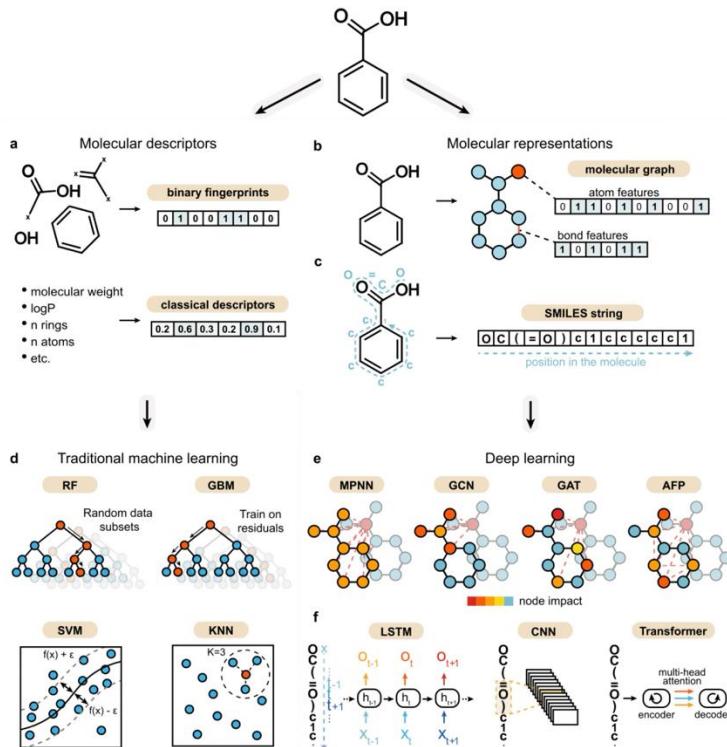


AI 4 Chemistry

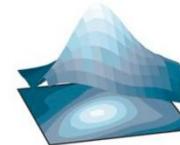
Advanced topics – MLIPs and LLM agents

Prof. Philippe Schwaller

Short recap

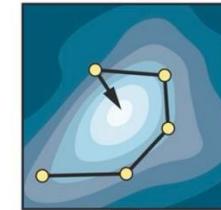


Functional space



Desired properties (redox potential, solubility, toxicity)

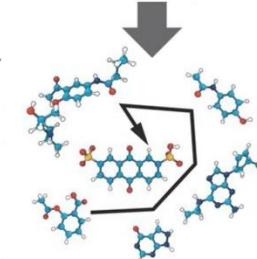
Inverse



Optimization, evolutionary strategies, generative models (VAE, GAN, RL)

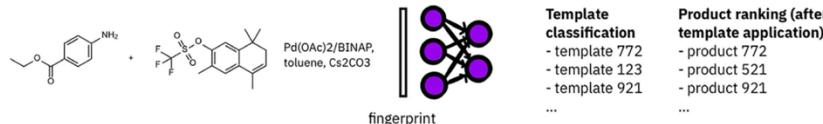
Chemical space

(Drug-like, photovoltaics, polymers, dyes)

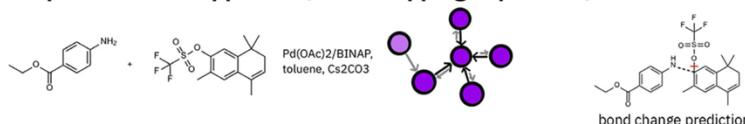


Short recap

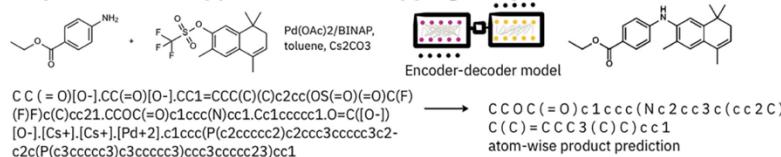
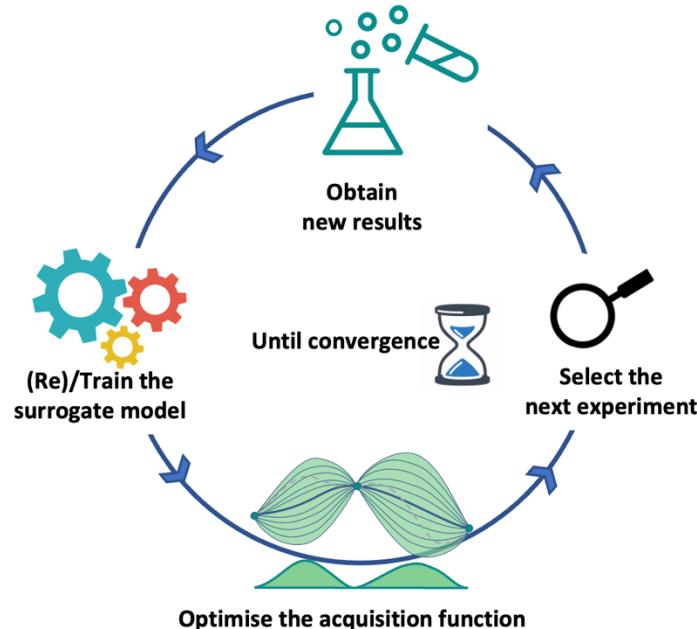
Template-based approaches (atom-mapping dependent)



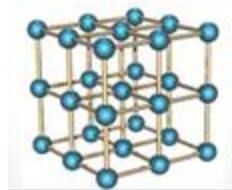
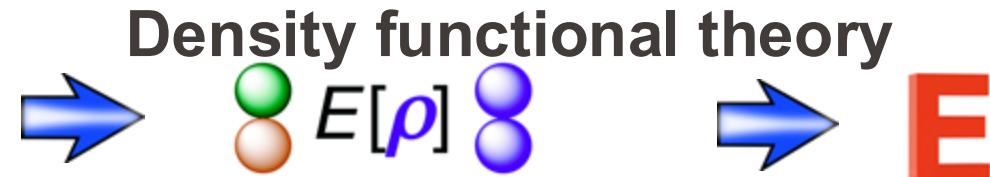
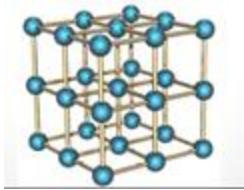
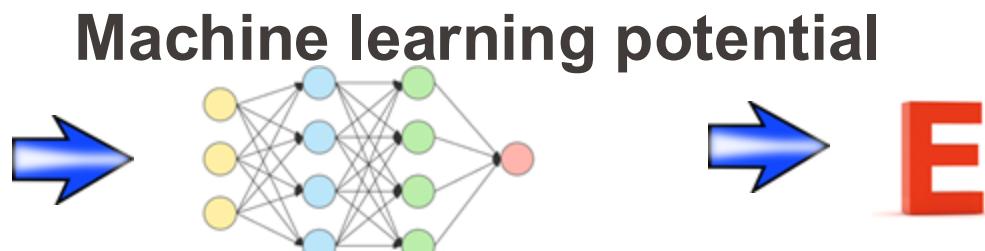
Graph edit-based approach (atom-mapping dependent)



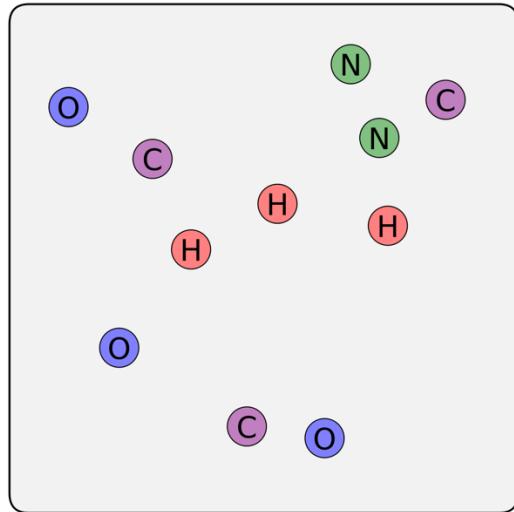
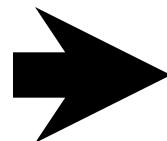
Sequence-based approach (atom-mapping independent)



- Introduction to machine learning interatomic potentials
- LLM agents for chemical research
- Time for projects

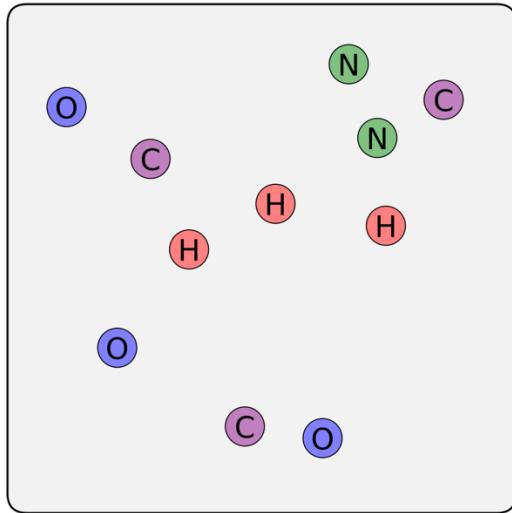
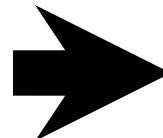
 $O(N^3)$  $O(N)$

Atomistic machine learning



Target Property

Atomistic machine learning



Target Property

$$\{(\mathbf{r}_i, s_i)\}_i$$

$$\mathbf{r}_i = (x_i, y_i, z_i)$$

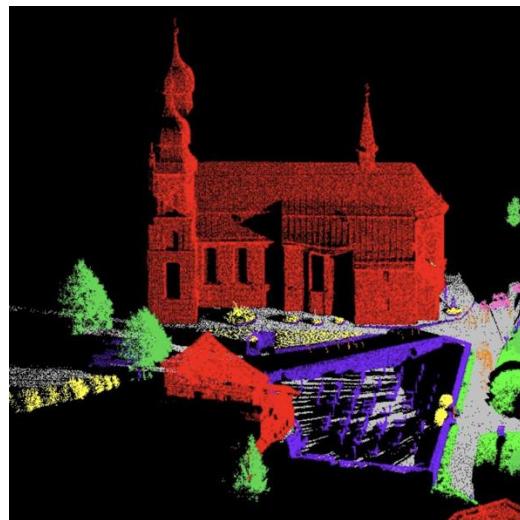
$$s_i \in \{H, C, O, N, \dots\}$$

An atomistic system is a **3D point cloud**.

