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Historical and biological context

• Candidate of Chemical Sciences 

dissertation - Synthesis and 

Properties of 

Dibenzoylenedihydropyridines and 

Dibenzoylenepyridines

• Doctoral dissertation - The 

Reactivity and Biological Properties 

of 1,4-Dihydropyridines

• At least 153 papers on 

dihydropyridines

Prof. Gunārs Duburs
Born 1934

Biochemical Journal 2007, 402 (2), 205–218.

Chem Heterocycl Comp 2015, 50 (10), 1365–1366. 
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Synthesis of DHPs - historical

Ber. Dtsch. Chem. Ges. 1881, 14, 1637-1638.



5
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Heterocycles 1988, 27 (1), 269.

Chem Heterocycl Compd 1992, 28 (4), 363–391. 
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Oxidative fragmentation of alkyl substituted DHPs

Res. Chem. Intermed. 2001, 27, 219–224
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Oxidative fragmentation of alkyl substituted DHPs

RSC Adv. 2020, 10 (52), 31425–31434. 
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Application in photoredox catalysis
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13

Application in photoredox catalysis

J. Am. Chem. Soc. 2016, 138 (38), 12312–12315. 

Advanced Synthesis & Catalysis 2018, 360 (5), 925–931. 



14

Application in photoredox catalysis

ChemCatChem 2016, 8 (6), 1028–1032. 

Org. Lett. 2018, 20 (21), 6877–6881. 

Asian J. Org. Chem. 2019, 8 (5), 661–664.

Org. Lett. 2018, 20 (21), 6840–6844. 



15

Application in photoredox catalysis

Chem. Commun. 2019, 55 (14), 2062–2065. 

Chem. Commun. 2019, 55 (43), 6010–6013. 



16

Application in photoredox catalysis

Chem. Commun. 2019, 55 (14), 2062–2065. 

Chem. Commun. 2019, 55 (43), 6010–6013. 



17

Application in photoredox catalysis

J. Org. Chem. 2018, 83 (18), 10922–10932.



18

Application in photoredox catalysis

J. Org. Chem. 2018, 83 (18), 10922–10932.



19

Application in photoredox catalysis

ACS Catal. 2018, 8 (2), 1062–1066. 



20

Application in photoredox catalysis

ACS Catal. 2018, 8 (2), 1062–1066. 



21

Application in metallaphotocatalysis



22

Application in metallaphotoredox catalysis
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Conclusions

Principial references: Acta Chimica Sinica, 2019, 77 (9): 814-831; Synlett 2017, 28 (2), 148–158. 
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Perspectives – application of R-DHPs in electrochemistry
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Angew. Chem. Int. Ed. 2019, 58 (4), 1213–1217.
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Cancer: Challenges and Progress
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 Large group of diseases: rapid creation of abnormal cells

 10 Mio. deaths/year (2020)

 Prevention

 Developments in Cancer Treatment

• Surgery, Radiotheraphy, Chemotherapy, Immunotheraphy, Genetheraphy, 

Nanomedicine  

• H. Sung, J. Ferlay, R. L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray; CA Cancer J Clin. 2020, 1 – 41.

• WHO (2018). Global health estimates 2016: deaths by cause, age, sex, by country and by region, 2000–2016. 

Geneva, Switzerland: World Health Organization. Available from: https://www.who.int/healthinfo/global_burden_disease/en/ (07.04.2021) 

• WHO (2017). Global hepatitis report 2017. Geneva, Switzerland: World Health Organization. Available from: 

https://www.who.int/hepatitis/publications/global-hepatitis-report2017/en/ (07.04.2021)

• Curr. Clin. Pharmacol. 2018, 13, 85 – 99.

• Cancers 2011, 3, 3279 – 3330.
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 Paul Ehrlich (1854 – 1915)

 Heterocylces in anticancer drugs

• Berliner Klinische Wochenschrift, 1907, 44, 233–236.

