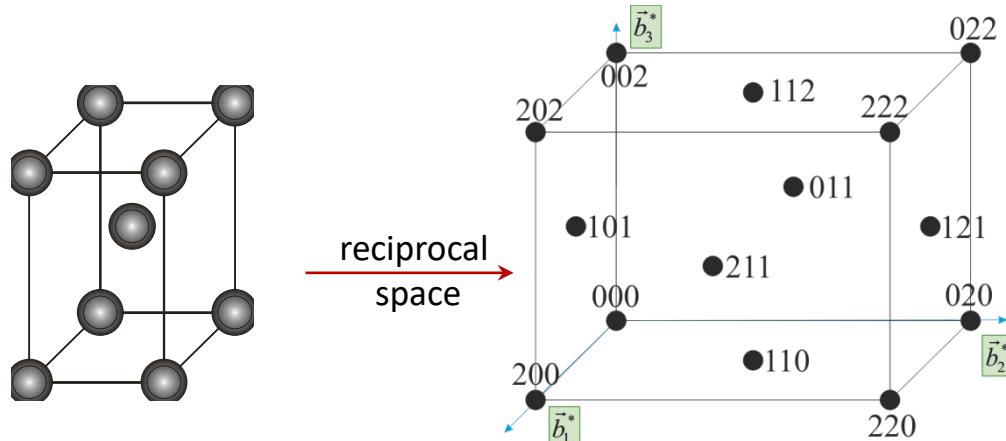
$$F(hkl) = \sum_N f_N e^{2\pi i(hx_N + ky_N + lz_N)}$$

Systematic absences / extinctions

Example: Orthorhombic body-centred, 2 atoms at $(0,0,0)$ and $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2})$ and equivalent. Space group *Immm*.



$$e^{ni\pi} = (-1)^n$$



$$F^{hkl} = f_j e^{i\varphi_j} = f_j e^{i[2\pi(hx_j' + ky_j' + lz_j')]} \quad (1)$$

$$\begin{aligned} F &= f e^{i[2\pi(h0+k0+l0)]} + f e^{i[2\pi(h\frac{1}{2}+k\frac{1}{2}+l\frac{1}{2})]} \\ &= f e^0 + f e^{i[2\pi(\frac{h+k+l}{2})]} = f [1 + e^{i\pi(\mathbf{h+k+l})}] \end{aligned}$$

$$(h+k+l) = 2n \rightarrow F = 2f \rightarrow F^2 = 4f^2$$

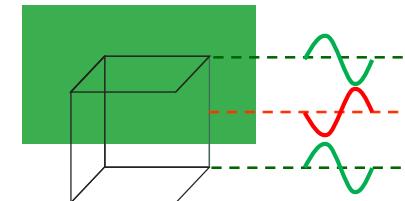
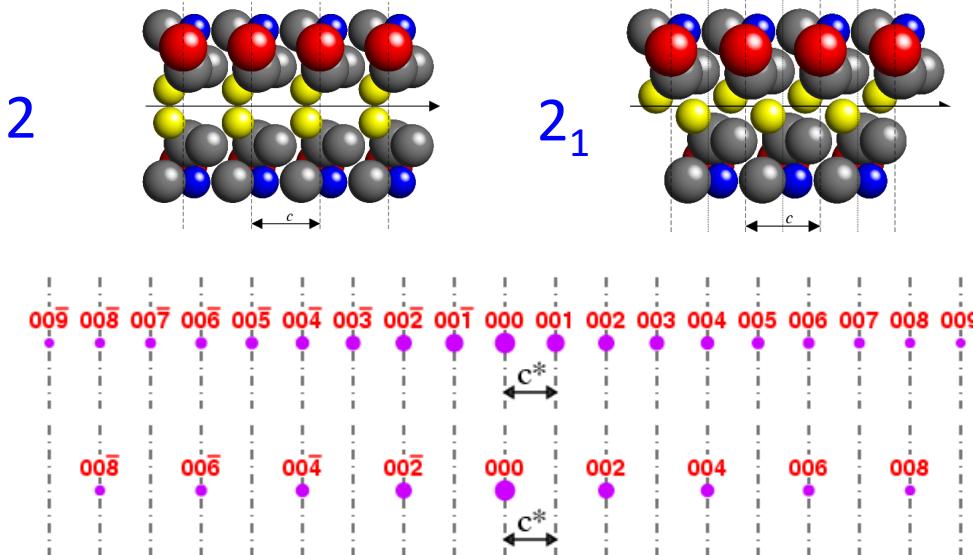
$$(h+k+l) \neq 2n \rightarrow F = 0 \rightarrow F^2 = 0$$

- $(110), (200), (211) \dots$ observed; $(100), (001), (111) \dots$ extinct
- Lattice centring is an integral extinction, valid for all Bravais lattices. \mathbf{hkl} : $\mathbf{h+k+l} = 2n$

$$F(hkl) = \sum_N f_N e^{2\pi i(hx_N + ky_N + lz_N)}$$

Systematic absences / extinctions

Example: Screw axis $2_1 \parallel c$, operation $(-x, -y, z + 1/2)$



$$e^{ni\pi} = (-1)^n$$

$$F^{hkl} = f_j e^{i\varphi_j} = f_j e^{i[2\pi(hx_j + ky_j + lz_j)]}$$

$$F = f e^{i[2\pi(h0 + k0 + l0)]} + f e^{i[2\pi(-h - k + l\frac{1}{2})]}$$

$$F^{00l} = f e^0 + f e^{i[2\pi(\frac{l}{2})]} = f [1 + e^{i\pi(l)}]$$

$$l = 2n \rightarrow F = 2f \rightarrow F^2 = 4f^2$$

$$l \neq 2n \rightarrow F = 0 \rightarrow F^2 = 0$$

- Serial extinction – affects one direction
- For $(00l)$: $(002), (004), (006) \dots$ observed; $(001), (003), (005) \dots$ extinct. $00l: l = 2n$

- Periodicity of a crystalline solid gives rise to the unit cell, which allows to fully describe an atomic structure.
- Periodicity gives rise to translational symmetry (space group symmetry).
- Periodicity is at the origin of the diffraction condition.
- The diffraction experiment "takes place" in reciprocal space, which is related to real space by Fourier transform.
- The intensity registered on the detector is proportional to the amplitude of the structure factor.
- Translational symmetry leads to extinctions conditions of the observable structure factor.

■ Chemical bonding

Chemist's picture: chemical bonding in molecules based on concept of orbitals

LCAO method: usual approximations of **molecular orbitals** (no translational symmetry!)

Molecular orbitals: The more atoms in the molecule the more MO ($n_{\text{tot}}(\text{MO}) = n(\text{valence AO})$ used to make them).

Solid: huge, but **finite** number of MO (“crystal orbitals”, with **small energy spacing** (wavenumber k is quasi-continuous) – formation of “bands”

Shape of the bands can be derived using LCAO or the free electron model – what is the form of the wave function of an electron moving along a row of atoms?

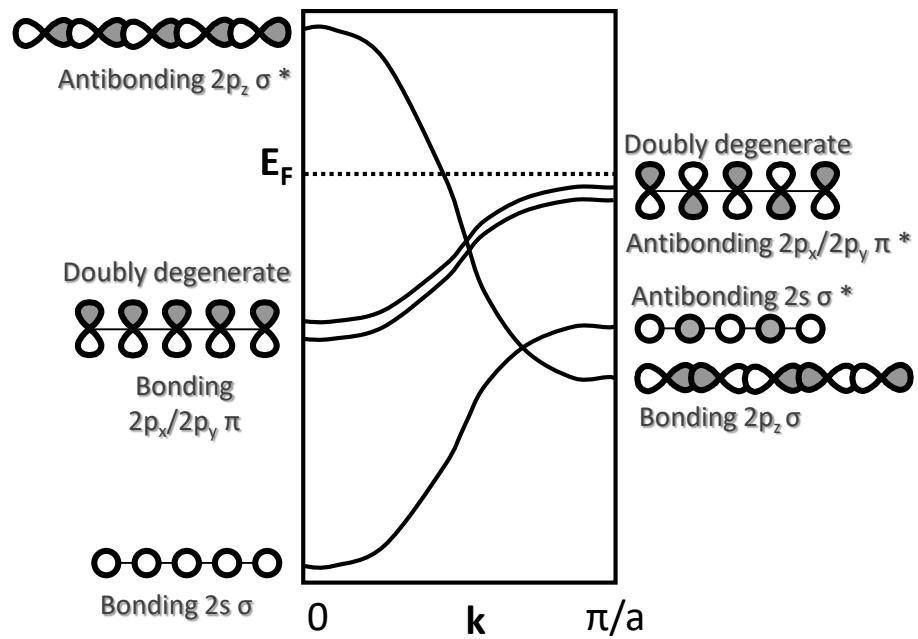
Periodic boundary conditions (crystal) mean that Values of k outside $-\frac{\pi}{a} \leq k < \frac{\pi}{a}$ do provide are repetitions of already generated orbitals.

■ Band structure

- Increasing density of orbitals leads to non-uniform distribution within allowed bands:
- Density of states $N(E)dE$** (number of **allowed energy levels** per unit volume of solid in $E..E + dE$)
- $N(E) = 0$ in band gap E_g .
- **Width** of a band depends on degree of interaction and separation, lattice parameter.
- Width < 0.1 eV (no contribution to bonding, e.g. core levels)....several eV
- **E_g range** (top-filled to bottom empty band): $E_g > 12$ eV (ionic solids) ... 0.1 eV semiconductors

- **LCAO theory**

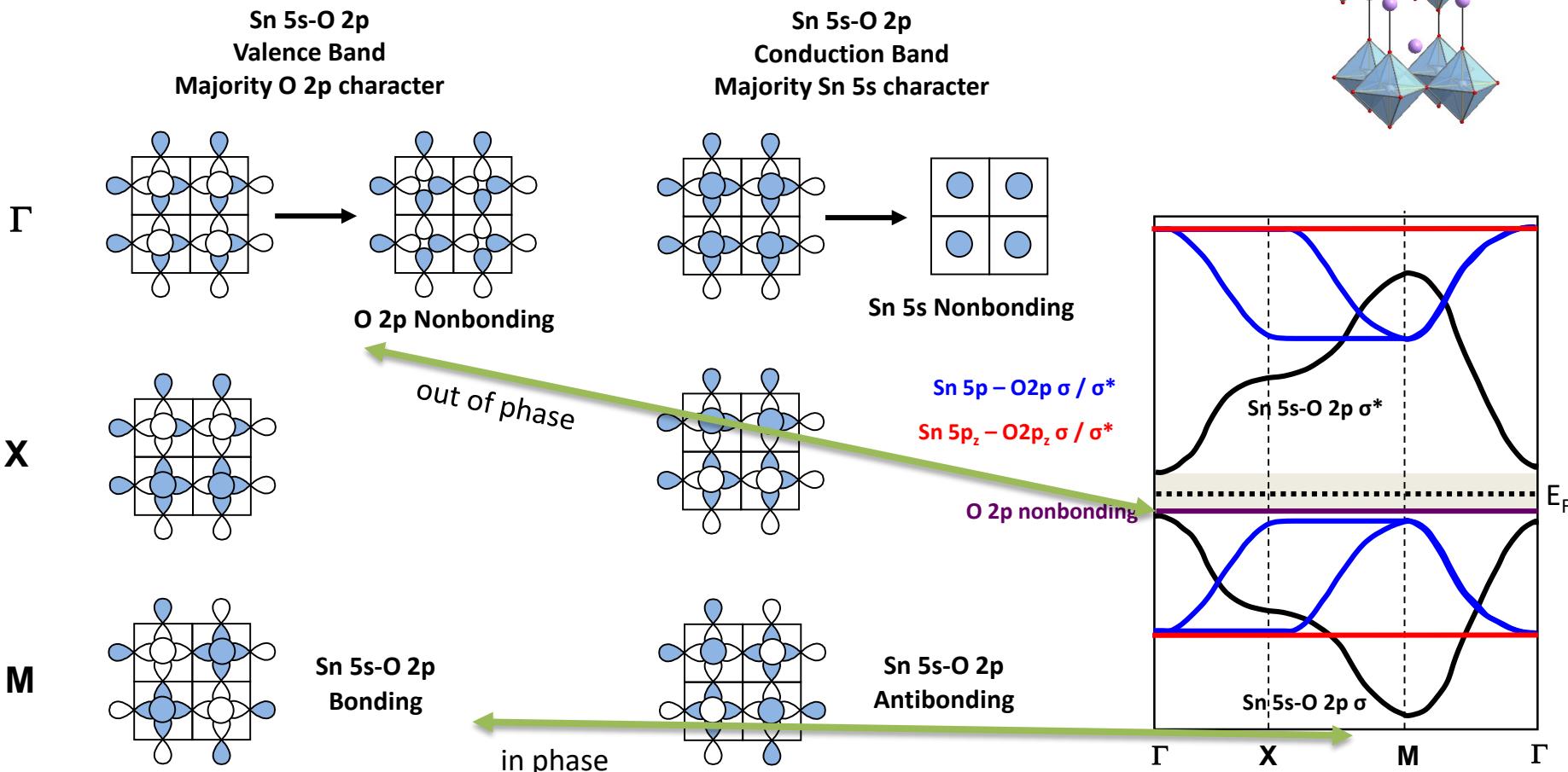
- Example: monatomic chain



■ Band structure

• LCAO theory – square lattice

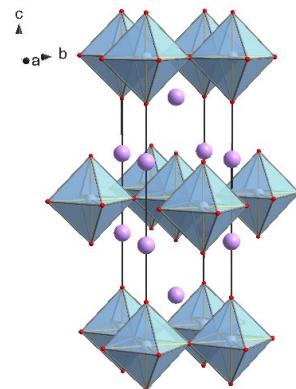
- Example 2D: Ba_2SnO_4 , Ruddlesden-Popper phase, $I4/mmm$, consider building unit SnO_6