3D point clouds

LiDAR

Point cloud representation
of the surrounding world



Semantic3D

Autonomous driving

General-purpose point cloud models

- **Multiview CNNs**

Pointview-gcn, Rotationnet, MV3D, ...

- **Voxel-based models**

O-cnn, Octnet, Kd-network, ...

- **Point convolution NNs**

Kpconv, PCNN, SpiderCNN, ...

- **Point-based models**

PointNet++, PointMLP, PACConv, ...

General-purpose point cloud models

- Multiview CNNs

Pointview-gcn, Rotationnet, MV3D, ...

- Voxel-based models

O-cnn, Octnet, Kd-network, ...

- Point convolution NNs

Kpconv, PCNN, SpiderCNN, ...

- Point-based models

PointNet++, PointMLP, PAConv, ...

Pointnet: Deep learning on point sets for 3d classification and segmentation

[CR Qi, H Su, K Mo, LJ Guibas](#) - Proceedings of the IEEE ... , 2017 - openaccess.thecvf.com

... Our network, named **PointNet**, provides a unified architecture for applications ranging from object classification and segmentation, to scene semantic parsing. Though simple, **PointNet** ...

☆ Save Cite [Cited by 13220](#) Related articles All 20 versions

Pointnet++: Deep hierarchical feature learning on point sets in a metric space

[CR Qi, L Yi, H Su, LJ Guibas](#) - Advances in neural ... , 2017 - proceedings.neurips.cc

... Finally, we propose our **PointNet++** that is able to robustly learn ... **PointNet++**, a powerful neural network architecture for processing point sets sampled in a metric space. **PointNet++** ...

☆ Save Cite [Cited by 9220](#) Related articles All 22 versions

The world of general-purpose point cloud models is (much) larger than ours.

General-purpose point cloud models

- Multiview CNNs

Pointview-gcn, Rotationnet, MV3D, ...

- Voxel-based models

O-cnn, Octnet, Kd-network, ...

- Point convolution NNs

Kpconv, PCNN, SpiderCNN, ...

- Point-based models

PointNet++, PointMLP, PAConv, ...

Pointnet: Deep learning on point sets for 3d classification and segmentation

[CR Qi](#), [H Su](#), [K Mo](#), [LJ Guibas](#) - Proceedings of the IEEE ... , 2017 - openaccess.thecvf.com

... Our network, named **PointNet**, provides a unified architecture for applications ranging from object classification and segmentation, to scene semantic parsing. Though simple, **PointNet** ...

☆ Save Cite [Cited by 13220](#) Related articles All 20 versions

Pointnet++: Deep hierarchical feature learning on point sets in a metric space

[CR Qi](#), [L Yi](#), [H Su](#), [LJ Guibas](#) - Advances in neural ... , 2017 - proceedings.neurips.cc

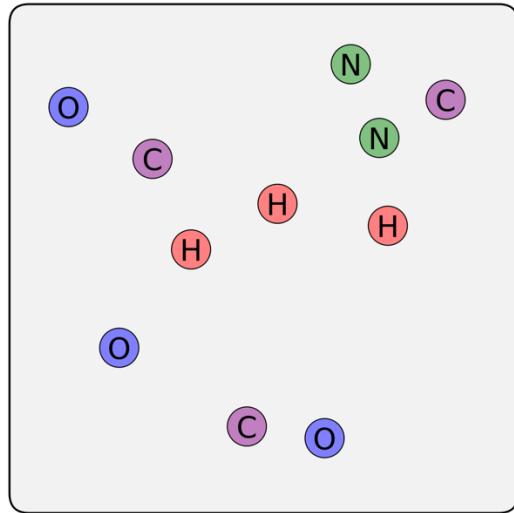
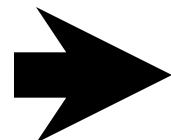
... Finally, we propose our **PointNet++** that is able to robustly learn ... **PointNet++**, a powerful neural network architecture for processing point sets sampled in a metric space. **PointNet++** ...

☆ Save Cite [Cited by 9220](#) Related articles All 22 versions

The world of general-purpose point cloud models is (much) larger than ours.

Why don't we use these developments and benefit from them?

Machine learning potentials



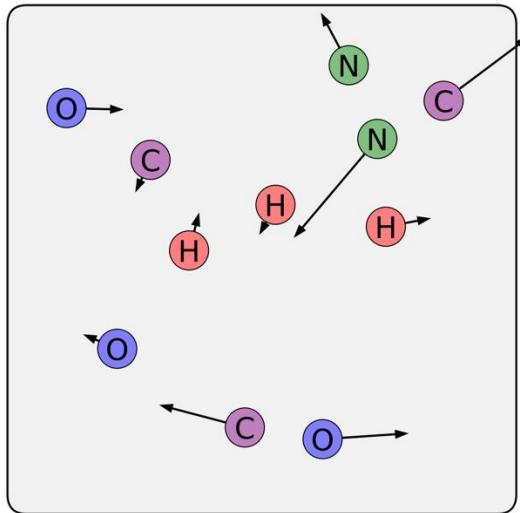
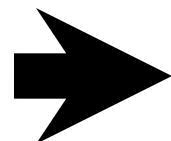
E
Potential Energy

$$\{(\mathbf{r}_i, s_i)\}_i$$

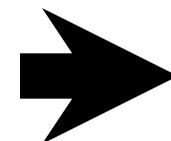
$$\mathbf{r}_i = (x_i, y_i, z_i)$$

$$s_i \in \{H, C, O, N, \dots\}$$

Machine learning potentials



E
Potential Energy



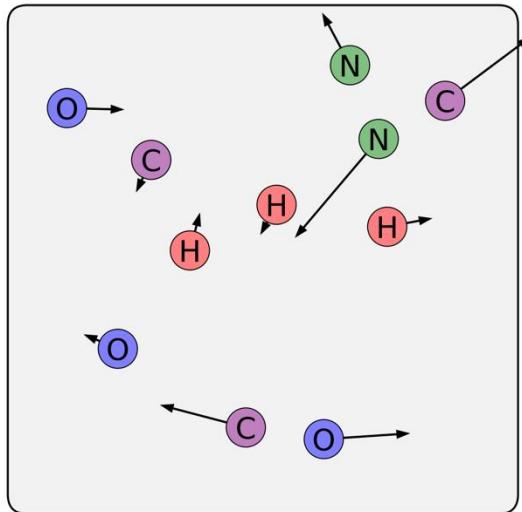
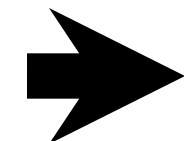
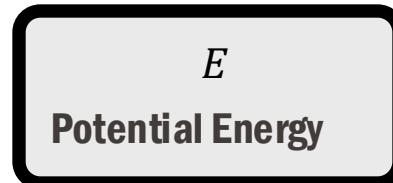
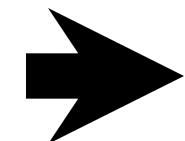
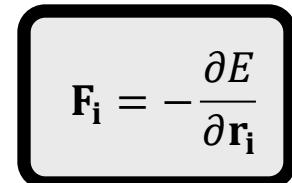
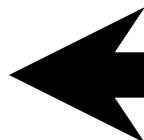
$$\mathbf{F}_i = -\frac{\partial E}{\partial \mathbf{r}_i}$$

$$\{(\mathbf{r}_i, s_i)\}_i$$

$$\mathbf{r}_i = (x_i, y_i, z_i)$$

$$s_i \in \{H, C, O, N, \dots\}$$

Machine learning potentials



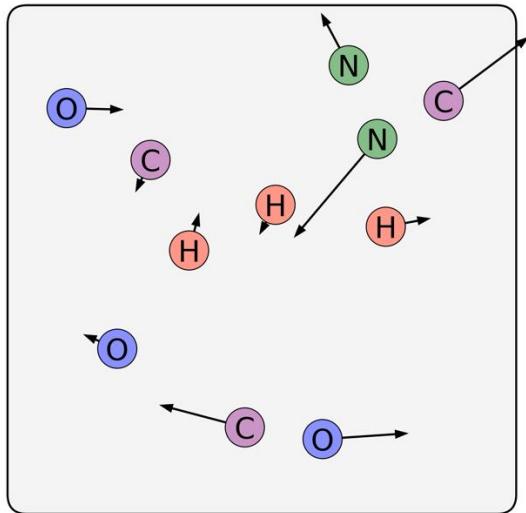
$$\{(\mathbf{r}_i, s_i)\}_i$$

$$\mathbf{r}_i = (x_i, y_i, z_i)$$

$$s_i \in \{H, C, O, N, \dots\}$$

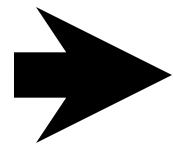
Molecular dynamics simulations

Machine learning potentials

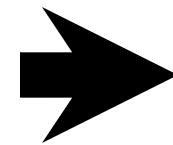

$$\{(\mathbf{r}_i, s_i)\}_i$$

$$\mathbf{r}_i = (x_i, y_i, z_i)$$

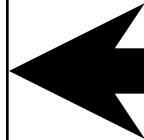
$$s_i \in \{H, C, O, N, \dots\}$$



E
Potential Energy



$$\mathbf{F}_i = -\frac{\partial E}{\partial \mathbf{r}_i}$$



Molecular dynamics simulations

Symmetry requirements

To avoid artifacts in a simulation, it is highly desirable for a model to fulfill the following symmetry constraints:

Permutational invariance Rotational invariance

Translational invariance Smoothness

Most people in the field believe that:

Invariant model

with **moderate** accuracy

is preferable

over

Not invariant model

with **excellent** accuracy

Equivariant Coordinate System Ensemble

Outline

A-posteriori symmetrization of any backbone architecture.