• Eur. J. Med. Chem. 2020, 188, 112016.

• Curr. Org. Chem. 2021, 25, 654 – 668.

https://wellcomecollection.org/

works/y2d2nar6, CC BY-4.0
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 Nitrogen Mustard as 1st chemotherapeutic agent against cancer     

• Am. J. Surg. 1963, 105, 574 – 578.

• Nature Review Cancer 2005, 5, 65 – 72.

• Cancer Res., 2008, 68, 8643 – 8653. 

• J. Am. Chem. Soc. 1990, 112, 2459 – 2460.

• J. Am. Chem. Soc. 1993, 115, 2551 – 2557.



Chemotherapy – Alkylating Agents
5
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• Cancer Res., 2008, 68, 8643 – 8653. 

• J. Am. Chem. Soc. 1990, 112, 2459 – 2460.

• J. Am. Chem. Soc. 1993, 115, 2551 – 2557.
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 Produced by Streptomyces Lavendulae

 Isolated in 1958, only 2 total synthesis (1979 KISHI and 1987 FUKUYAMA)

 Very effective against bladder and non-small-cell lung carcinoma

• Antibiot. Chemother. 1958, 8, 228 – 240.

• J. Nat. Prod. 1979, 42, 549 – 568.

• J. Am. Chem. Soc. 1987, 109, 7881 – 7882.

• Cancer Treat. Rev., 2001, 27, 35 – 50.

• Beilstein J. Org. Chem. 2009, 5, No. 33

http://www.hpfiedler-group.de/

metabolites.php?metabolite_id=26

(27.04.2021) 
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• ACS Med. Chem. Lett. 2013, 4, 358 – 362.

• Clin. Pharmacol. Ther. 2014, 95, 24 – 31. 

• Med. Res. Rev. 2017, 37, 98 – 148.

• Chem. Rev. 2009, 109, 2880 – 2893.

• PNAS, 2002, 99, 13481 – 13486.

 Synthesized in 2013

 Inhibits enzyme BRafV600E

 Treatment of melanoma and  lung cancer
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Paclitaxel

• J. Am. Chem. Soc. 1994, 116, 1597 – 1598.

• J. Am. Chem. Soc. 1994, 116, 1599 – 1600.

• Nature, 1994, 367, 630 – 634.

• J. Am. Chem. Soc. 1971, 93, 2325 – 2327.

 Isolated in 1971 from the pacific yew

 Anti-Microtubule Agent

 1st total synthesis in 1994 

(HOLTON group and NICOLAOU group)

 Used against breast, lung, prostate

and bladder cancer
Pacific yew by JASON

HOLLINGER, CC BY 2.0

brewbrooks-www.flickr.com/photos/

brewbooks/263660629

Microtubule

• Pharmac. Ther. 1991, 52, 35 – 84.

• Nat. Rev. Mol. Cell Biol. 2015, 16, 711 – 726.

• Nat. Rev. Mol. Cell Biol. 2018, 19, 451 – 463.

• Pharm. Unserer Zeit 2005, 34, 98 – 103.
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Conclusion and Outlook
36

 Heterocycles: important motif in (anti-cancer) drugs

 Challenging structures 

 Total synthetic, semi synthetic or biosynthetic access 

 Future derivatization of existing molecules to enhance their bioactivity

 Based on mechanism of action: design of new compounds 

• RSC Adv. 2020, 10, 44247 – 44311.

• J. Am. Chem. Soc. 2020, 142, 10526 – 10533.
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1) Key Transannulation: Why only 1 diasteromer?  

• J. Nat. Prod. 1979, 42, 549 – 568.
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2) Name and reaction mechanism of thiazole core synthesis of Dabrafenib ?  

• ACS Med. Chem. Lett. 2013, 4, 358 – 362.

• Med. Res. Rev. 2017, 37, 98 – 148.
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41

2) 2) Name and reaction mechanism of thiazole core synthesis of Dabrafenib ?  