■ Band structure

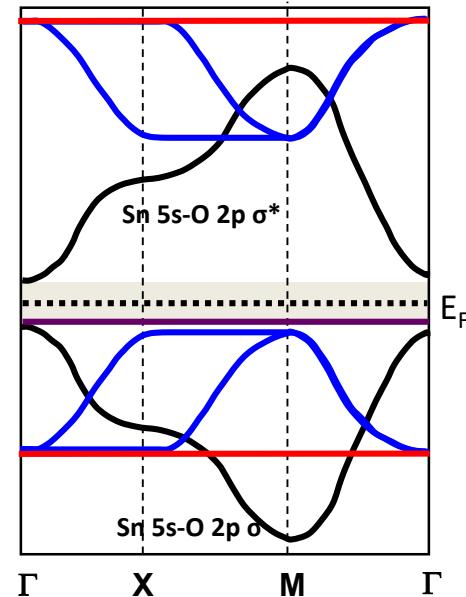
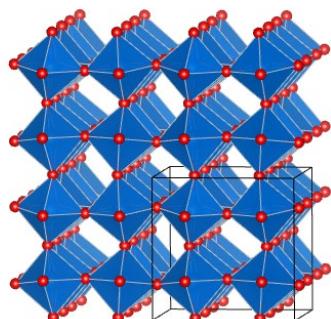
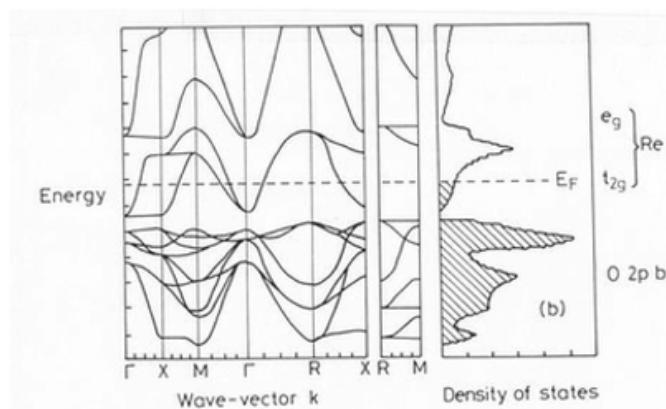
• LCAO theory – square lattice

- Example 2D: Ba_2SnO_4 , Ruddlesden-Popper phase, $I4/mmm$, consider building unit SnO_6



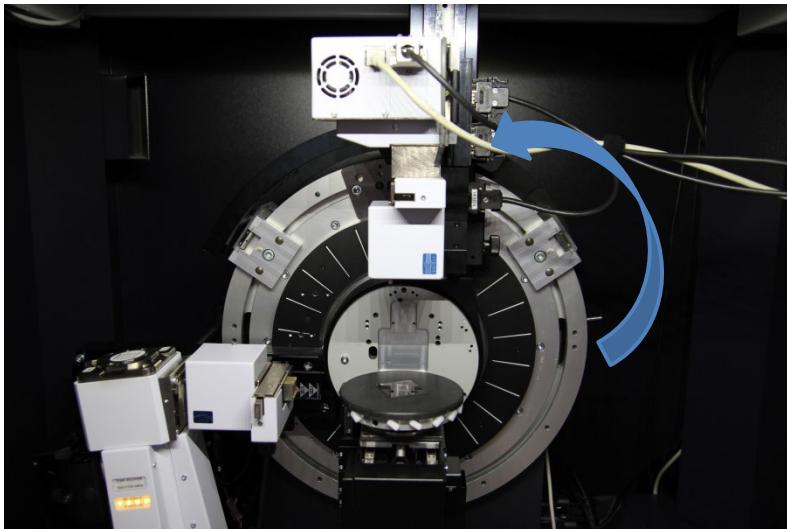
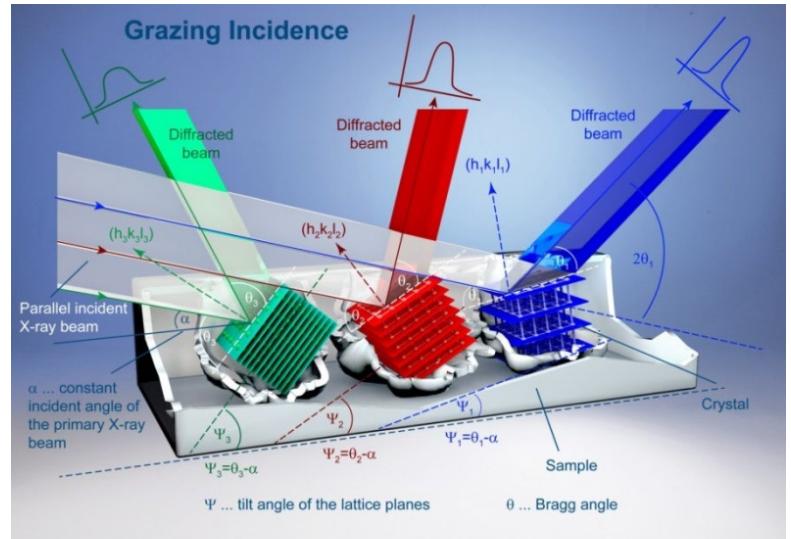
- Example 3D: ReO_4 , $Im-3$

- All metal-based bands are disperse due to 3D structural nature
- Only flat bands generated by non-bonding O 2p states
- Fermi Level cuts π bands – metallic conductor



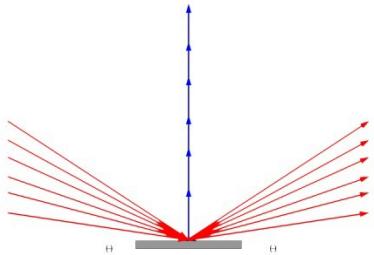
5 min break?

EPFL Grazing incidence diffraction – GID

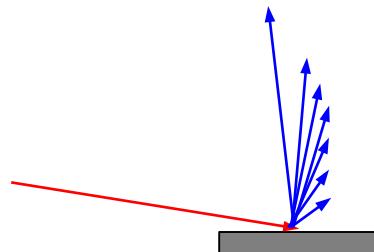


- Tube at fixed incident angle
- Bragg conditions collected by moving detector only (2θ scan)

Theta – 2Theta scan



GID – 2Theta scan



■ Surface diffraction: GID, IP-GID

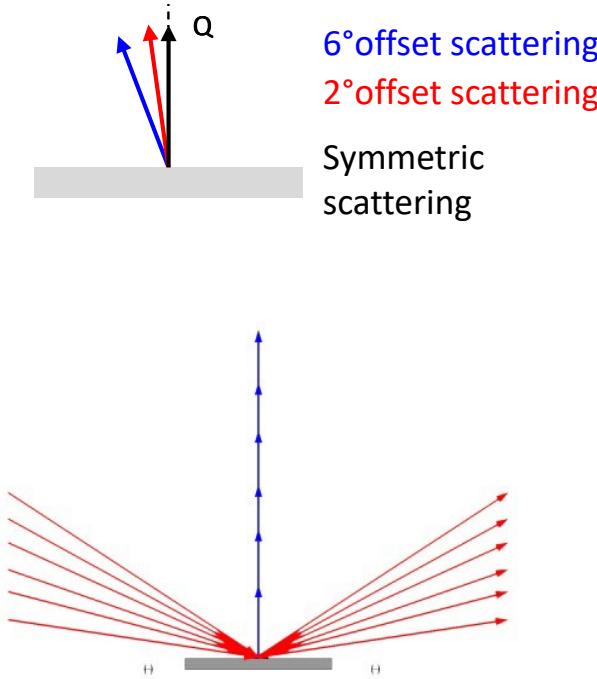
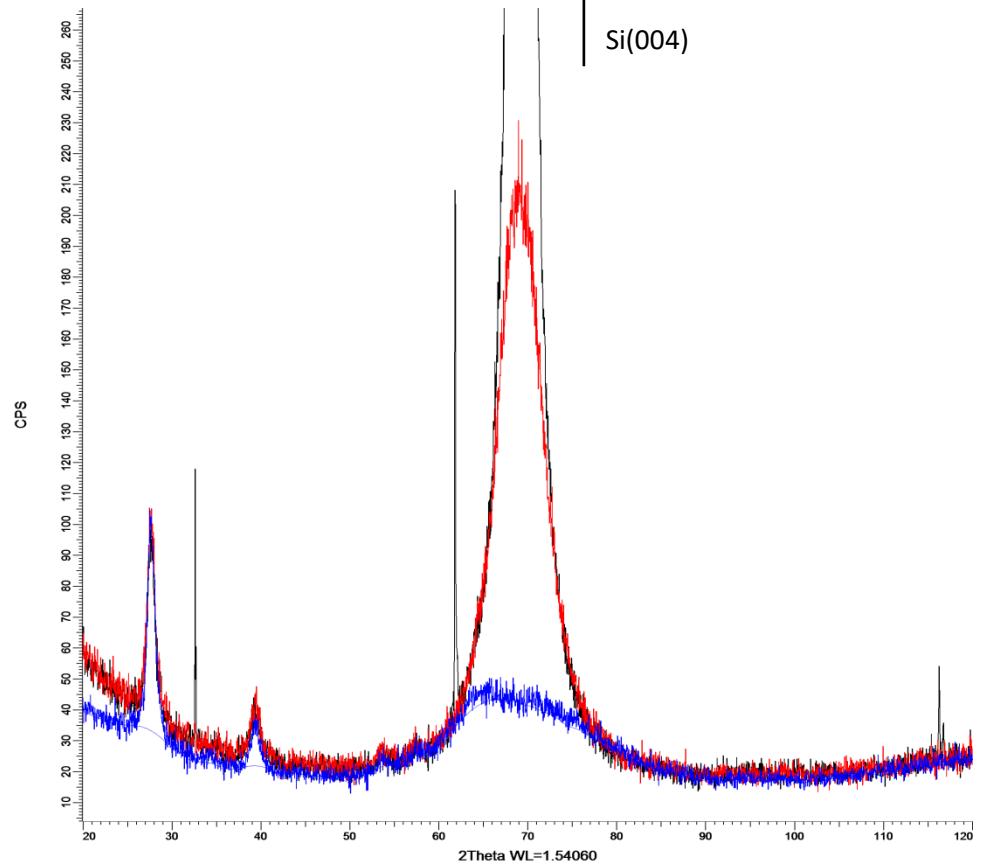
- **Information obtained**
- Provides same information as bulk XRD, but at lower resolution
- Visible diffraction vector can rotate in diffraction plane
- Surface sensitive
- Depth information on refinable parameters
- IP-GID allows accessing the in-plane diffraction pattern
- **Type of sample**
- Thin films (samples), layers. Poly or monocrystalline.
- Minimum thickness depends on crystallinity and scattering power (usually at least 5-6 nm on lab sources)

■ Surface diffraction: 2D-GIWAXS

- Same information as GID, but still lower resolution
- Texture at a snapshot
- Sample can be smaller since beam is smaller