Permutational invariance **Rotational invariance**

Translational invariance **Smoothness**

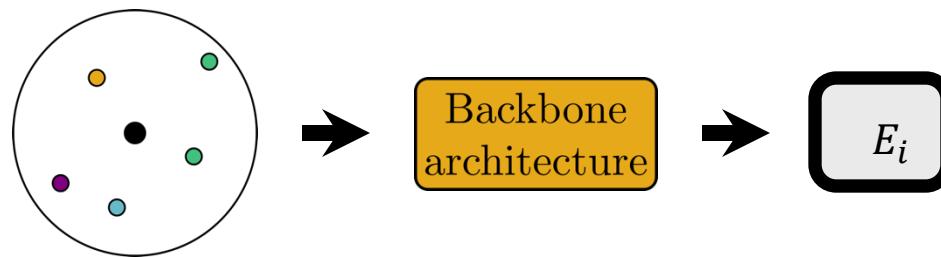
Permutational invariance **Rotational invariance**

Translational invariance **Smoothness**

Equivariant Coordinate System Ensemble

Local coordinate system

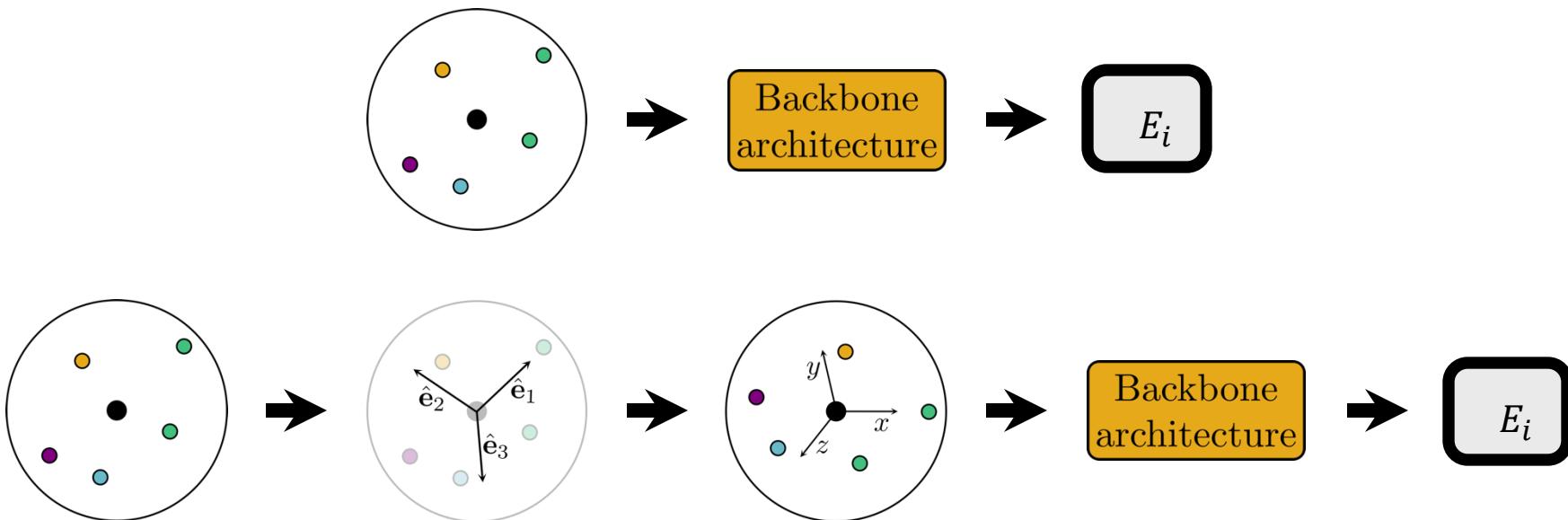
$$E = \sum_i E_i \text{ (atomic environment of atom } i\text{)}$$



Equivariant Coordinate System Ensemble

Local coordinate system

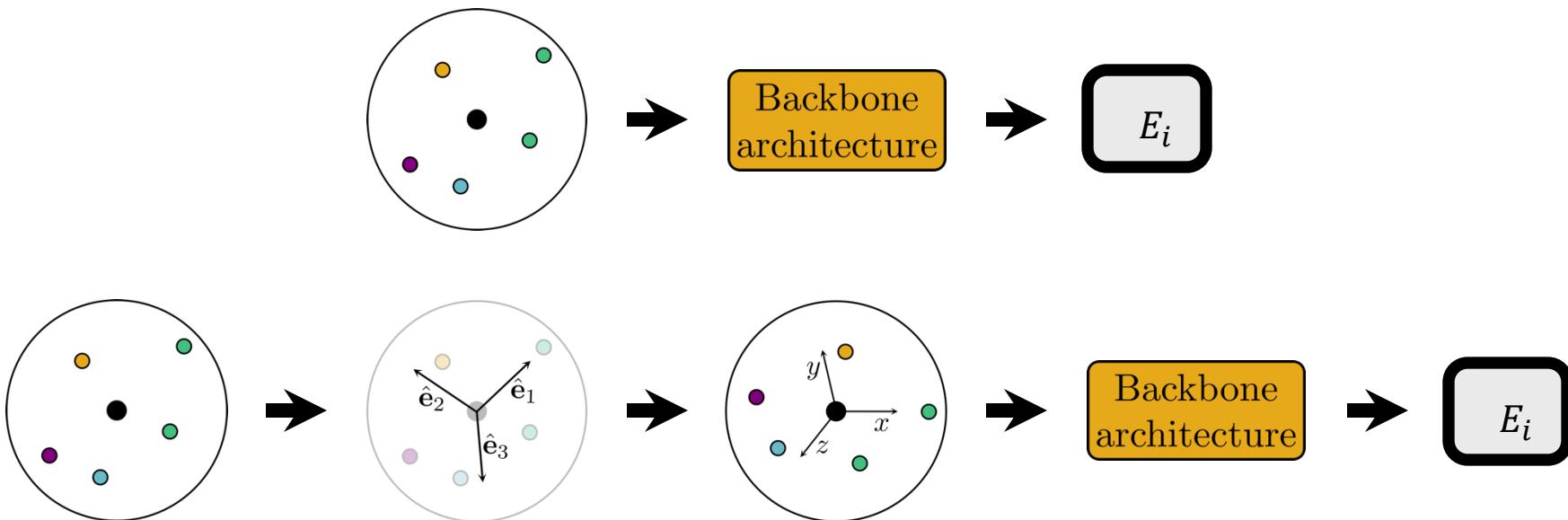
$$E = \sum_i E_i \text{ (atomic environment of atom } i\text{)}$$



Equivariant Coordinate System Ensemble

Local coordinate system

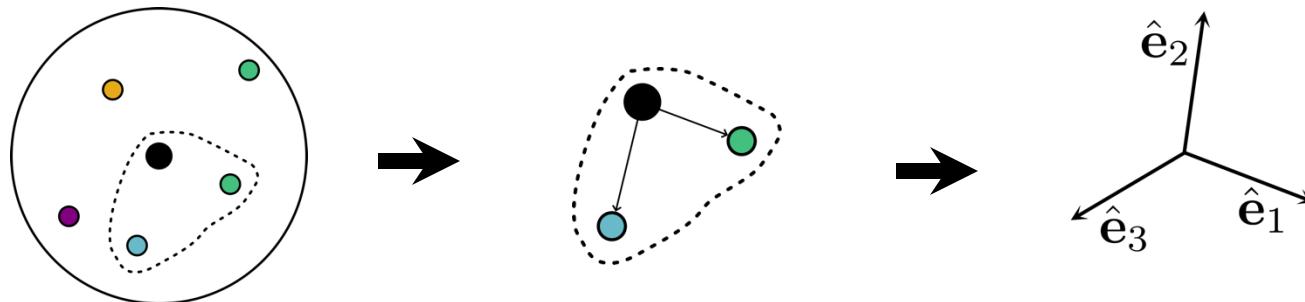
$$E = \sum_i E_i \text{ (atomic environment of atom } i\text{)}$$



Equivariant Coordinate System Ensemble

Challenges with local coordinate system

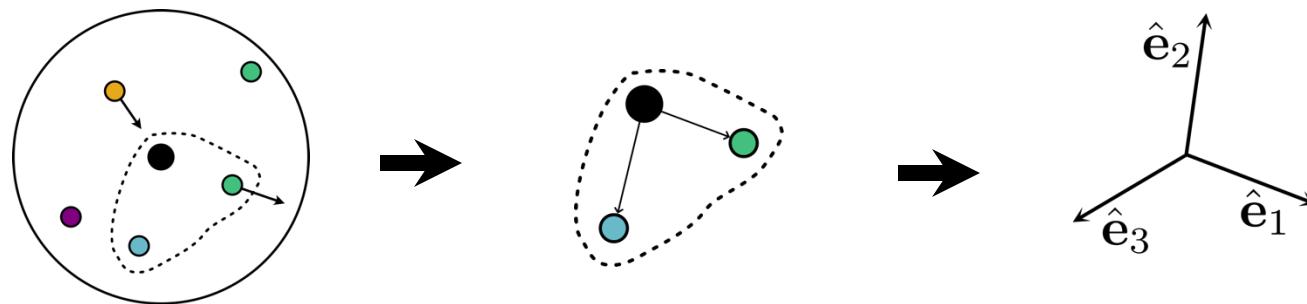
Use just a pair of closest neighbors?



Equivariant Coordinate System Ensemble

Local coordinate system

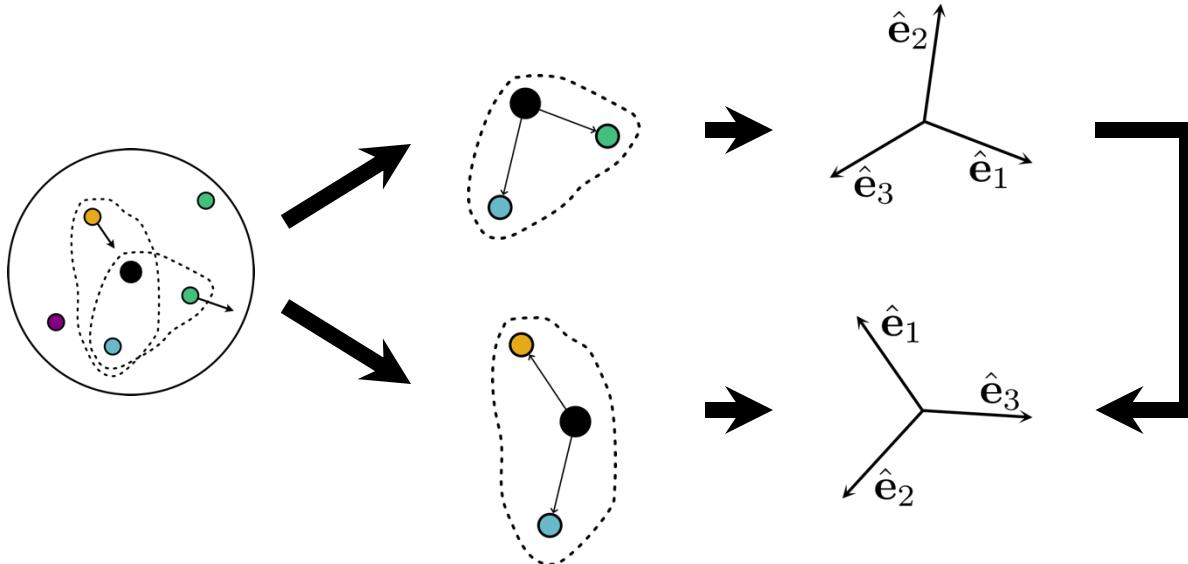
Use just a pair of closest neighbors?