-> Hantzsch Thiazole Synthesis  

• Ber. Dtsch. Chem. Ges. 1887, 20, 3118 – 3132.

• The Chemistry of Heterocycles: Chapter 5 - Five-Membered Heterocycles, Elsevier, 2019, p. 415. 
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Examples of configurationally stable lithium/sparteine carbanion pairs:

α to an Oxygen Atom:

-  Hoppe’s Alkyl Carbamates
-  Hoppe’s Aryl Carbamates

α to a Nitrogen Atom:

-  Heterocyclic substrates
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§ Highly enantioselective deprotonation of carbamates
§ Can be combined to a various arrange of electrophiles

• Various enantioselective transformations could be achieved
§ (+)-sparteine (and analogs) is suitable as well

Conclusions
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1. Background and Main Innovations

2. Reactivity Overview

3. Selected Examples:

3.1. Homoenolate Equivalents

3.2. (Conjugated) Enolate Equivalents

3.3. 𝛼,𝛽-Unsaturated Acyl Azoliums

3.4 Cooperative NHC/Metal Catalysis

4. Conclusion and Questions
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Early Historical Background
Background and Main Innovations Reactivity Overview Selected Examples Conclusion and Questions

21) P.-C. Chiang, J. W. Bode*, in Catalysis Series, S. Diez-Gonzalez, Ed. (Royal Society of Chemistry, Cambridge, 2010, pp. 399–435. 2) J. Mahatthananchai, J. W. Bode, in Contemporary 

Carbene Chemistry, R. A. Moss, M. P. Doyle, Eds. (John Wiley & Sons, Inc, Hoboken, NJ, 2013, pp. 237–273. 3) R. Breslow, J. Am. Chem. Soc. 80, 3719–3726 (1958).

Ugai:

Breslow:



NHC Precatalyst Development
Background and Main Innovations Reactivity Overview Selected Examples Conclusion and Questions

3

Thiamine (Vitamin B1)

Ugai and Breslow, 1943

Stetter, 1976 Enders and Tesla, 1996 Knight and Leeper, 1998 Rovis, 2002

J. Mahatthananchai, J. W. Bode, in Contemporary Carbene Chemistry, R. A. Moss, M. P. Doyle, Eds. (John Wiley & Sons, Inc, Hoboken, NJ, 2013, pp. 237–273.



NHC Precatalyst Development
Background and Main Innovations Reactivity Overview Selected Examples Conclusion and Questions

4

Bode, 2005 Ye, 2009Bode, 2005 Bode, 2008 Glorius, 2008

J. Mahatthananchai, J. W. Bode, in Contemporary Carbene Chemistry, R. A. Moss, M. P. Doyle, Eds. (John Wiley & Sons, Inc, Hoboken, NJ, 2013, pp. 237–273.



N-Mesityl Catalysts 

5

Background and Main Innovations Reactivity Overview Selected Examples Conclusion and Questions

is FAST and 

irreversible

Irreversible

ReversibleIrreversible The formation of the

Breslow intermediate

- -

J. Mahatthananchai, J. W. Bode, in Contemporary Carbene Chemistry, R. A. Moss, M. P. Doyle, Eds. (John Wiley & Sons, Inc, Hoboken, NJ, 2013, pp. 237–273.



Types of Reactive Intermediates

6

Background and Main Innovations Reactivity Overview Selected Examples Conclusion and Questions

Acyl anion
Homoenolate

Conjugated enolate

(Azolium dienolate)

Enolate

(
𝛼,𝛽-Unsaturated acyl azolium

Acyl azolium

Acyl azolium



1. Background and Main Innovations

2. Reactivity Overview

3. Selected Examples:

3.1. Homoenolate Equivalents

3.2. (Conjugated) Enolate Equivalents

3.3. 𝛼,𝛽-Unsaturated Acyl Azoliums

3.4 Cooperative NHC/Metal Catalysis

4. Conclusion and Questions

7

Presentation Outline



Annulations via Formal 1,2-Additions 

8

Background and Main Innovations Reactivity Overview Homoenolate Equivalents Conclusion and Questions

1) C. Burstein, F. Glorius, Angew. Chem. Int. Ed. 43, 6205–6208 (2004), 2) S. S. Sohn, E. L. Rosen, J. W. Bode, J. Am. Chem. Soc. 126, 14370–14371 (2004).