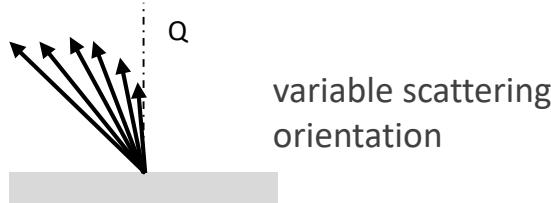
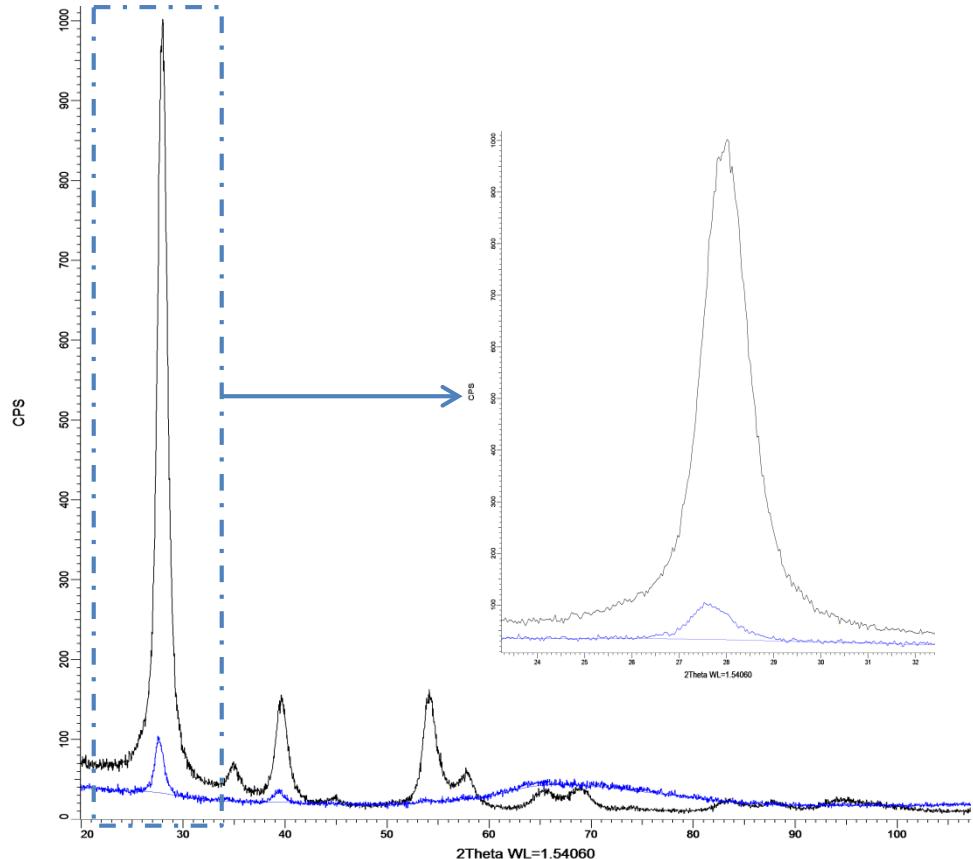
14nm RuO₂ on Si(001)

Offset θ/θ scan



Possible to strongly reduce Si (004) but layer signal still weak

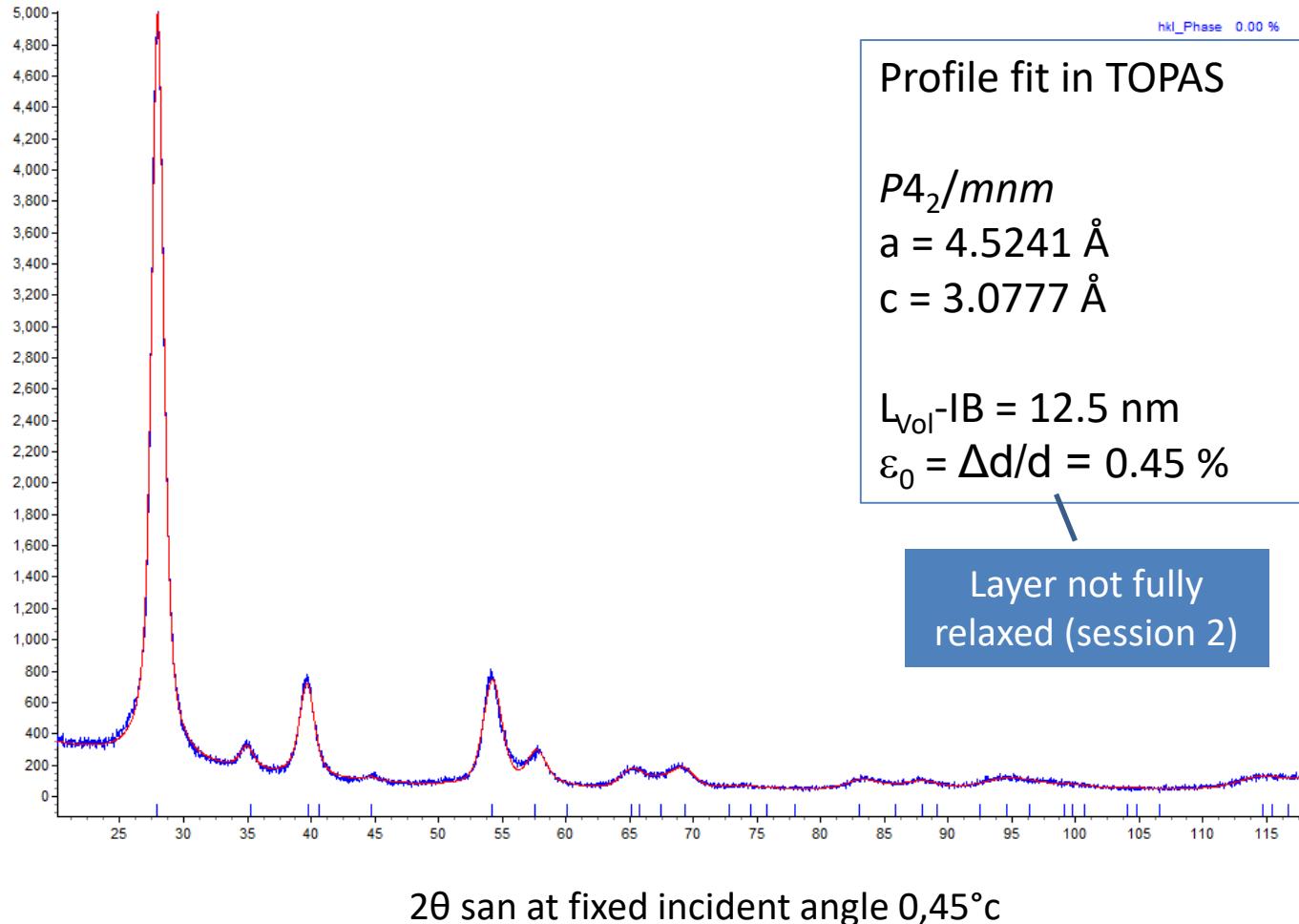
14nm RuO₂ on Si(001) Grazing incidence (2θ scan)



GIXRD vs 6° Offset θ/θ scan

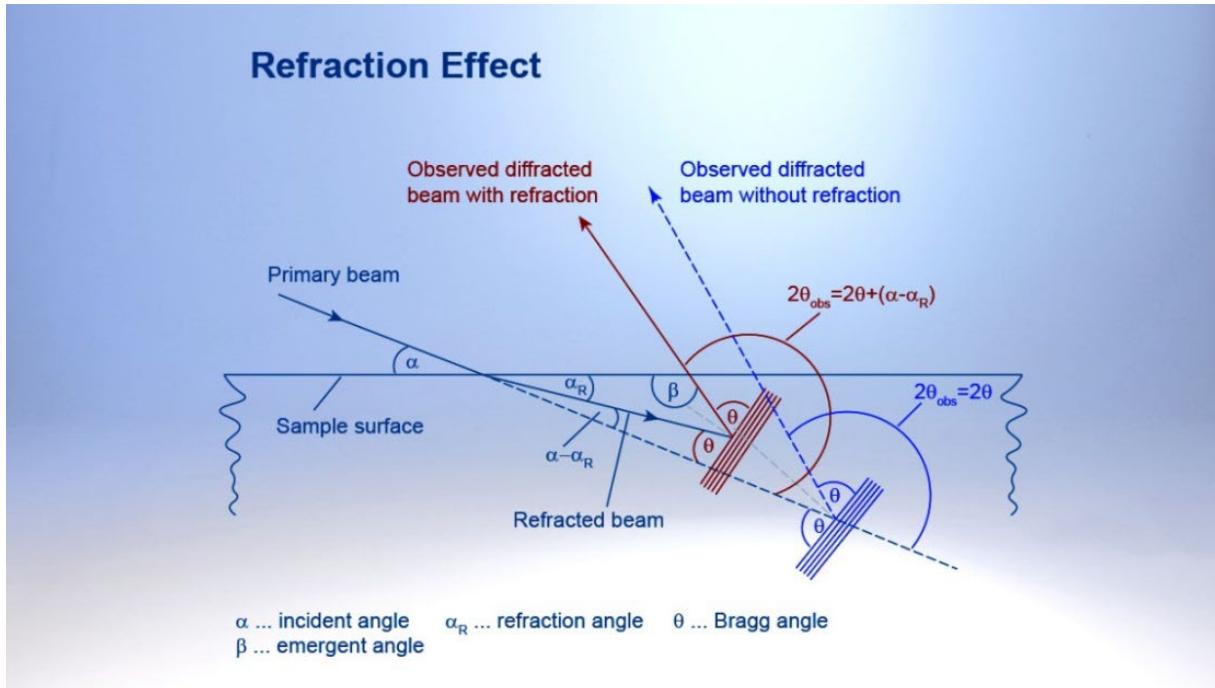
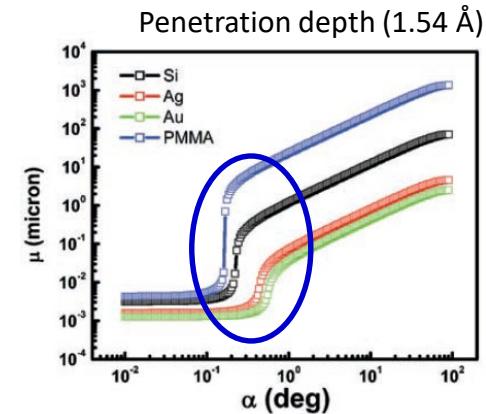
14nm RuO₂ on Si(001)

Grazing incidence (2θ scan)



Refraction effect

Additional peak shift



- Incident beam refracted at air/layer interface
- Apparent peak position to be corrected from refraction

$$\Delta 2\Theta = \alpha - \alpha_R \cong \alpha - \sqrt{\alpha^2 - \alpha_C^2}$$

α_C ...critical angle

Penetration depth

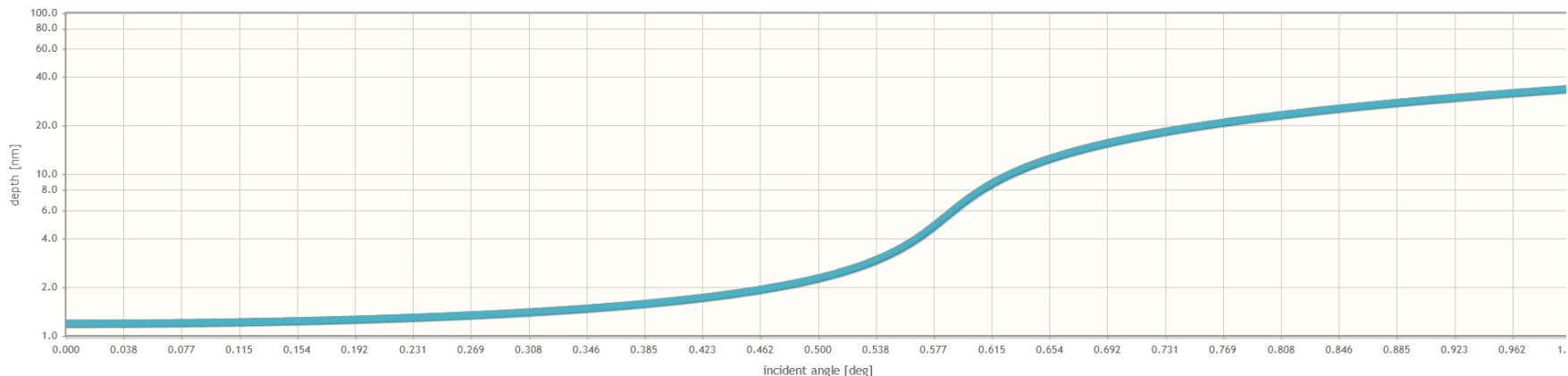
calculate penetration depth (and optical properties) for X-rays

Formula:	Pt1	(e.g.: Si1,SiO2 or Hf1O2)
Density:	21.45	[g/cm ³]
Energy:	8050	[eV]
Angle:	0.0	[deg]
Execute	Download	