But what if atoms move a bit?

Equivariant Coordinate System Ensemble

Local coordinate system

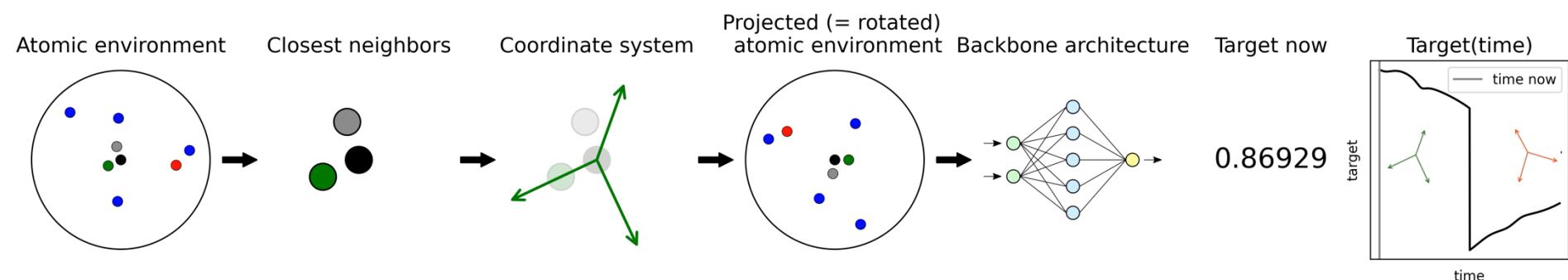


Discontinuous jump
of a coordinate system.

Gap in predictions!

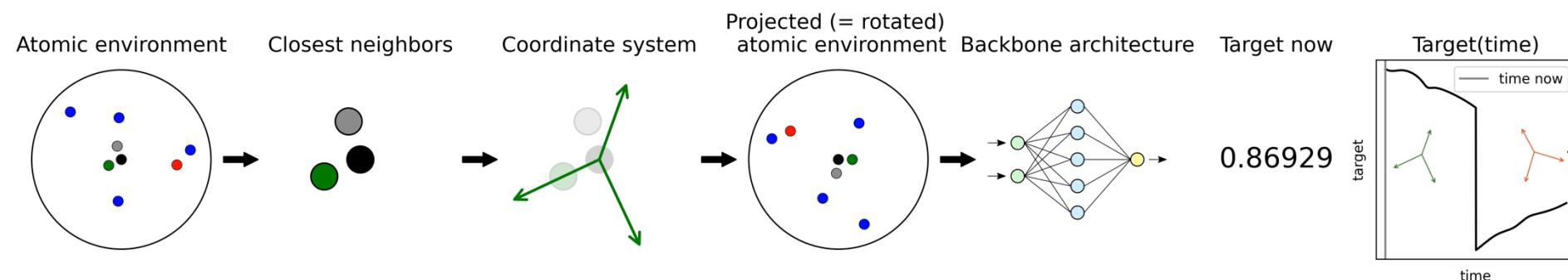
Equivariant Coordinate System Ensemble

Local coordinate system

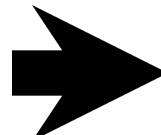


Equivariant Coordinate System Ensemble

Local coordinate system



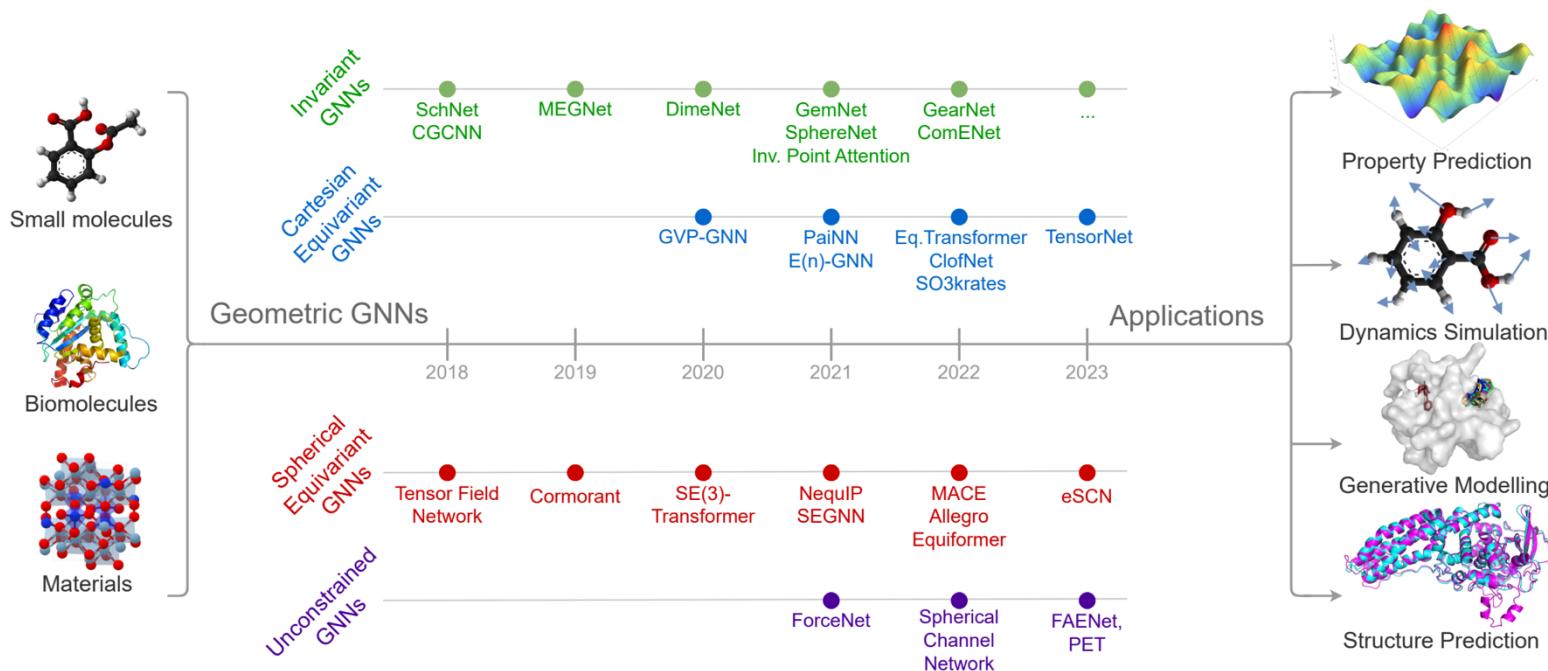
Rotational invariance Smoothness



Rotational invariance Smoothness

There are methods for adaptive local environment cutoffs to overcome that issue (but it's always a trade-off between computational cost and smoothness).

“Unconstrained models” are on the rise.



▪ <https://arxiv.org/abs/2312.07511>

Key idea

Invariant GNNs leverage 3D geometric information by pre-computing informative scalar quantities between atoms, such as pairwise distances, triplet-wise angles, and quadruplet-wise torsion angles, and using learned latent representations of these quantities during message passing. Since these input scalar quantities are invariant to Euclidean transformations, the intermediate representations and predictions of these models are guaranteed to be invariant.

5.1 Equivariant GNNs with Cartesian tensors

Key idea

Cartesian EGNNs model atomic interactions in Cartesian coordinates and restrict the set of possible operations on geometric features to preserve equivariance. They often update (and combine) both scalar and vector messages in parallel.

5.3 Equivariant GNNs with spherical tensors – Irreducible representations

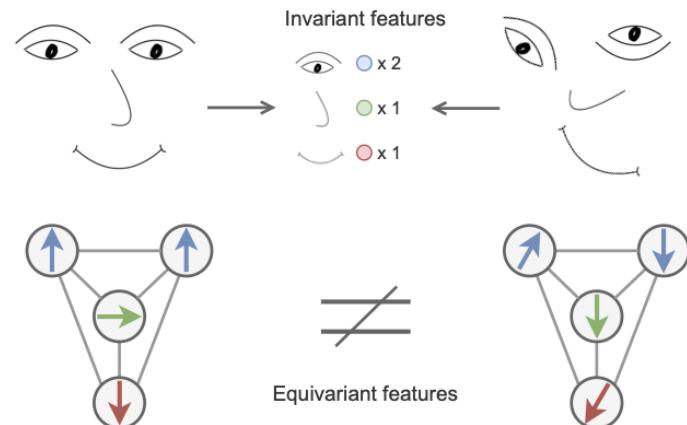
Key idea

Spherical EGNNs not only restrict the set of learnable functions to equivariant ones, they also use *spherical* tensor components, which correspond to the irreducible representations of $SO(3)$, as their feature types. This choice comes naturally because of the intimate relationship of spherical tensors with the rotation group $SO(3)$, which gives spherical tensors many convenient properties.