Glorius:

Bode:



Annulations via Formal 1,2-Additions 

9

Background and Main Innovations Reactivity Overview Homoenolate Equivalents Conclusion and Questions

Saigo:

You:

1) Y. Matsuoka, Y. Ishida, D. Sasaki, K. Saigo, Chem. Eur. J. 14, 9215–9222 (2008), 2) Y. Li, Z.-A. Zhao, H. He, S.-L. You, Adv. Synth. Catal. 350, 1885–1890 (2008).



10

Annulations via Formal 1,2-Additions 
Background and Main Innovations Reactivity Overview Homoenolate Equivalents Conclusion and Questions

Scheidt:

Johnson:

1) J. Dugal-Tessier, E. A. O’Bryan, T. B. H. Schroeder, D. T. Cohen, K. A. Scheidt, Angew. Chem. Int. Ed. 51, 4963–4967 (2012). 2) C. G. Goodman, M. M. Walker, J. S. Johnson, J. Am. Chem. Soc.

137, 122–125 (2015).



11

Annulations via Formal 1,4-Additions 
Background and Main Innovations Reactivity Overview Homoenolate Equivalents Conclusion and Questions

Bode:

Chi:

1) M. He, J. W. Bode, J. Am. Chem. Soc. 130, 418–419 (2008), 2) X. Chen, X. Fang, Y. R. Chi, Chem. Sci. 4, 2613 (2013).



12

Annulations via Formal 1,4-Additions 
Background and Main Innovations Reactivity Overview Homoenolate Equivalents Conclusion and Questions

Bode:

J. Kaeobamrung, J. W. Bode, Org. Lett. 11, 677–680 (2009).



1. Background and Main Innovations

2. Reactivity Overview

3. Selected Examples:

3.1. Homoenolate Equivalents

3.2. (Conjugated) Enolate Equivalents

3.3. 𝛼,𝛽-Unsaturated Acyl Azoliums

3.4 Cooperative NHC/Metal Catalysis

4. Conclusion and Questions

13

Presentation Outline



14

[4+2] Annulations
Background and Main Innovations Reactivity Overview Enolate Equivalents Conclusion and Questions

Diels-Adler Michael-type

Claisen-type

Bode:

1) M. He, J. R. Struble, J. W. Bode, J. Am. Chem. Soc. 128, 8418–8420 (2006). 2) M. He, G. J. Uc, J. W. Bode, J. Am. Chem. Soc. 128, 15088–15089 (2006). 3) M. He, B. J. 

Beahm, J. W. Bode, Org. Lett. 10, 3817–3820 (2008), 4) S. E. Allen, J. Mahatthananchai, J. W. Bode, M. C. Kozlowski, J. Am. Chem. Soc. 134, 12098–12103 (2012).



15

[4+2] Annulations
Background and Main Innovations Reactivity Overview Conjugated Enolate Equivalents Conclusion and Questions

Chi:

1) B.-S. Li et al., Nat Commun. 6, 6207 (2015)., 2) J. Mo, X. Chen, Y. R. Chi, J. Am. Chem. Soc. 134, 8810–8813 (2012).