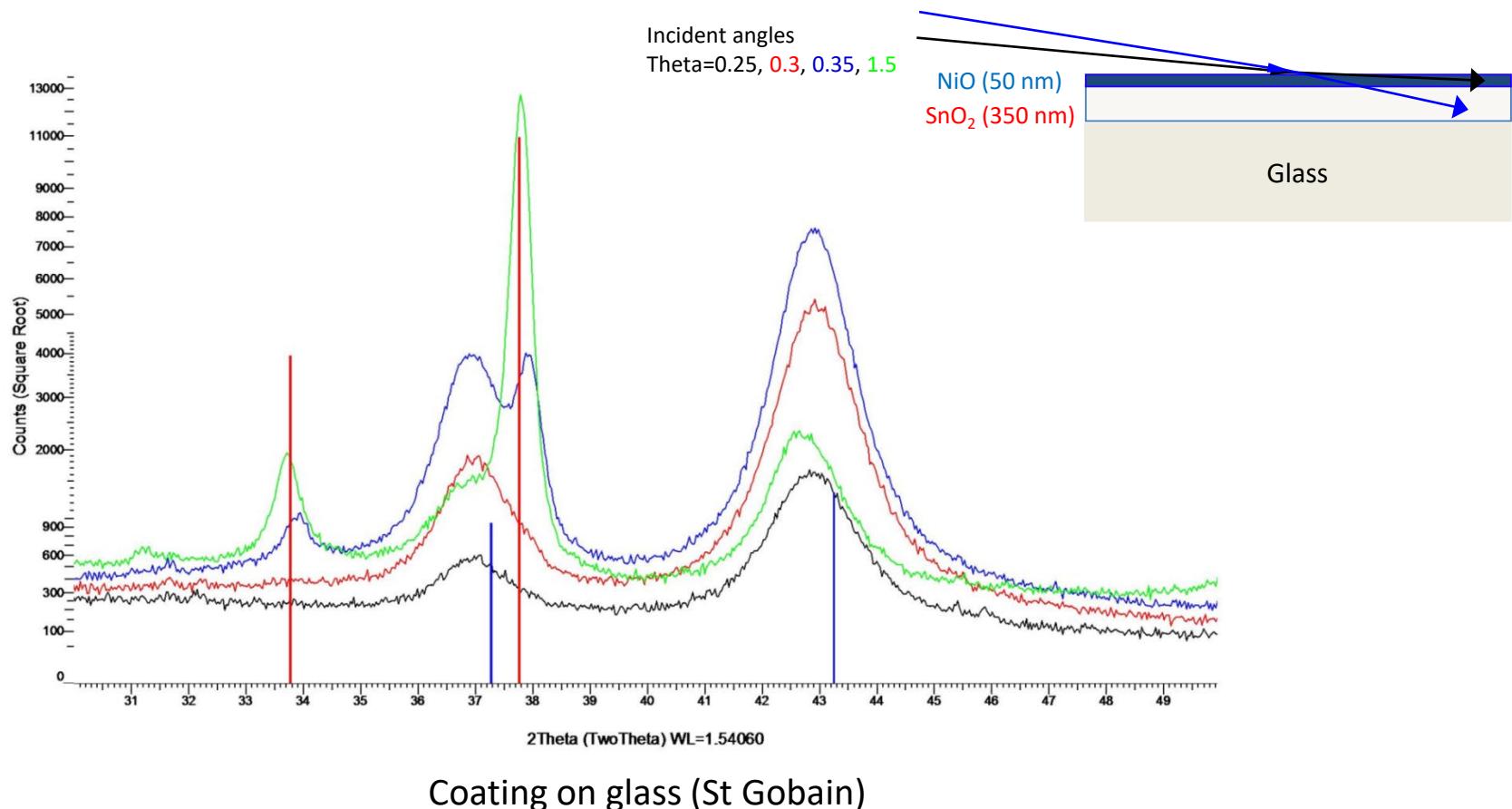
δ	5.188993459040156E-5
β	5.095781845479082E-6
ε	(0.9998962227974175, -1.0191034851384866E-5)
μ [1/cm]	4157.670528325295
Critical angle [deg]	0.5836858860295738

<https://gixa.ati.tuwien.ac.at/tools/>

penetration depth for Pt1 ($\rho=21.45$) @ 8050.0eV



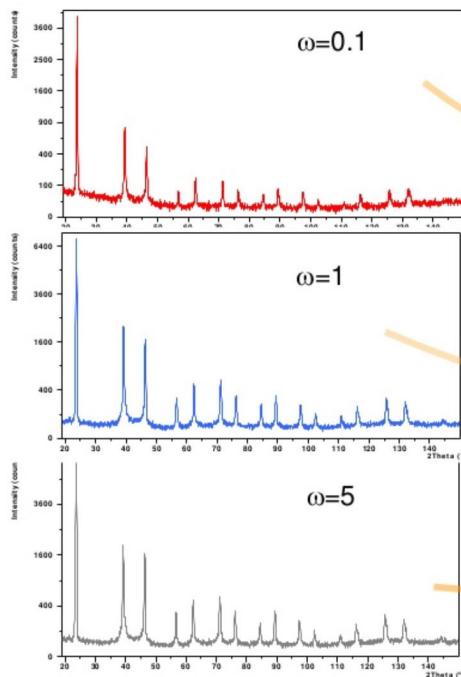
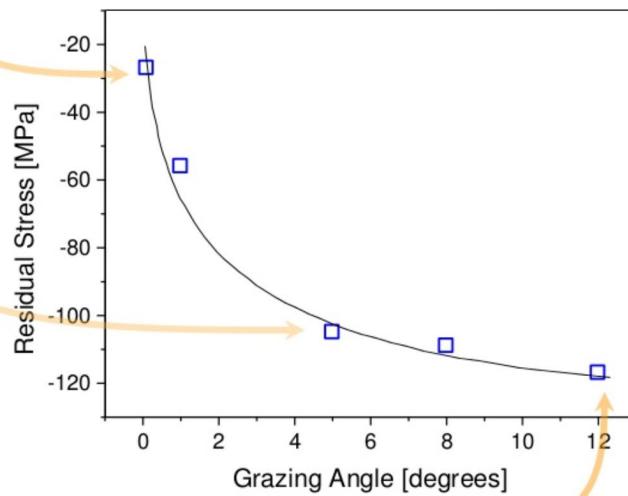
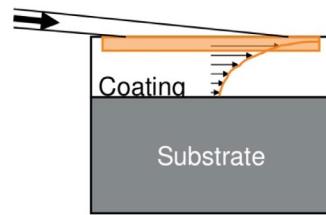
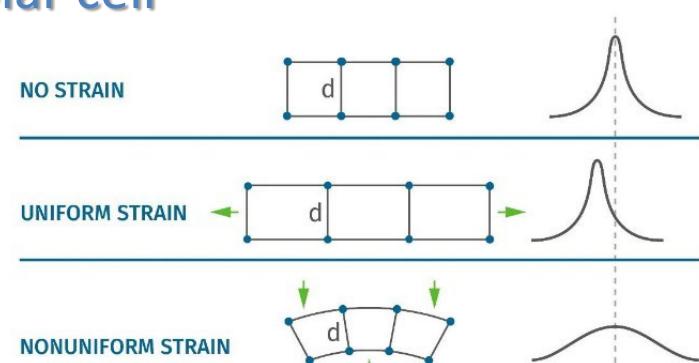
Grazing incidence diffraction Phase ID depth profile on glass coating



Grazing incidence diffraction

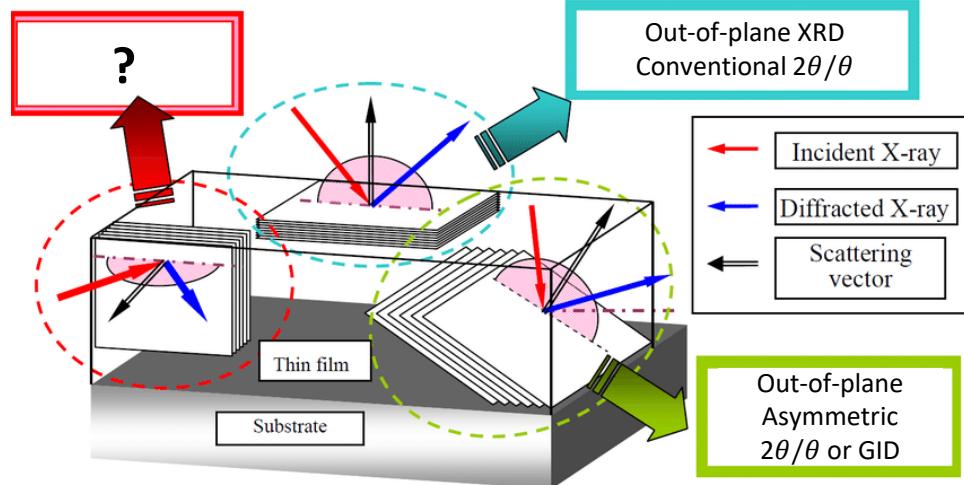
Stress gradient depth profile: CdTe layer of solar cell

- Measure strain (lattice parameter shift) $\varepsilon = \frac{d_n - d_0}{d_0}$
- Calculate residual stress.

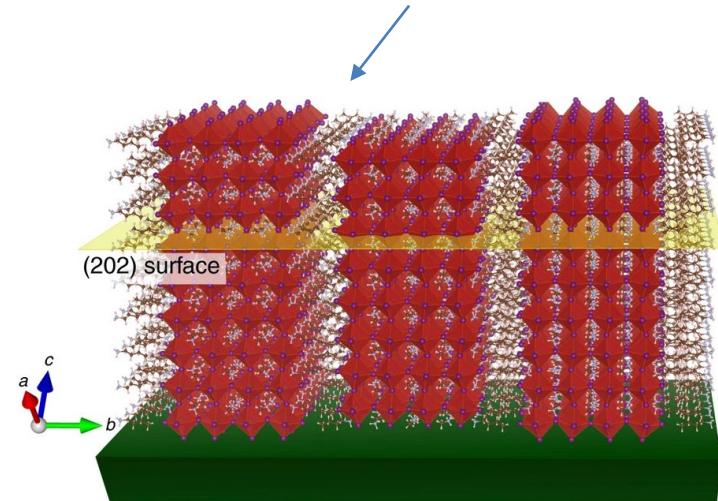
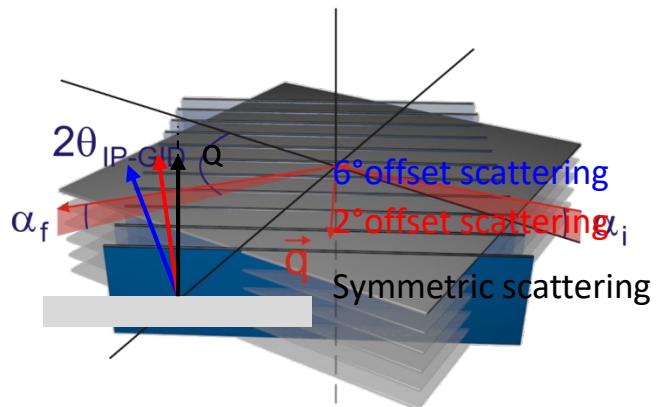
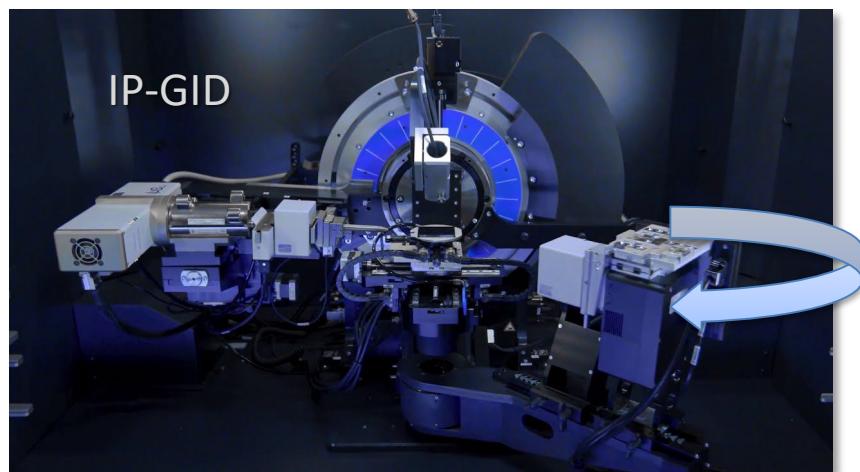


Q: How does stress arise in films?