6 Unconstrained Geometric GNNs

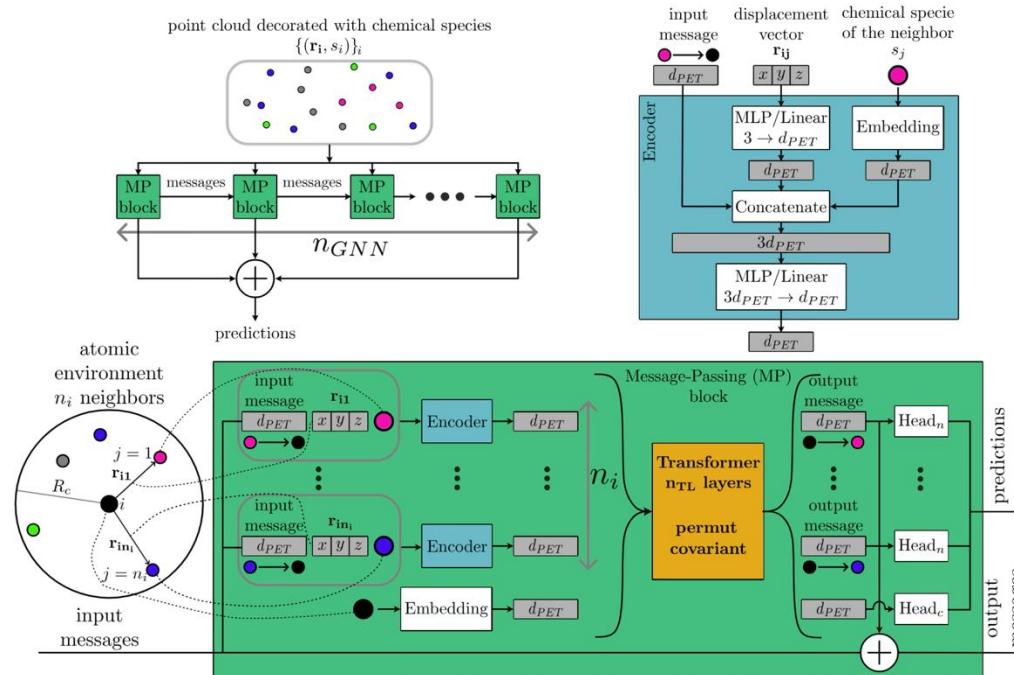
Key idea

Unlike other methods, architecturally unconstrained GNNs do not ‘bake’ symmetries into their architecture, leading to greater flexibility in model design and more diverse optimization paths. Instead, they let the model learn approximate symmetries, encourage approximate symmetries through loss terms or data augmentation, or enforce symmetries through alternate strategies such as (global or local) canonization.



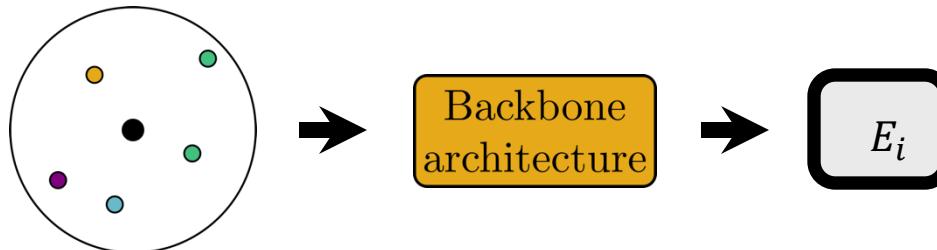
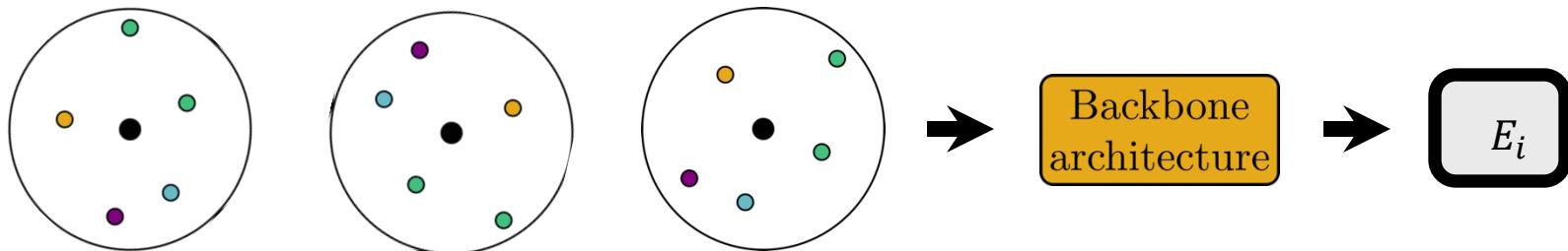
One unconstrained model from EPFL → PETT

Point Edge Transformer



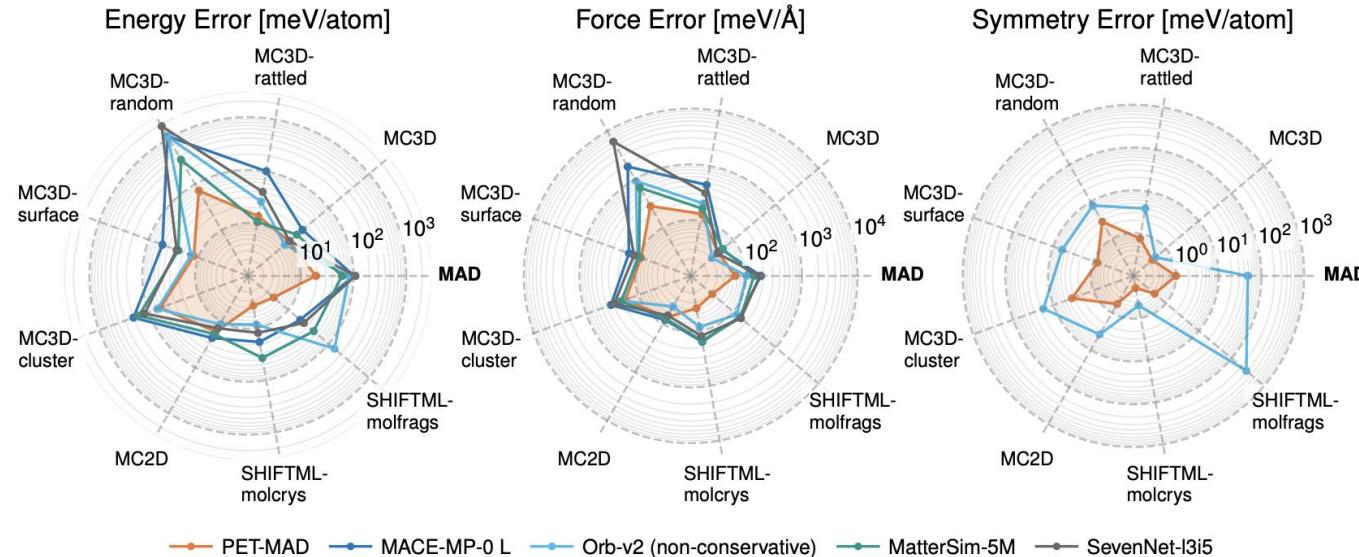
- <https://github.com/spozdn/pet>

How do unconstrained models work?



On the fly data augmentation.

Most recent iteration PET-MAD



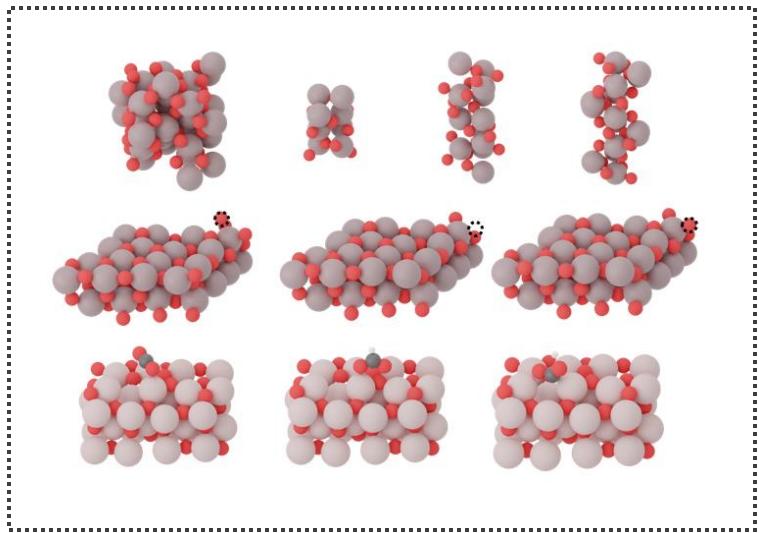
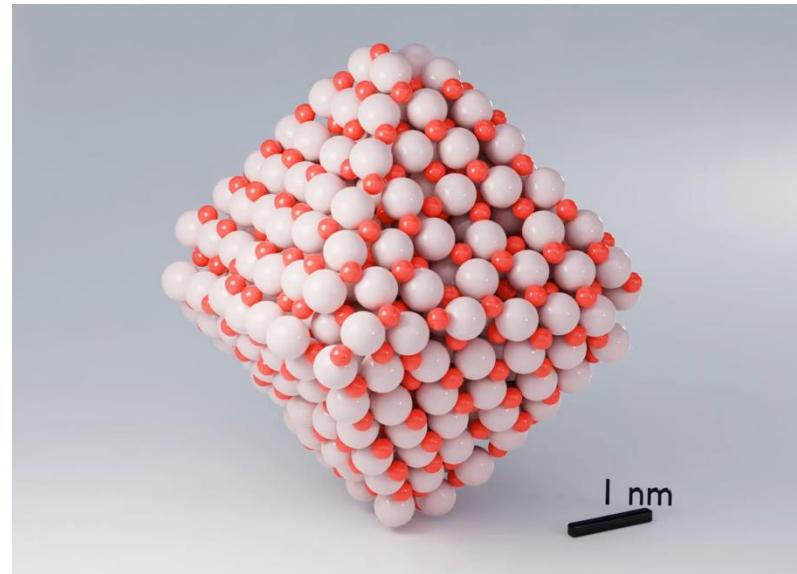
[Submitted on 18 Mar 2025]

PET-MAD, a universal interatomic potential for advanced materials modeling

Arslan Mazitov, Filippo Bigi, Matthias Kellner, Paolo Pegolo, Davide Tisi, Guillaume Fraux, Sergey Pozdnyakov, Philip Loche, Michele Ceriotti

■ <https://arxiv.org/pdf/2503.14118>

Machine Learning at Atomic Scale: Interatomic Potentials



- ML model is 10^3 - 10^6 x faster than reference QM
- Improving at each iteration and converges \sim 5-10 iterations
- ML training takes \sim 10-24 hours