1. Background and Main Innovations

2. Reactivity Overview

3. Selected Examples:

3.1. Homoenolate Equivalents

3.2. (Conjugated) Enolate Equivalents

3.3. 𝛼,𝛽-Unsaturated Acyl Azoliums

3.4 Cooperative NHC/Metal Catalysis

4. Conclusion and Questions

16

Presentation Outline



17

Activated Carboxylate Equivalents
Background and Main Innovations Reactivity Overview 𝛼,𝛽-Unsaturated Acyl Azoliums Conclusion and Questions

Bode:

1) B. Wanner, J. Mahatthananchai, J. W. Bode, Org. Lett. 13, 5378–5381 (2011)., 2) J. Kaeobamrung, J. Mahatthananchai, P. Zheng, J. W. Bode, J. Am. Chem. Soc. 132, 8810–8812 (2010).



18

Bromoenal Substrates
Background and Main Innovations Reactivity Overview 𝛼,𝛽-Unsaturated Acyl Azoliums Conclusion and Questions

Ye:

1) F.-G. Sun, L.-H. Sun, S. Ye, Adv. Synth. Catal. 353, 3134–3138 (2011). 2) K. Chen, Z. Gao, S. Ye, Angew. Chem. 131, 1195–1199 (2019).



19

Acids and Acyl Fluorides
Background and Main Innovations Reactivity Overview 𝛼,𝛽-Unsaturated Acyl Azoliums Conclusion and Questions

Wang and Ye:

Lupton:

Lupton:

1) A. Lee et al., Angew. Chem. 131, 6002–6006 (2019). 2) A. Levens, A. Ametovski, D. W. Lupton, 

Angew. Chem. Int. Ed. 55, 16136–16140 (2016). 3) R. M. Gillard, J. E. M. Fernando, D. W. Lupton, 

Angew. Chem. Int. Ed. 57, 4712–4716 (2018).



20

Alkynyl Acyl Azoliums
Background and Main Innovations Reactivity Overview Alkynyl Acyl Azoliums Conclusion and Questions

Wang:

Jin:

1) C. Zhao et al., Nat Commun. 9, 611 (2018). 2) T. Li et al., Angew. Chem. 133, 9448–9453 (2021).



1. Background and Main Innovations

2. Reactivity Overview

3. Selected Examples:

3.1. Homoenolate Equivalents

3.2. (Conjugated) Enolate Equivalents

3.3. 𝛼,𝛽-Unsaturated Acyl Azoliums

3.4 Cooperative NHC/Metal Catalysis

4. Conclusion and Questions

21

Presentation Outline



22
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Scheidt: Glorius:

Glorius:

1) K. Liu, M. T. Hovey, K. A. Scheidt, Chem. Sci. 5, 4026 (2014). 2) C. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius, J. 
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Cooperative NHC/Ir Catalysis
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S. Singha, E. Serrano, S. Mondal, C. G. Daniliuc, F. Glorius, Nat Catal. 3, 48–54 (2020).
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Conclusion and Outlook

1. N-mesityl catalysts as (one of) the most important developments in the field

2. With essentially one class of catalysts we can drive so many different transformations

3. Since mid 2000’s a large number of enantioselective transformations has been reported

4. Further progress needed with “ordinary” ketones and other simple carbonyl electrophiles

5. Further progress in cooperative NHC/metal catalysis 
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Thank you for your attention! 
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Questions

Question 1: How would you explain the following switchable selectivity?

Toluene, K2CO3:  A/B = 1:10 

Toluene, DBU:     A/B = 15:1

THF, K2CO3:        A/B = 10:1

A B

C. Guo, M. Fleige, D. Janssen-Müller, C. G. Daniliuc, F. Glorius, Nature Chem. 7, 842–847 (2015).
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Questions

Question 2: Products? How can you explain the difference in reaction outcomes? 

J. Kaeobamrung, J. Mahatthananchai, P. Zheng, J. W. Bode, J. Am. Chem. Soc. 132, 8810–8812 (2010).
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1. Simulation of organocatalyst

2. Chiral Lewis acid catalysis and visible light induced asymmetric catalysis

3. C-H insertion through metal-nitrenoids

Summary

Outlook

1. More reactions without relying on the 2-acyl imidazole moiety?

2. Further transformations of the 2-acyl imidazole product?



Question 1.



Question 2.
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