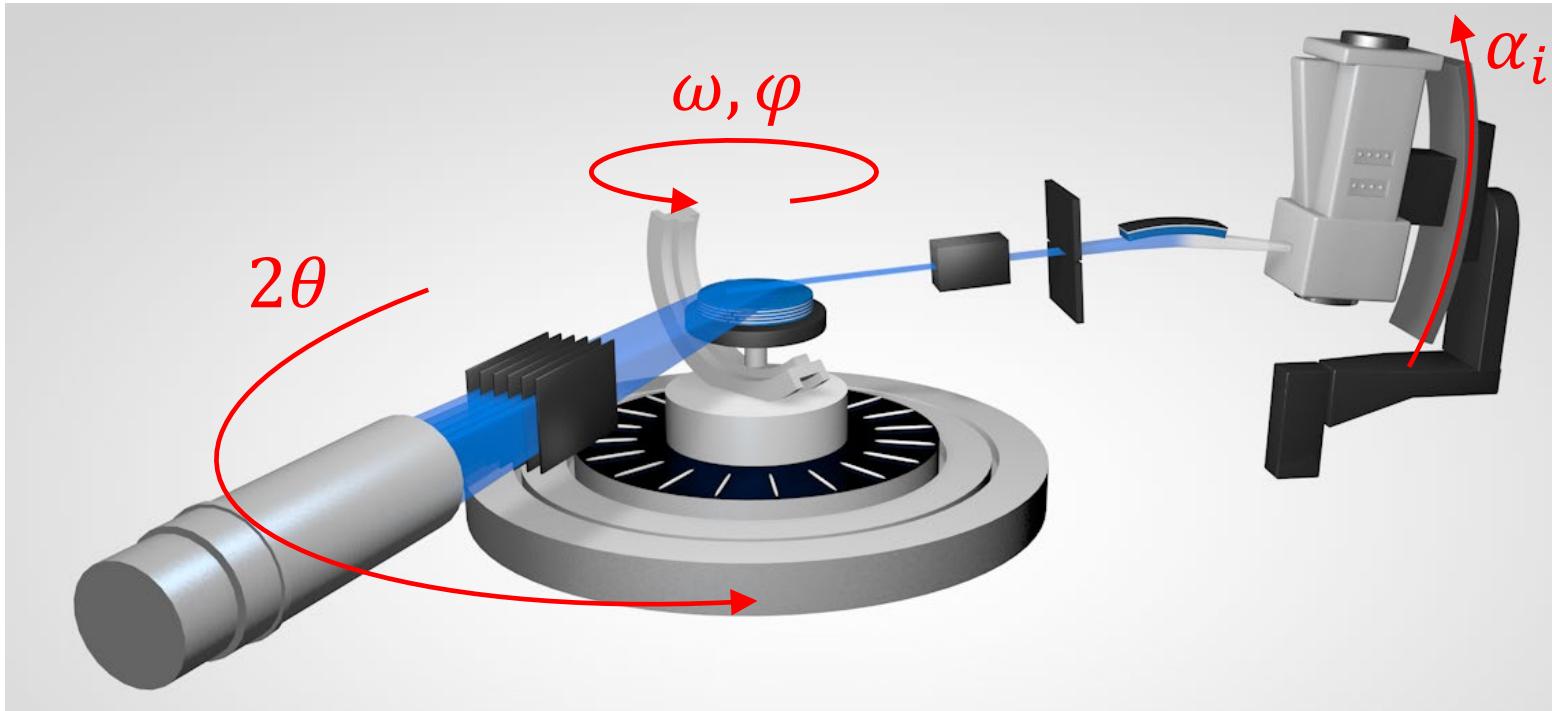
In-plane grazing incidence diffraction Scattering geometry



How do we measure layer spacing?



Optimized setup for IP surface diffraction Scattering geometry



- Line focus is parallel to the sample surface: Good depths control.
- Angle of incidence is controlled by a separate drive.

In-plane grazing incidence diffraction

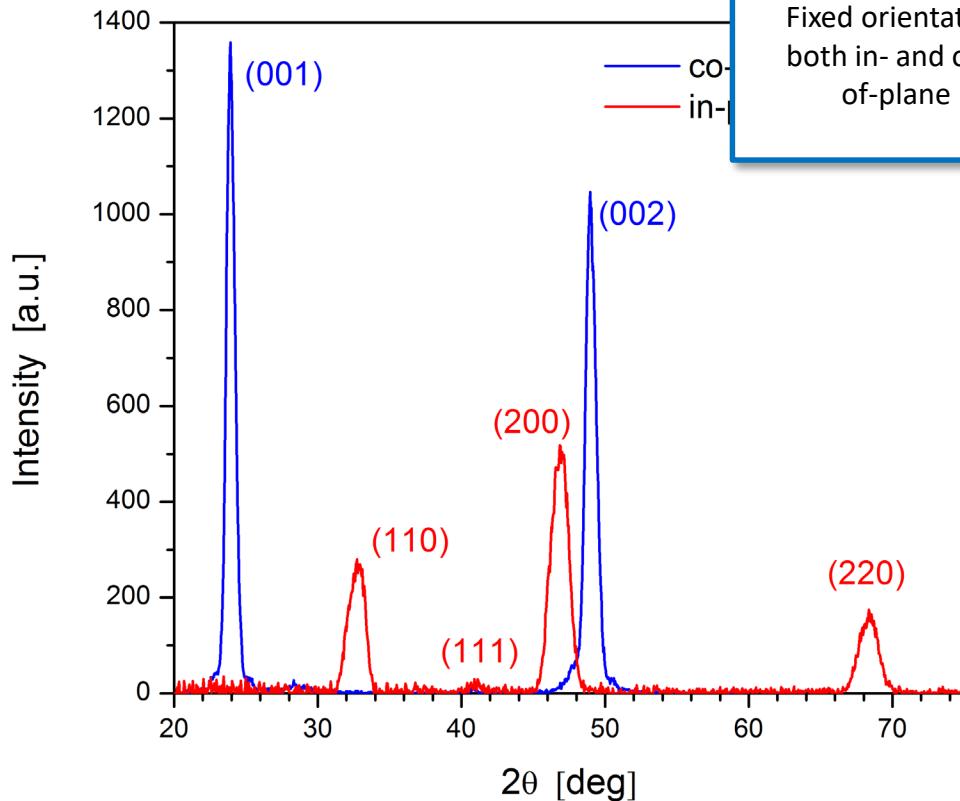
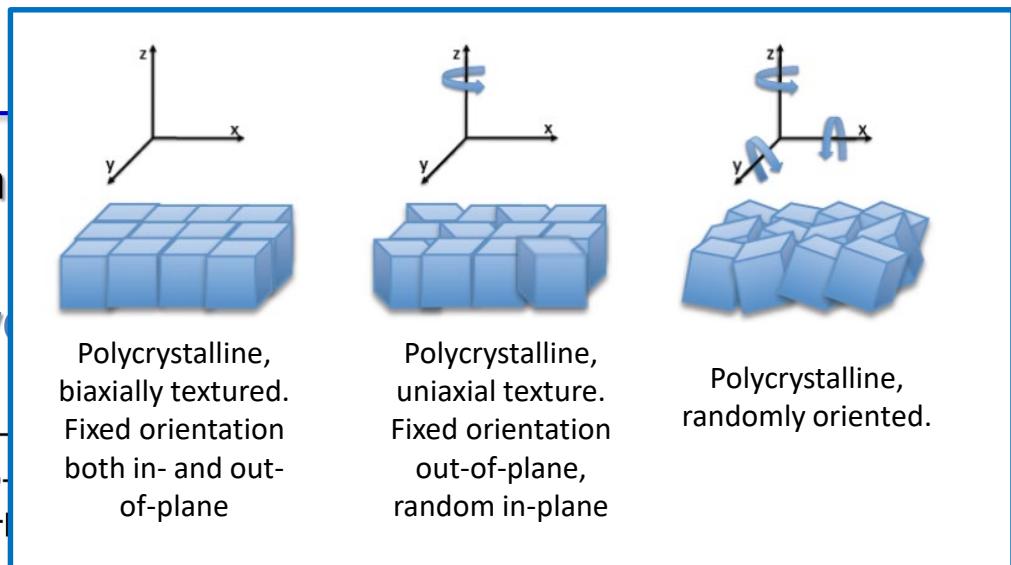
Applications

- Polycrystalline, oriented samples
 - Strained polycrystalline films (also with no orientation)
 - Epitaxially grown samples
 - In general samples showing anisotropy in and out of plane
- Anything that can be measured with an out of plane scan, but on highly oriented samples

In-plane grazing incidence diffraction

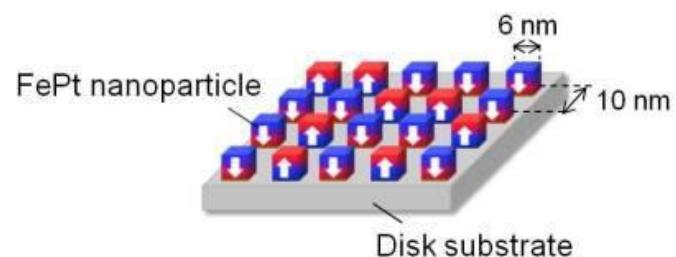
Examples:

Structure determination of poly...



film thickness.

- In-plane crystallite size is about 6.5 nm
- In-plane fiber textured around (001)

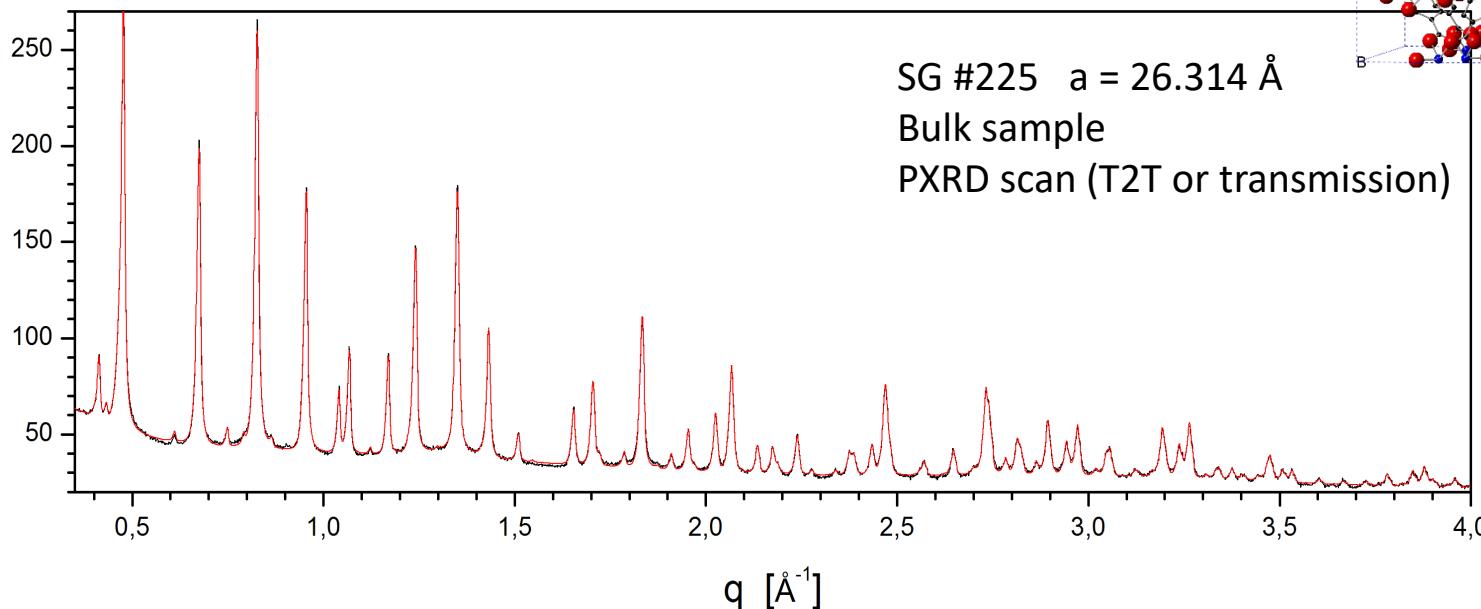
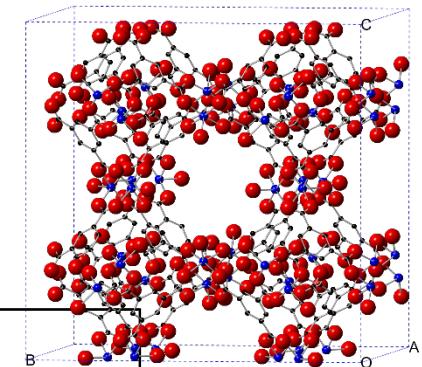


In-plane grazing incidence diffraction

Examples:

Structure determination of MOF film

sqrt(Counts)