In_2O_3 particle SOAP-GAP FF

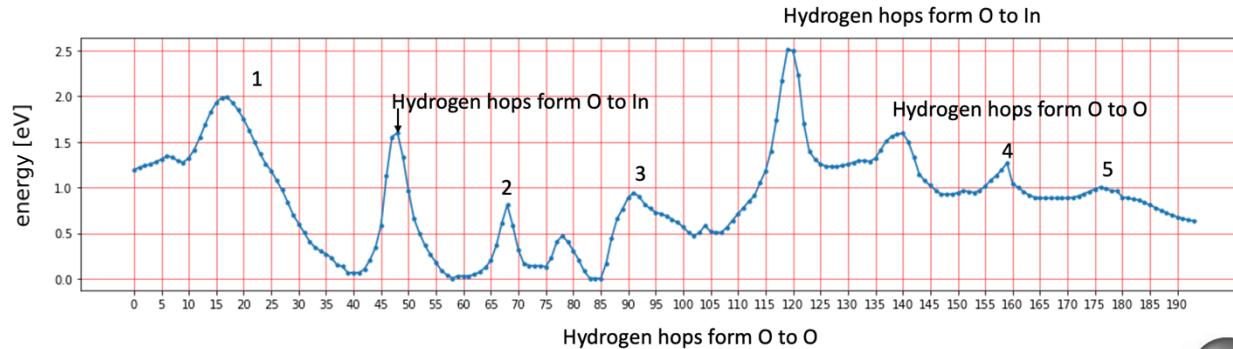
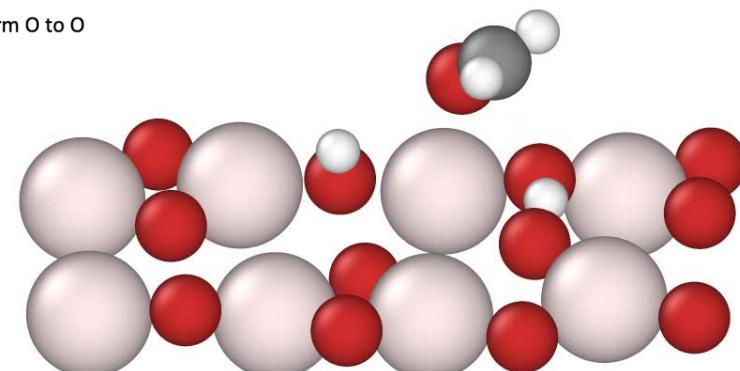
1 NEB = 1 Path

- Place ALL reactants on the surface, run a single NEB along the full reaction path:

- Number of potential calls:

- $200 \text{ images} \times 500 \text{ steps} = 200 \text{ nodes} \times 24 \text{ cpu} \times 92 \text{ hours} - DFT$

- $200 \text{ images} \times 500 \text{ steps} = 24 \text{ cpu} \times 92 \text{ hours} - SOAP - GAP MLIP$



LLM Agents in Chemistry

User query

Answer

Generated
word by word.

Ability to take actions

1. Reflect

loop

3. Observe

2. Act

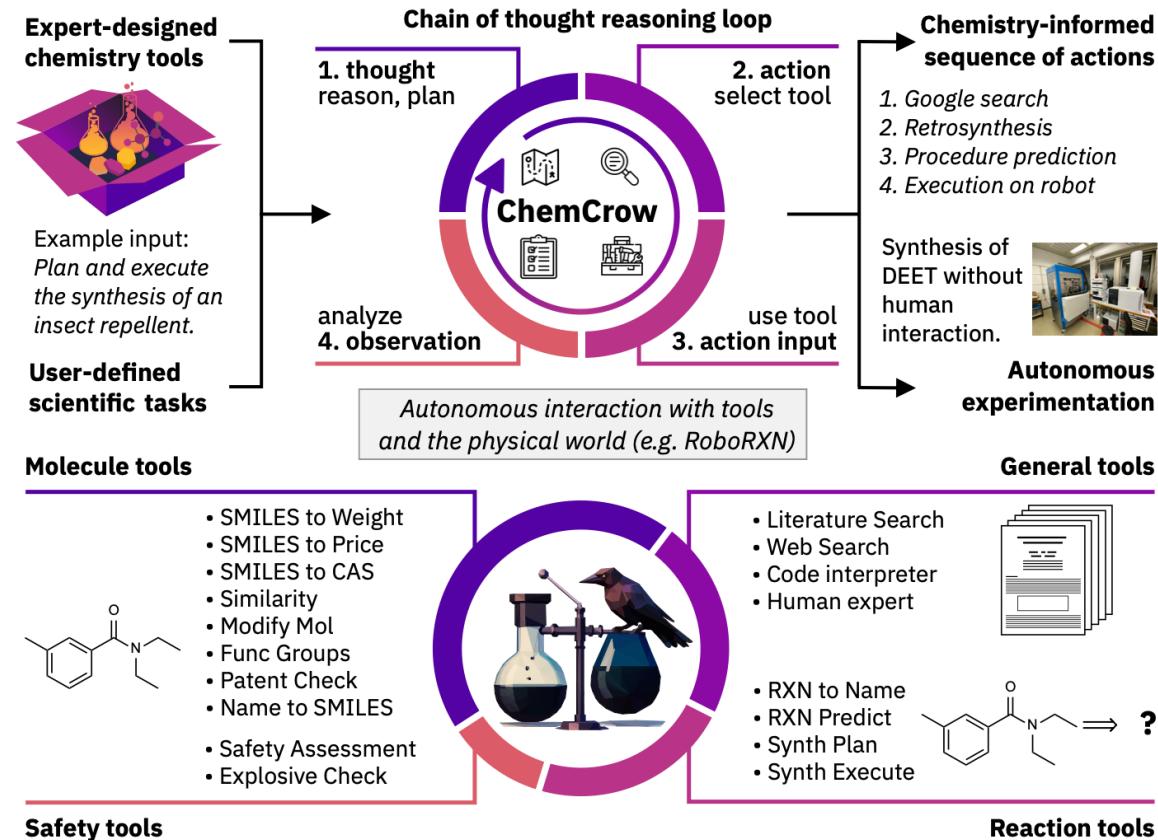
- Reduce hallucination
- Better tools, better task solving

ReAct: Synergizing Reasoning and Acting in Language Models
Yao et al., ICLR 2023

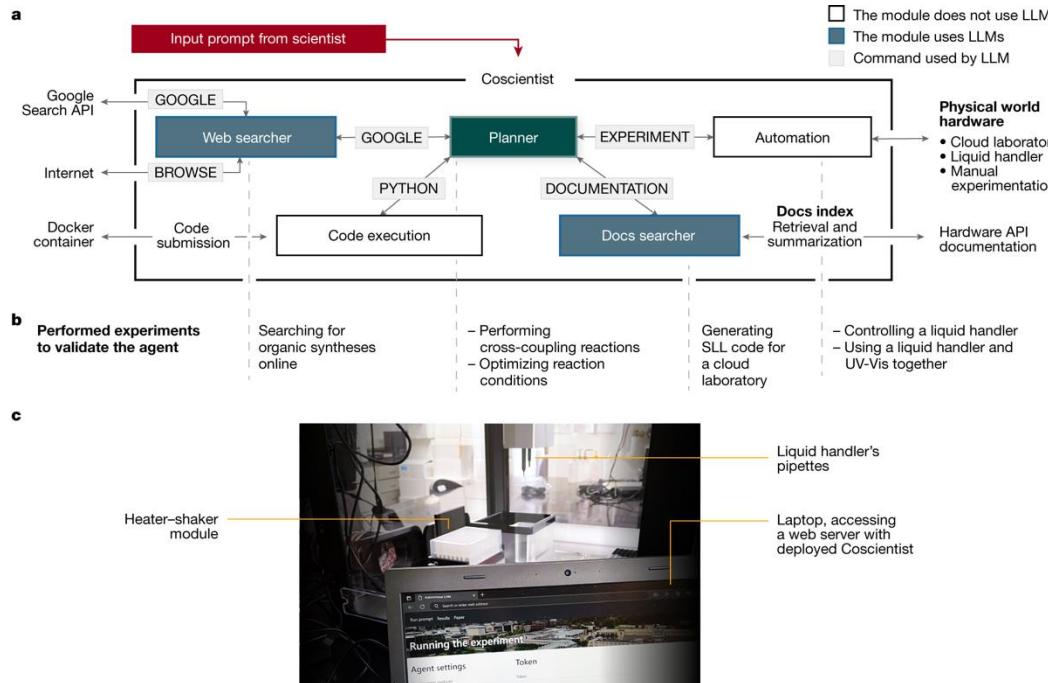
External tools

- Database query
- Web search
- Chemistry tools
- ...

ChemCrow – Augmenting LLMs with Chemistry Tools



Co-Scientist (CMU) Autonomous chemical research with large language models



Problem (Hydrogen Atom Energy Levels)

An electron in a hydrogen atom transitions from an excited state with the principal quantum number $n = 4$ to the ground state ($n = 1$).

Calculate: a) The energy of the emitted photon in joules (J), b) The wavelength of the emitted photon in nanometers (nm), c) The frequency of the emitted photon in terahertz (THz).

GPT-4's Output with CoT Prompting

Execution

Step 1: We'll use the Rydberg formula to calculate the energy levels:

$$E_n = -R_H * (1/n^2), \text{ where } R_H = 2.18 \times 10^{-18} \text{ J}$$

Step 2: Calculate the energy difference:

$$\begin{aligned} \Delta E &= E_1 - E_4 \\ &= -R_H * (1/1^2 - 1/4^2) \\ &= -2.18 \times 10^{-18} * (1 - 1/16) \\ &= -2.18 \times 10^{-18} * (15/16) \\ &= -2.044 \times 10^{-18} \text{ J} \end{aligned}$$

Step 3: Calculate wavelength using $E = hc/\lambda$:

$$\begin{aligned} \lambda &= hc / \Delta E \\ &= (6.63 \times 10^{-34} \text{ J} \cdot \text{s}) * (3.00 \times 10^8 \text{ m/s}) / (2.044 \times 10^{-18} \text{ J}) \\ &= 9.724 \times 10^{-8} \text{ m} = 97.24 \text{ nm} \end{aligned}$$

Step 4: Calculate frequency using $f = c/\lambda$:

$$\begin{aligned} f &= c / \lambda \\ &= (3.00 \times 10^8 \text{ m/s}) / (9.724 \times 10^{-8} \text{ m}) \\ &= 3.085 \times 10^{15} \text{ Hz} = 3085 \text{ THz} \end{aligned}$$

Error discovered: The energy difference should be positive as energy is released during the transition.