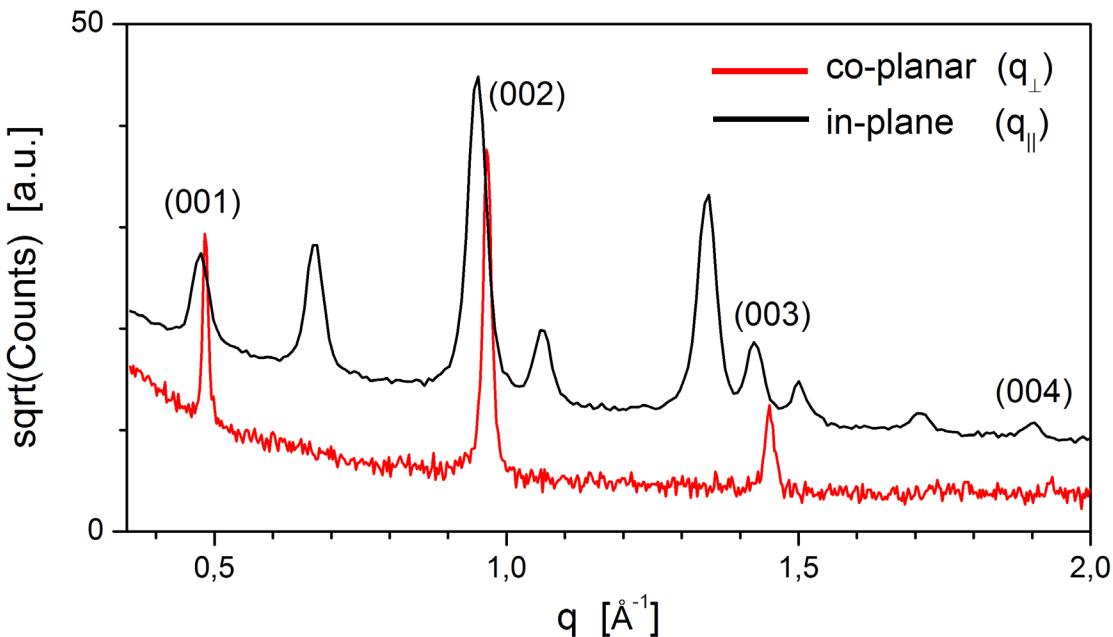
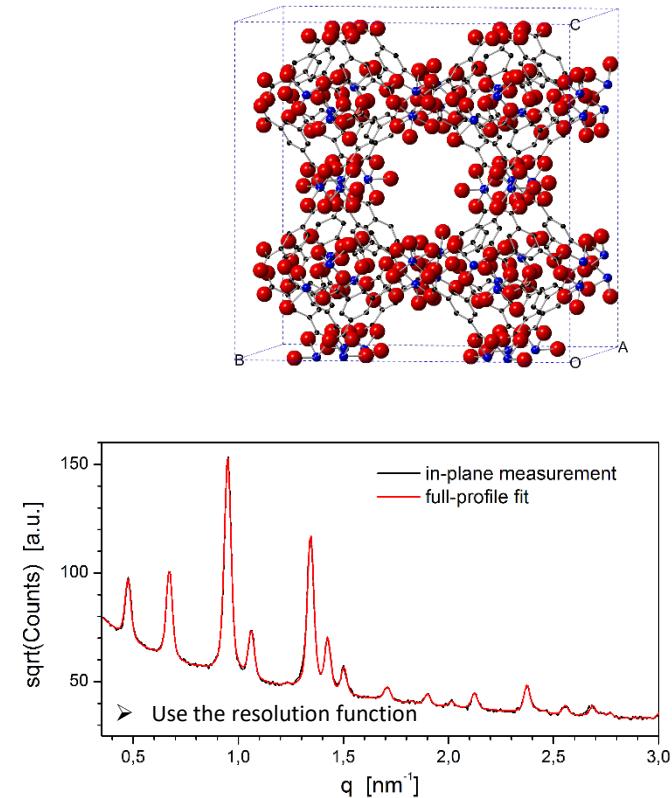


- Measurement of HKUST-1 powder provides structure information.
- Crystallite size is about 195nm.

In-plane grazing incidence diffraction

Examples:

Structure determination of MOF film

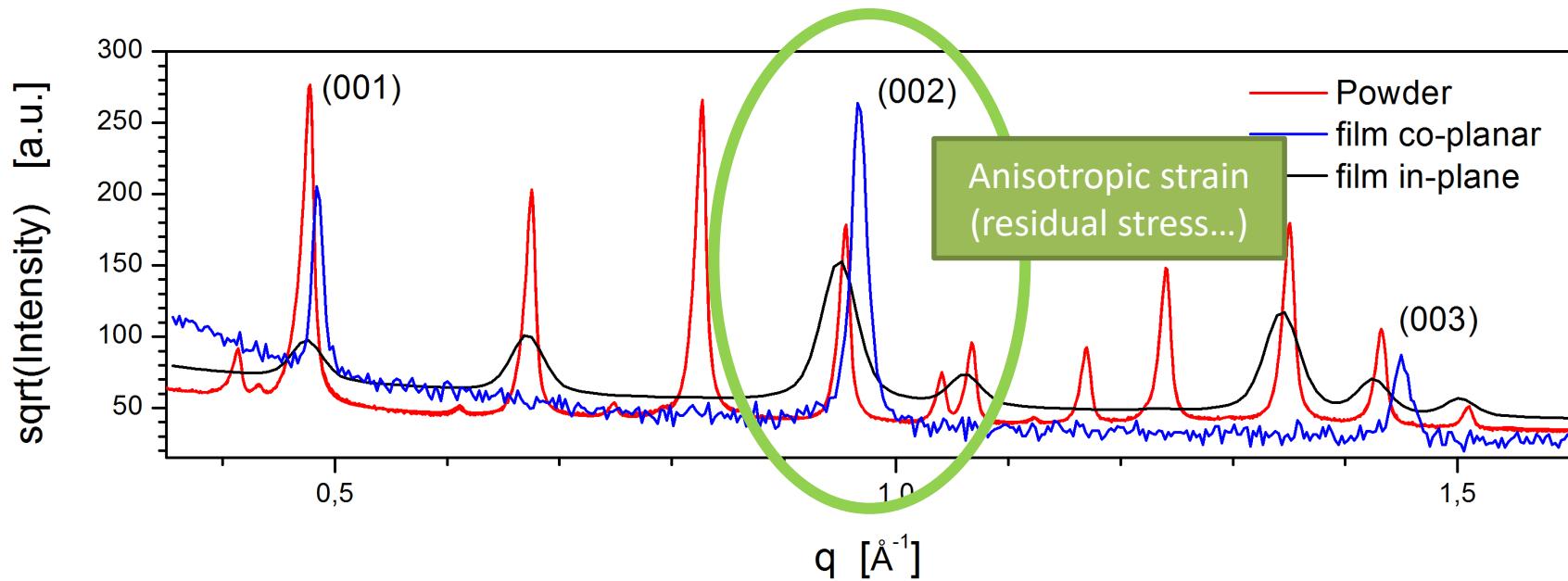


- Measurement of HKUST-1 thin film: (001) surface normal and size of about 90nm.
- Fiber textured with 120nm crystallite size parallel to the surface

In-plane grazing incidence diffraction

Examples:

Structure determination of MOF film

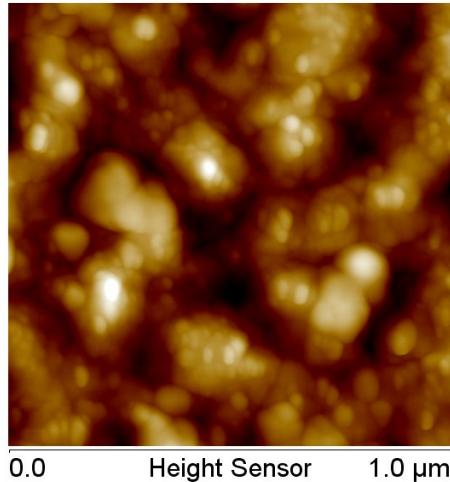
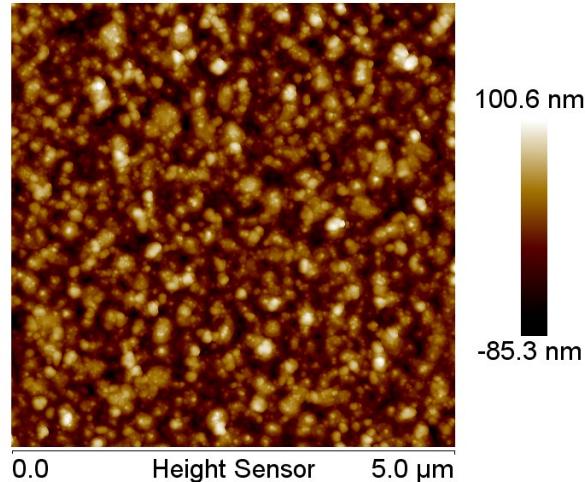


- Measurement of HKUST-1 thin film: (001) surface normal and size of about 90nm.
- Fiber textured with 120nm crystallite size parallel to the surface
- In-plane lattice parameter : 26.482 \AA (tensile strain)
- Co-planar lattice parameter : 26.0055 \AA (compressive strain) (powder: 26.314 \AA)

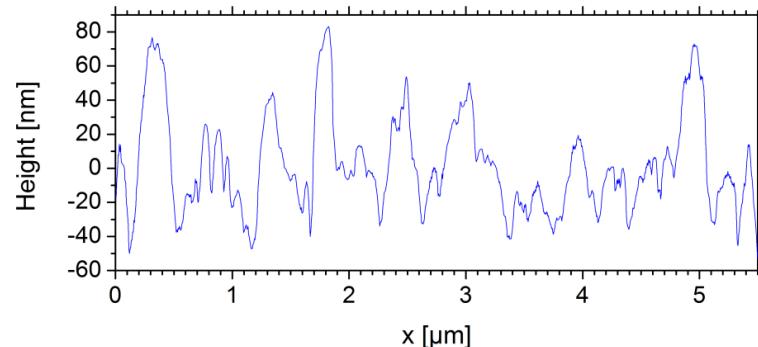
In-plane grazing incidence diffraction

Examples:

Structure determination of MOF film

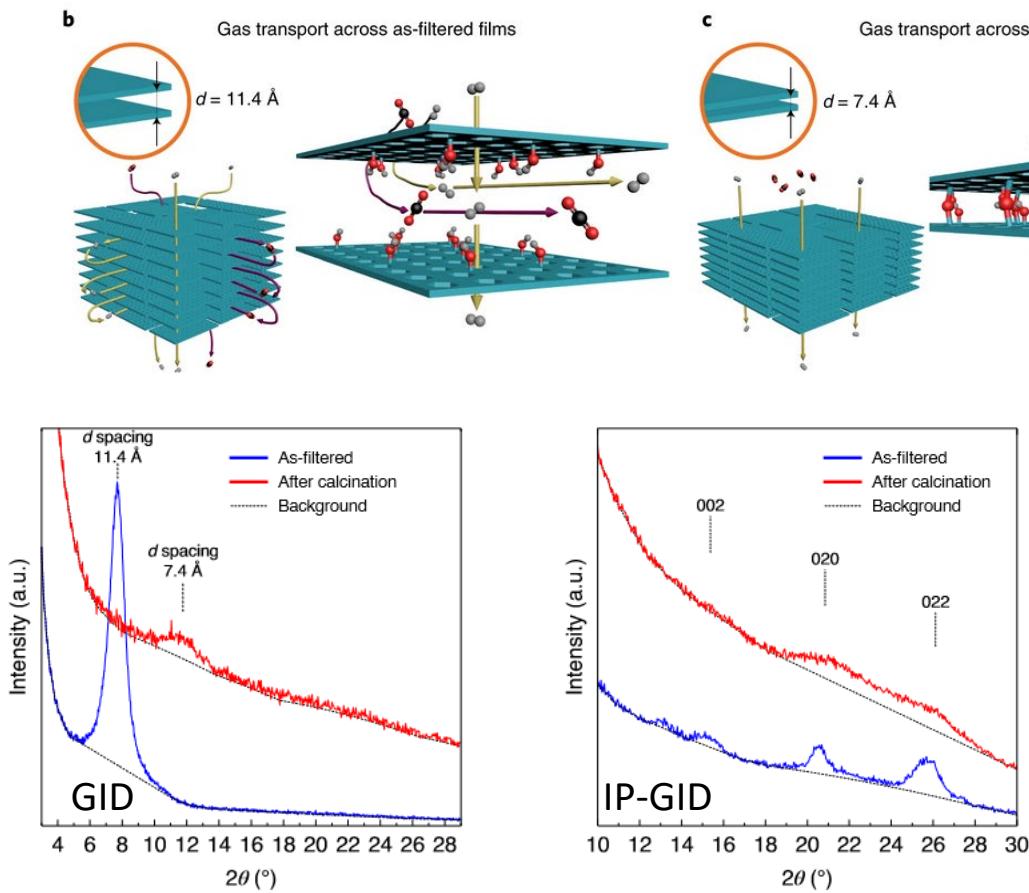


- The AFM pictures yield particles with size of 250-350nm.
- This is not the crystallite size.



In-plane grazing incidence diffraction

Examples: Gas-sieving zeolitic membranes by the condensation of precursor nanosheets. In-plane coherence maintained?

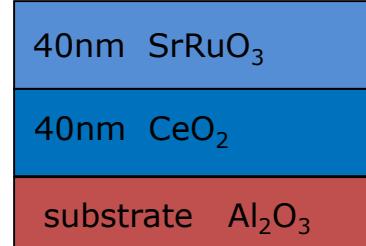
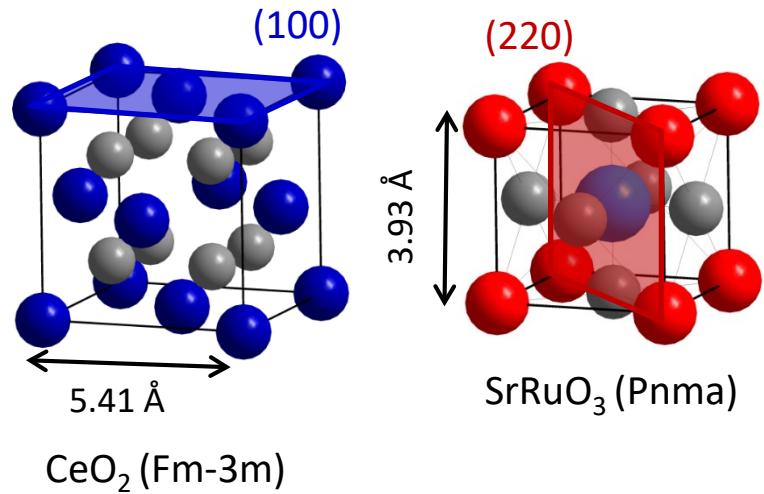


- IP-GID proves coherence between sheets, membranes are crystalline.
- Layer spacing (out-of-plane) decreases after condensation, intra-layer structure unchanged (peak position IP).
- No turbostratic disorder due to fabrication (peak presence IP).

In-plane grazing incidence diffraction

Examples: epilayer

Probing in-plane symmetry directly

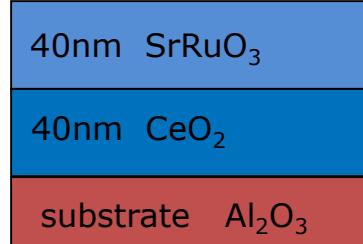


- Aim: determine the epitaxial relationship.
- Based on lattice mismatch one would expect the unit cells to exhibit a twisted cube on cube epitaxy.

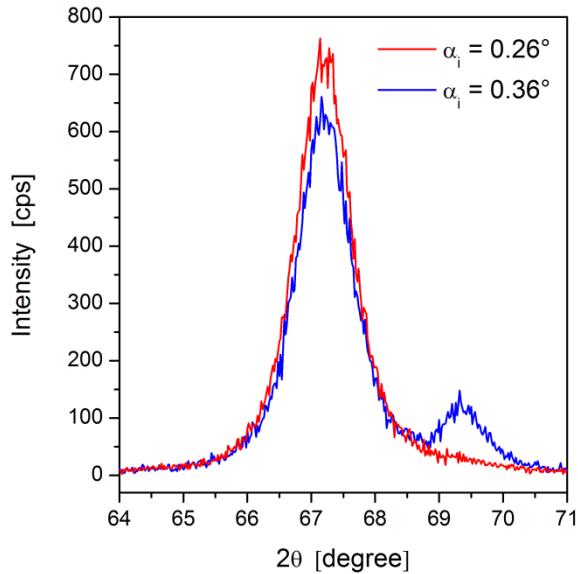
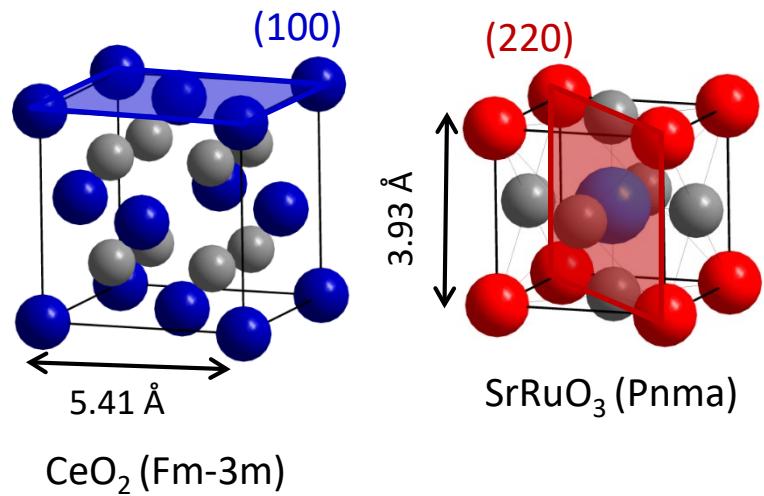
In-plane grazing incidence diffraction

Examples: epilayer

Probing in-plane symmetry directly



- $\theta/2\theta$ -scan at SrRuO₃ (220)



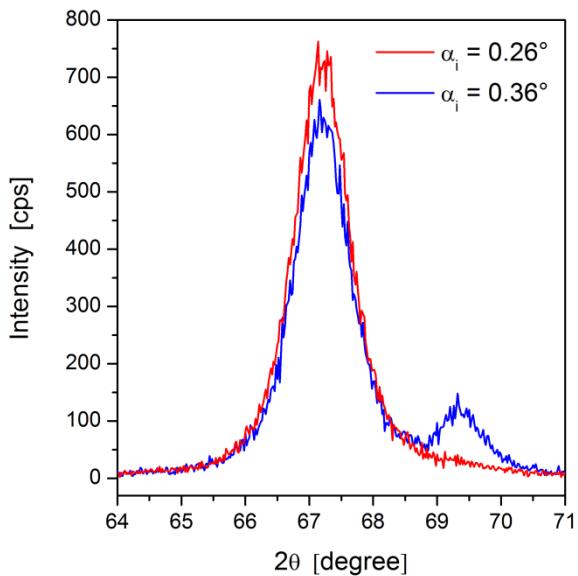
- SrRuO₃ (220) || CeO₂ (100) .
- Clear isolation of SrRuO₃ (220) reflection by depth control.

In-plane grazing incidence diffraction

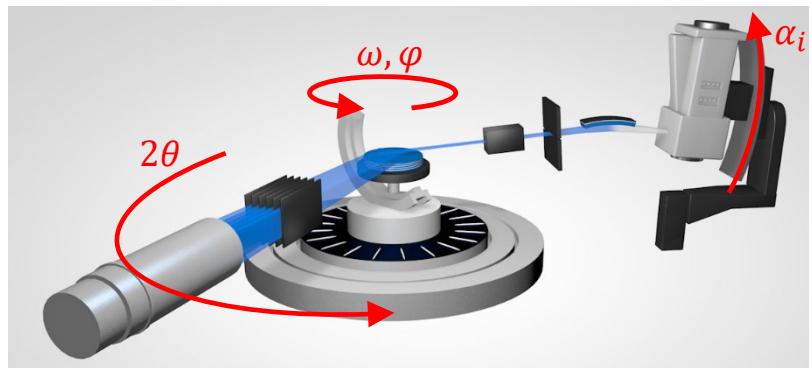
Examples: epilyer

Probing in-plane symmetry directly

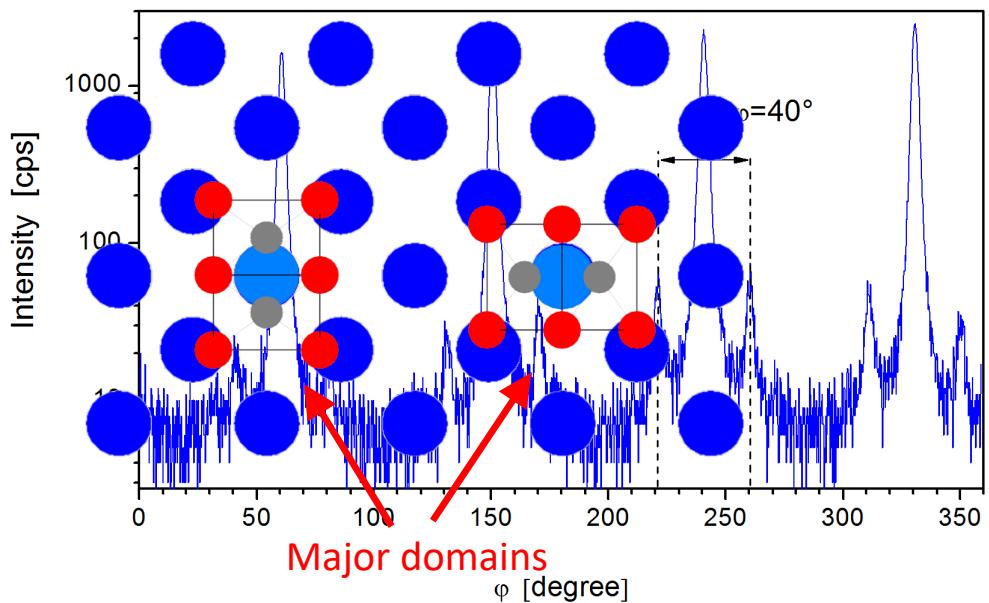
- $\theta/2\theta$ -scan at SrRuO₃ (220)



- SrRuO₃ (220) || CeO₂ (100) .
- Clear isolation of SrRuO₃ (220) reflection by depth control.



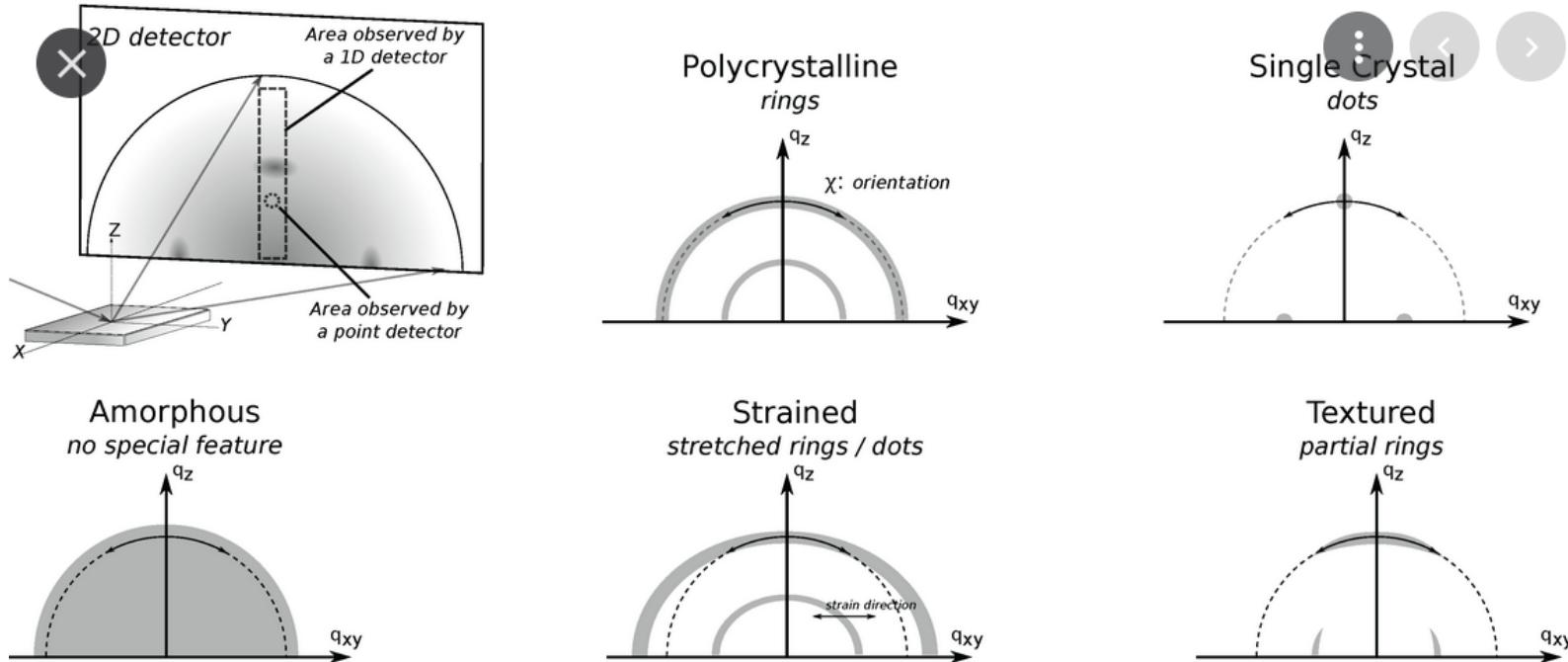
- φ -scan at 2θ of SrRuO₃ (220): **4 peaks** (should be 2 according to orth symmetry)



- A simple rotation of the sample around the surface normal directly reveals the in-plane symmetry.
- Experimental: Requires surface normal || φ -axis.