Final Answer: $-2.044 \times 10^{-18} \text{ J}$, 97.24 nm , 3085 THz

StructChem's Output

Formulae Generation

[Formula 1] Rydberg formula: $E_n = -R_H * (1/n^2)$
 [Formula 2] Energy of a photon: $E = hc/\lambda$
 [Formula 3] Frequency: $f = c/\lambda$

Step-by-step Reasoning

Step 1: Retrieve constants

$R_H = 2.198722 \times 10^{-19} \text{ J}$ (Rydberg constant for hydrogen)
 $h = 6.62607015 \times 10^{-34} \text{ J} \cdot \text{s}$ (Planck's constant)
 $c = 2.99792458 \times 10^8 \text{ m/s}$ (Speed of light)

Step 2: Calculate ΔE using the Rydberg formula

$$\begin{aligned} \Delta E &= |E_1 - E_4| = R_H * |1 - 1/16| = R_H * (15/16) \\ \Delta E &= 2.179872 \times 10^{-19} * (15/16) = 2.0436 \times 10^{-19} \text{ J} \end{aligned}$$

Step 3: Calculate λ using $\lambda = hc/\Delta E$

$$\begin{aligned} \lambda &= (6.62607015 \times 10^{-34} * 2.99792458 \times 10^8) / (2.0436 \times 10^{-19}) \\ \lambda &= 9.7241 \times 10^{-7} \text{ m} = 97.241 \text{ nm} \end{aligned}$$

Step 4: Calculate f using $f = c/\lambda$

$$\begin{aligned} f &= (2.99792458 \times 10^8) / (9.7241 \times 10^{-7}) \\ f &= 3.0831 \times 10^{14} \text{ Hz} = 308.31 \text{ THz} \end{aligned}$$

Confidence-based Review-and-Refinement

Review 1: All calculations appear correct based on given constants.
 Review 2: Results seem consistent with each other.

Final Answer: $2.0436 \times 10^{-18} \text{ J}$, 97.241 nm , 308.31 THz

ChemAgent's Output

Task Decomposition

1. Calculate energy difference
2. Calculate wavelength
3. Calculate frequency

Memory Retrieval

- Rydberg formula: $E_n = -R_H * (1/n^2)$
 - Planck's constant: $h = 6.62607015 \times 10^{-34} \text{ J} \cdot \text{s}$
 - Speed of light: $c = 2.99792458 \times 10^8 \text{ m/s}$
 - Rydberg constant: $R_H = 2.179872 \times 10^{-19} \text{ J}$

Execution

Step 1: Calculate ΔE using the Rydberg formula

$$\begin{aligned} \Delta E &= |E_1 - E_4| \\ &= (|R_H * 1/1^2| - (|R_H * 1/4^2|) \\ &= |R_H * |1 - 1/16| \\ &= |R_H * (15/16)| \\ &= 2.179872 \times 10^{-19} * (15/16) \\ &= 2.0436 \times 10^{-18} \text{ J} \end{aligned}$$

Step 2: Calculate λ using $\lambda = h \cdot c / \Delta E$

$$\begin{aligned} \lambda &= (6.62607015 \times 10^{-34} * 2.99792458 \times 10^8) / (2.0436 \times 10^{-18}) \\ &= 9.7241 \times 10^{-8} \text{ m} = 97.241 \text{ nm} \end{aligned}$$

$$\begin{aligned} f &= (2.99792458 \times 10^8) / (9.7241 \times 10^{-8}) \\ f &= 3.0831 \times 10^{15} \text{ Hz} = 3083.1 \text{ THz} \end{aligned}$$

Final Answer: $2.0436 \times 10^{-18} \text{ J}$, 97.24 nm , 3083 THz

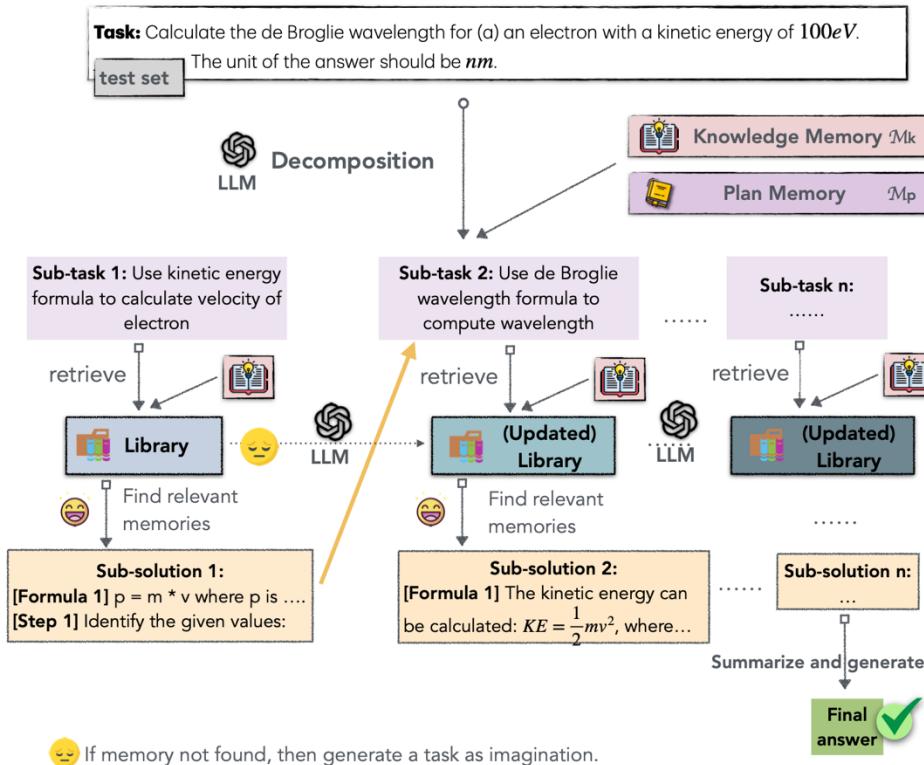
 CHEMAGENT: SELF-UPDATING LIBRARY IN LARGE LANGUAGE MODELS IMPROVES CHEMICAL REASONING

Xiangru Tang^{1,*}, Tianyu Hu^{1,*}, Muyang Ye^{1,*}, Yanjun Shao^{1,*}, Xunjian Yin¹,
 Siru Ouyang², Wangchunshu Zhou³, Pan Lu³, Zhusongsheng Zhang⁴, Yilun Zhao¹,
 Arman Cohan¹, Mark Gerstein¹

¹Yale University ²UIUC ³Stanford University ⁴Shanghai Jiao Tong University

xiangru.tang@yale.edu

(a) Library-enhanced Reasoning



(b) Library Construction

Task: Given that the work function for sodium metal is $2.28eV$, what is the threshold frequency v_0 for sodium?

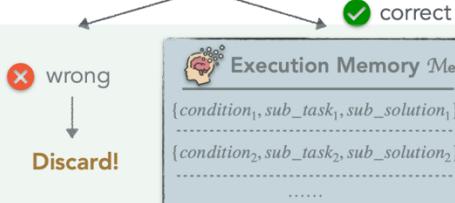
Solution: First, we need to convert the work function ϕ from electron volts (eV) to joules (J). This conversion can be done using the relation: $1eV = 1.602 \times 10^{-19}J$

dev set

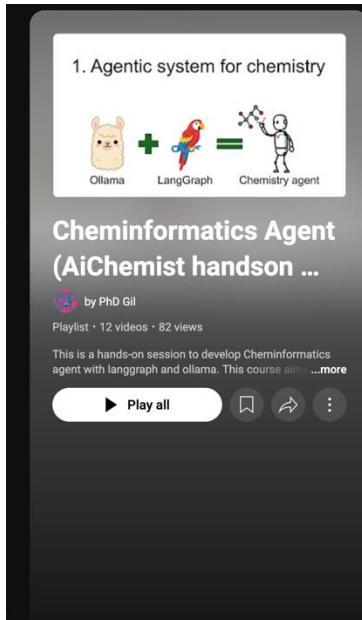
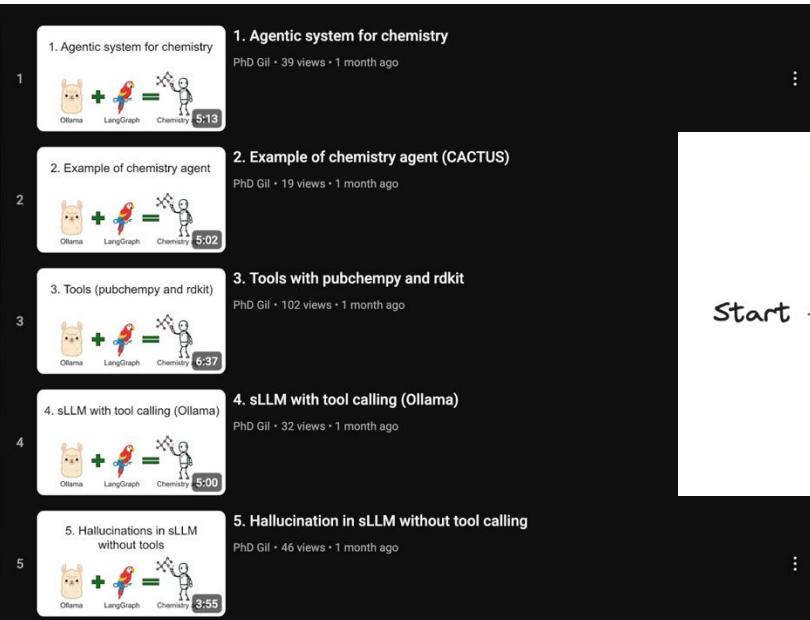
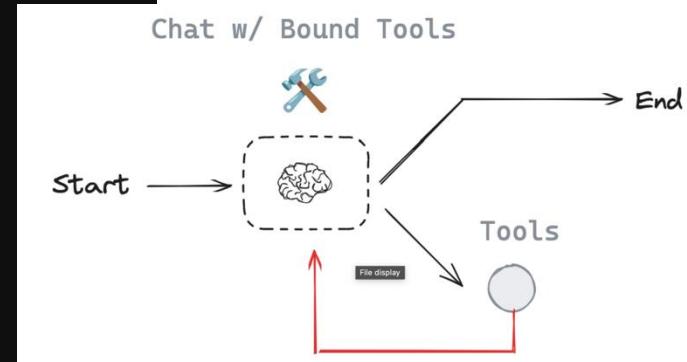
LLM **Split and verify**