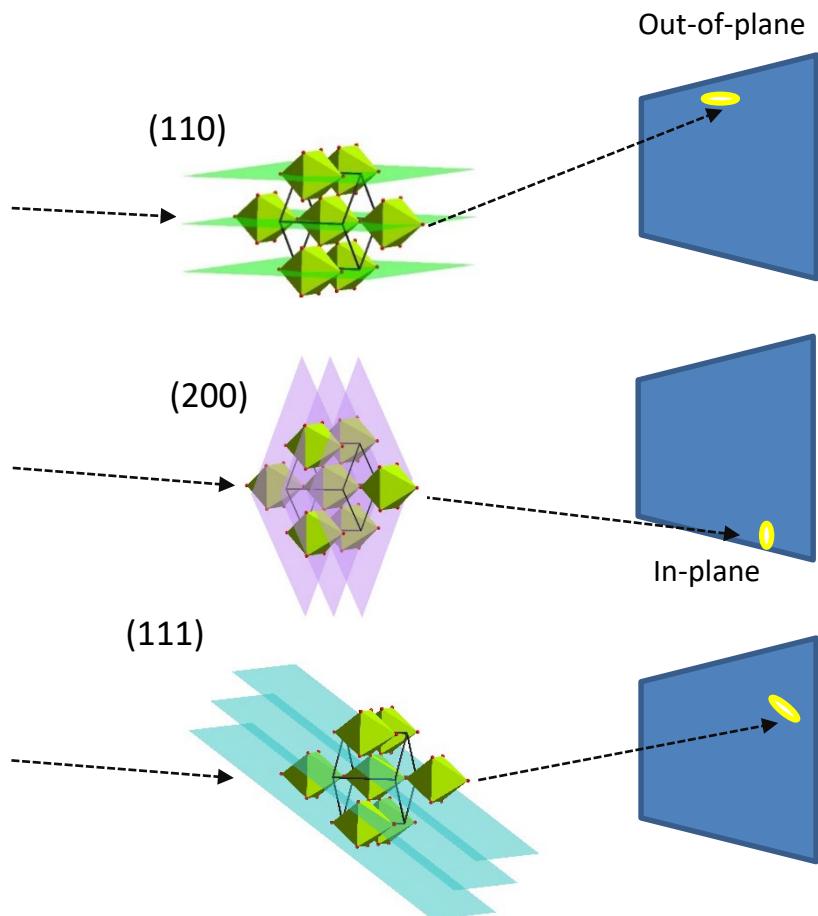
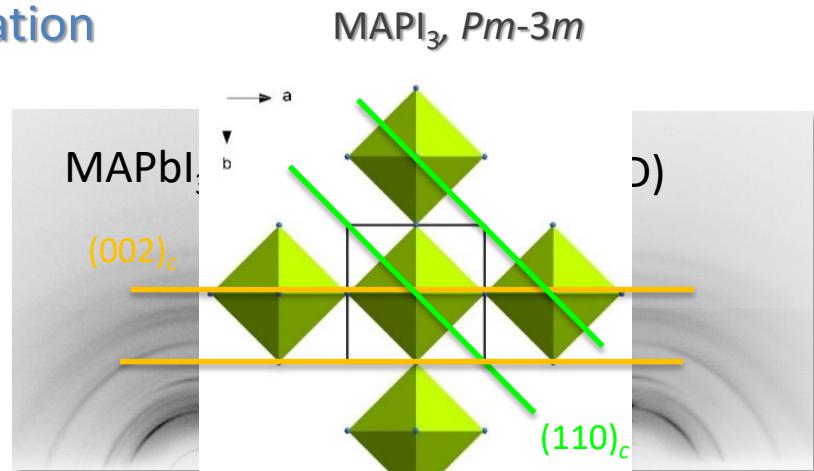
Grazing incidence wide angle scattering

Formally identical to GID, but term GIWAXS misused for 2D application



- As GID, but with additional information along the azimuth (gamma or in-plane direction) → 2 angle coordinates to reconstruct film architecture.

Grazing incidence wide angle scattering Examples: crystallite (and structure) orientation



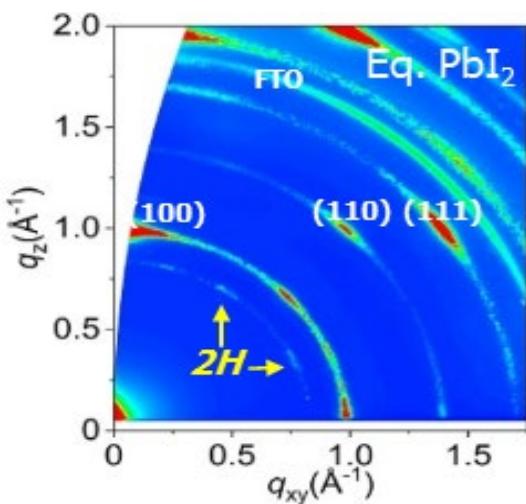
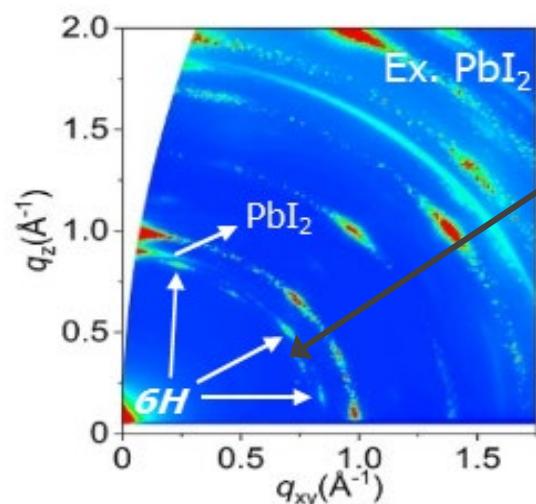
Q: What about (100) : IP or OP?

Q: What if in-plane disorder around $[110]$ direction (edge-direction)

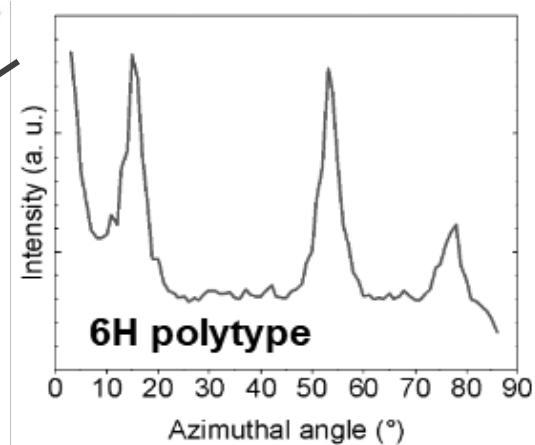
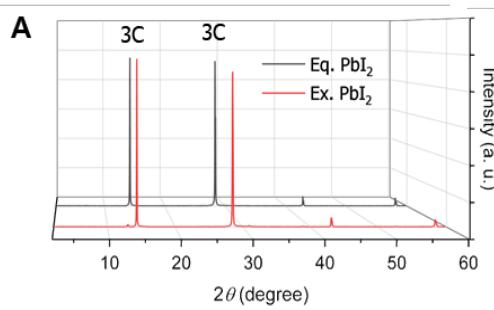
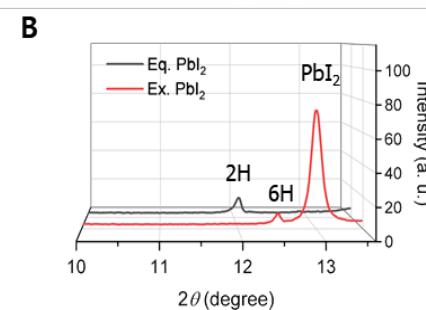
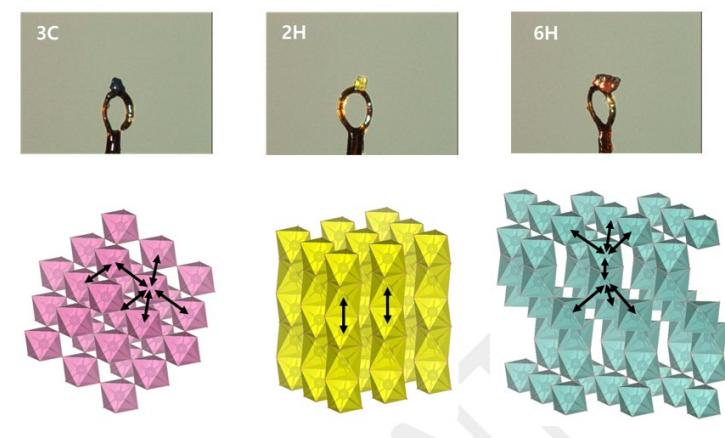
➤ Strong spots in out-of-plane direction ($q_{xy} = 0$), rings for rest.

Grazing incidence wide angle scattering

Examples: FAPI_3 solar cells – texture with a snapshot



Azimuthal integration at constant $2\Theta = 12.9^\circ$

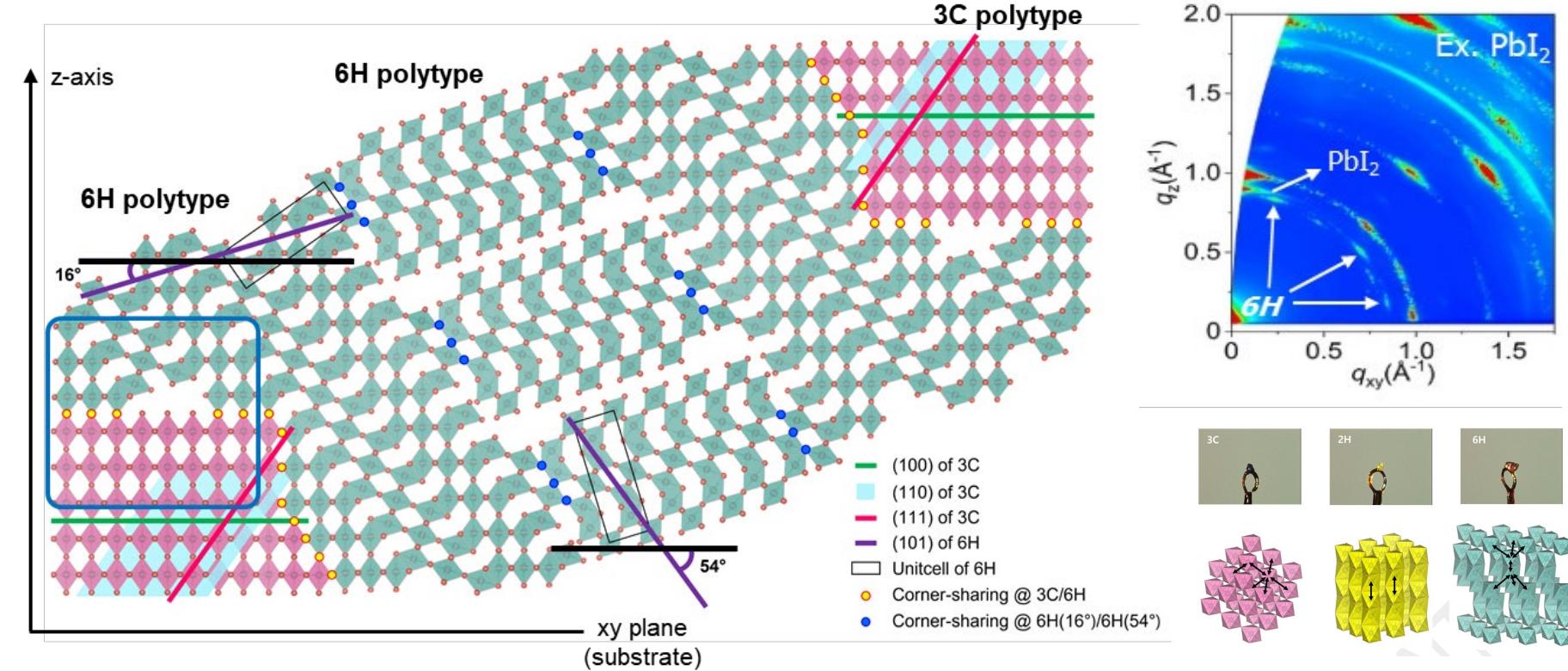


- Photoactive (3C) and non-active FAPbI_3 polymorphs

Grazing incidence wide angle scattering

Examples: FAPI_3 solar cells – texture with a snapshot

- Reconstruct complex film interfaces and connectivity between phases



- Surface diffraction (GID) is measured at fixed low incidence angle using a detector scan. It is a comparatively low resolution diffraction geometry.
- Depth control is achieved by varying the incident angle.
- The accessible diffraction-vector rotates within the scattering plane, allowing to access Bragg peaks invisible in conventional PXRD.
- Diffraction vectors lying in the sample plane cannot be accessed by normal XRD nor GID. They can be measured with in plane GID.
- In-plane grazing incidence diffraction is useful on thin oriented samples in particular when anisotropy is expected.
- GIWAXS a GID experiment with a 2D detector. GIWAXS is particularly useful for qualitative texture analysis, and for kinetic studies on thin films.

➤ CH-633 – X-ray scattering:

1. Introduction and XRD recap, surface diffraction
2. Thin film diffraction and reflectometry
 - High resolution diffraction
 - Texture analysis
 - X-ray reflectometry
3. Small angle X-ray scattering
4. Total scattering