Condition 1: The work function for sodium metal is $2.28eV$.
Condition 2:

Sub-task and sub-solution



How to build your first chemical LLM agent.



https://www.youtube.com/playlist?list=PL49ip_eZtzYgLSvXuA3YZRZbp1mHM0VEh

GitHub code material: https://github.com/shkdidrlf/aichemist-cheminformatics-agent/tree/main/example_codes

- https://github.com/shkdidrlf/aichemist-cheminformatics-agent/tree/main/example_codes

```
def get_smi(compound_name: str) -> str:  
    """  
    Get smiles code of the compound. Search it using pubchempy library by the name of the compound.  
    1) Pubchempy library to search smiles code of compounds (pubchempy as pcp & pcp.get_compounds)  
    2) Return canonical smiles code downloaded at step 1.  
  
    Args:  
        compound_name: str  
    """  
    results = pcp.get_compounds(compound_name, 'name')  
    if results:  
        return results[0].canonical_smiles  
    return None  
  
    def check_lipinski_ro5(smiles: str) -> dict:  
        """  
        Check compliance with Lipinski's Rule of Five.  
  
        *Abbreviation*  
        mw: molecular weight  
        logp: octanol/water partition coefficient  
        hbd: hydrogen bonding donor  
        hba: hydrogen bonding acceptor  
  
        1) smiles code is needed to get rdkit mol, essential for computation of Lipinski's rule of five.  
        2) calculate mw, logp, hbd, hba using rdkit library.  
        3) check conditions (mw<=500, logp<=5, hbd<=5, hbd<=10).  
        4) Three out of four conditions should be satisfied to comply with the Lipinski's rule of five.  
        5) Return the dictionary in which each condition to check compliance with Lipinski's rule of five.  
  
        Args:  
            smiles: str  
        """  
        mol = Chem.MolFromSmiles(smiles)  
        if not mol:  
            return None # Invalid SMILES
```

```
messages = [HumanMessage(content="Check compliance of Lipinski's rule of five.")]
messages = react_graph_memory.invoke({"messages": messages}, config)
for m in messages['messages']:
    m.pretty_print()
```

```
===== Human Message =====
```

```
Get smiles code of Tylenol.
```

```
===== Ai Message =====
```

```
Tool Calls:
```

```
    get_smi (84a738f4-3b86-410e-aa7b-bf425cd70dd5)
```

```
Call ID: 84a738f4-3b86-410e-aa7b-bf425cd70dd5
```

```
Args:
```

```
    compound_name: Tylenol
```

```
===== Tool Message =====
```

```
Name: get_smi
```

```
CC(=O)NC1=CC=C(C=C1)O
```

```
===== Ai Message =====
```

```
The smiles code of Tylenol is CC(=O)NC1=CC=C(C=C1)O.
```

```
===== Human Message =====
```

```
Check compliance of Lipinski's rule of five.
```

```
===== Ai Message =====
```

```
Tool Calls:
```

```
    check_lipinski_ro5 (8acf0224-c920-460a-bc9a-377b9ed4038a)
```

```
Call ID: 8acf0224-c920-460a-bc9a-377b9ed4038a
```

```
Args:
```

```
    smiles: CC(=O)NC1=CC=C(C=C1)O
```

```
===== Tool Message =====
```

```
Name: check_lipinski_ro5
```

```
{"MW": 151.06, "LogP": 1.35, "HBD": 2, "HBA": 2, "R05_Compliant": true}
```

```
===== Ai Message =====
```

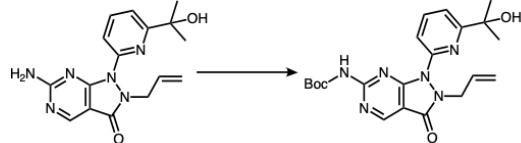
```
The Lipinski's rule of five for Tylenol has the following values:
```

- MW: 151.06
- LogP: 1.35
- HBD: 2
- HBA: 2
- R05_Compliant: true

**And a last highlight
from my lab...**

LLMs as chemical reasoning engines

Discovery: Latest LLMs reason about chemistry
(functional groups & reactions)



<analysis>

Protection reaction,
specifically an amine to
carbamate conversion
using a Boc protection.

</analysis>

<mechanism>

- Nucleophilic attack of the primary amine on the Boc anhydride [...]
- Elimination of tert-butoxide leaving group [...]

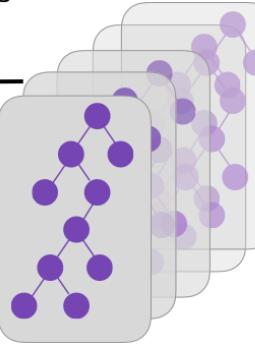
</mechanism>

c LLM as chemical reasoning engines

Expert query

- Reactions
- Disconnections
- Strategic patterns
- Starting materials
- Desired conditions

Traditional
search
algorithm



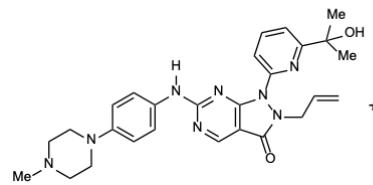
Chemical
reasoning LLM

LLM score: x/10

LLM-guided strategic solutions

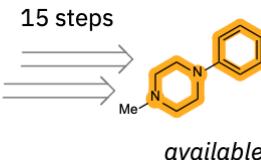
The proposed synthetic route shows excellent alignment with the query requirements for several reasons: [...] <score>9</score>

Top-ranked synthetic route

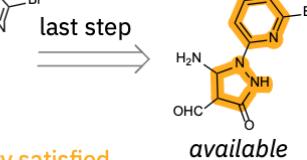


Expert query:
Break pyrimidine in the
early stage but get all
other rings from
commercially available
materials.

15 steps



Query satisfied



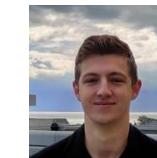
LLM score: 9/10

- Natural language
- Full route analysis
- Route selection

Chemical reasoning in LLMs unlocks steerable synthesis
planning and reaction mechanism elucidation

AM Bran, TA Neukomm, DP Armstrong, Z Jončev, P Schwaller

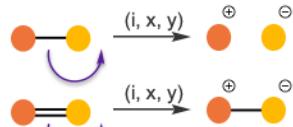
▪ arXiv preprint arXiv:2503.08537 (in review, Nature)



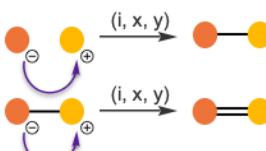
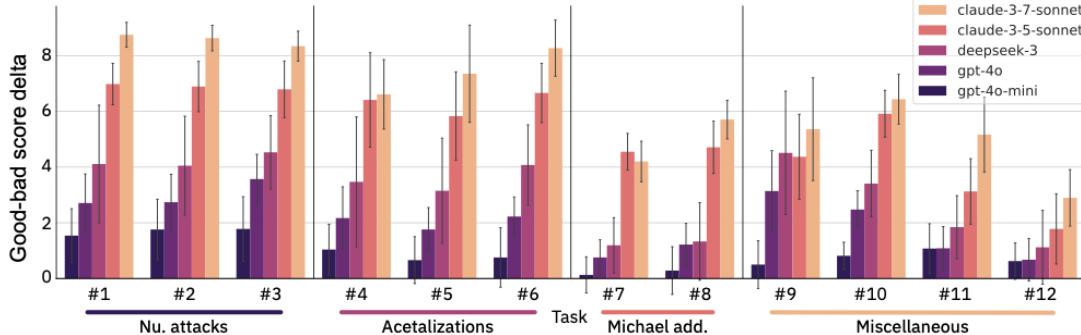
Reaction mechanism elucidation

Actions: elementary steps

• Ionization moves



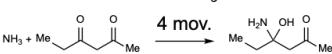
• Attack moves



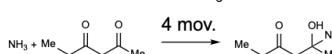
Task #1:
Nu attack of NH_3 on cyclohexanone:



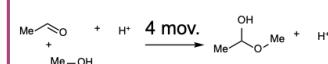
Task #2:
Selective Nu attack of NH_3 on dione:



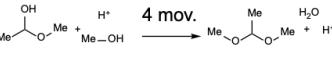
Task #3:
Selective Nu attack of NH_3 on dione:



Task #4:
Hemiacetal formation:

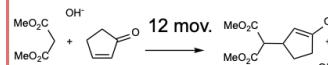


Task #5:
Hemiacetal to Acetal:



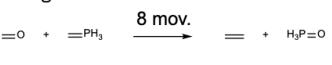
Task #6:
Intramolecular acetal formation:

Task #7:
Enolate Formation + Michael Additon:

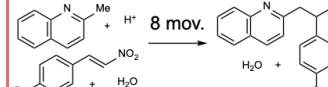


Task #9:
Borohydride reduction of ketone:

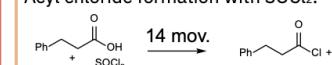
Task #11:
Wittig Reaction:



Task #8:
Tautomerisation + Michael Addition:



Task #10:
Acyl chloride formation with SOCl_2 :



Task #12:
Transformation of molozonide to ozonide:

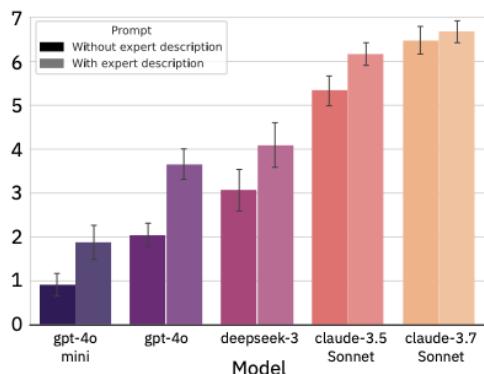


— Nucleophilic additions

— Acetalizations

— Michael additions

— Miscellaneous reactions



Expert reaction description in prompt helps weaker models.

**LLMs enable chemists
to talk to machine learning tools
in their language.**

Updated deadline: Sunday, June 1st (end of day, CET) following a request by one of your fellow students.