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Template-based approaches (atom-mapping dependent)

Template Product ranking (after

classification template application)

0 \\5\( Pd(0AC)2/BINAP, - template 772 - product 772

\’ >f toisens, C22C03 - template 123 - product 521

- template 921 - product 921 Obtain

fingerprint new results

Graph edit-based approach (atom-mapping dependent)

.
"
o " ‘E\’ PA(OACI2/BINAP, -@ oo .
- >f T ) ~Y é Ii; Until convergence

bond change prediction (Re)/Train the Select the

surrogate model next experiment
Sequence-based approach (atom-mapping independent)

“s’ Pd(0AC)2/BINAP, '
Encoder-decoder model
= 0)[0-].CC(=0)[0-].CC1=CCC(C)(C)c2cc(0S(=0)(=0)C(F)
(F)F)c(C)chl cCoC(=0)clcec(Njecl Celeceeel.0=C((0-) ~— > CCOC(=0)clccc(Nc2cc3c(cc2C)
[0-].[Cs+].[Cs+].[Pd+2].c1cec(P(c2eccec2)c2eec3eccec3c2- c(c) ='C cc3(c)c) C‘C_l /‘\
c2¢(P(c3ccece3)e3cccce3)ecc3ccecc23)ecl atom-wise product prediction

Optimise the acquisition function



=FFL Last lecture

= Introduction to machine learning interatomic potentials
= LM agents for chemical research
= Time for projects
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Density functional theory
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Atomistic machine leaming

N
© ® ©
©
® @
® Target Property
©
© @
{(ri, s}
r; = (X, 2;) An atomistic system is a 3D point cloud.

S € {H,C,O,N,...}



3D point clouds

Point cloud representation

Autonomous driving
of the surrounding world

Semantic3D
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General-purpose point cloud models

® Multiview CNNs

Pointview-gcn, Rotationnet, MV3D, ...

® Voxel-based models
0-cnn, Octnet, Kd-network, ...

® Point convolution NNs

Kpconv, PCNN, SpiderCNN, ...

® Point-based models

PointNet++, PointMLP, PACony, ...
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General-purpose point cloud models

® Multiview CNNs

Pointview-gen, Rotationnet, MV3D, ...

® Voxel-based models

0-cnn, Octnet, Kd-network, ...

® Point convolution NNs

Kpconv, PCNN, SpiderCNN, ...

® Point-based models

PointNet++, PointMLP, PACony, ...

Pointnet: Deep learning on point sets for 3d classification and segmentation
CR Qi, H Su, K Mo, LJ Guibas - Proceedings of the IEEE ..., 2017 - openaccess.thecvf.com
... Our network, named PointNet, provides a unified architecture for applications ranging from

object classificatio ion, to scene semantic parsing. Though simple, PointNet ...

Y¢ Save YU Cite MCited by 13220 Related articles All 20 versions &%

Pointnet++: Deep hierarchical feature learning on point sets in a metric space
CR Qi, LYi, H Su, LJ Guibas - Advances in neural ..., 2017 - proceedings.neurips.cc

... Finally, we propose our PointNet++ that is able to robustly learn ... PointNet++, a powerful
neural network archita gstamamacessing point sets sampled in a metric space. PointNet++ ...

Y¢ Save 99 Citel Cited by 9220

elated articles All 22 versions $9

The world of general-purpose point cloud models is (much) larger than ours.
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General-purpose point cloud models

® Multiview CNNs

Pointview-gen, Rotationnet, MV3D, ...

® Voxel-based models

0-cnn, Octnet, Kd-network, ...
® Point convolution NNs
Kpconv, PCNN, SpiderCNN, ...

® Point-based models

PointNet++, PointMLP, PAConv, ...

Pointnet: Deep learning on point sets for 3d classification and segmentation
CR Qi, H Su, K Mo, LJ Guibas - Proceedings of the IEEE ..., 2017 - openaccess.thecvf.com
... Our network, named PointNet, provides a unified architecture for applications ranging from

object classificatio ion, to scene semantic parsing. Though simple, PointNet ...
Y¢ Save YU Cite MCited by 13220 Related articles All 20 versions &%

Pointnet++: Deep hierarchical feature learning on point sets in a metric space
CR Qi, LYi, H Su, LJ Guibas - Advances in neural ..., 2017 - proceedings.neurips.cc

... Finally, we propose our PointNet++ that is able to robustly learn ... PointNet++, a powerful

neural network archita amasacsessing point sets sampled in a metric space. PointNet++ ...

Y¢ Save 99 Citel Cited by 9220

elated articles All 22 versions $9

The world of general-purpose point cloud models is (much) larger than ours.

Why don’t we use these developments and benefit from them?



Machine learning potentials

{(ri,s1)}i
r = (X, Yi,Zi)

S € {H,C,O,N,...}

E
Potential Energy



Machine learning potentials
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{(ri,s1)}i
r = (X, Yi,Zi)

S € {H,C,O,N,...}



Machine learning potentials
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{(ri,s1)}i
r = (X, Yi,Zi)

S € {H,C,O,N,...}

E
Potential Energy

Molecular dynamics simulations



Machine learning potentials
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S € {H,C,O,N,...}

E
Potential Energy

Molecular dynamics simulations



.- Symmetry requirements

To avoid artifacts in a simulation, it is highly desirable for a model

to fulfill the following symmetry constraints:

Permmutational invariance Rotational invariance

Translational invariance Smoothness

Most people in the field believe that:

Invariant model is preferable Not invariant model

with moderate accuracy over with excellent accuracy




EPFLIEquivariant Coordinate System Ensemble

Outline

A-posteriori symmetrization of any backbone architecture.

Permmutational invariance Rotational invariance
Translational invariance Smoothness

Permmutational invariance Rotational invariance
Translational Invarlance Smoothness




EPFLEquivariant Coordinate System Ensemble

Local coordinate system

E = Y E;(atomic environment of aton)

Backbone
architecture] »
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Local coordinate system

E = Y E;(atomic environment of aton)

Backbone
architecture] »

Backbone
architecture] »




EPFLIEquivariant Coordinate System Ensemble

Local coordinate system

E = Y E;(atomic environment of aton)

Backbone
architecture] »

Backbone
architecture] »




" Equivariant Coordinate System Ensemble

Challenges with local coordinate system

Use just a pair of closest neighbors?

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum
mMechanics. Phys. Rev. Lett., 120(14):143001, April 2018.



" Equivariant Coordinate System Ensemble

Local coordinate system

Use just a pair of closest neighbors?

But what if atoms move a bit?

Linfeng Zhang, Jiequn Han, Han Wang, Roberto Car, and Weinan E. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum
mMechanics. Phys. Rev. Lett., 120(14):143001, April 2018.



" Equivariant Coordinate System Ensemble

Local coordinate system

/eZL
> Z e Discontinuous jump
3
of a coordinate system.
€
> >Ji Gap in predictions!
€2
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Equivariant Coordinate System Ensemble

Local coordinate system

Projected (= rotated)
Atomic environment

atomic environment Backbone architecture Target now Target(time)

Closest neighbors Coordinate system

—— time now

target

time



FPFLEquivariant Coordinate System Ensemble

Local coordinate system

Projected (= rotated)
Atomic environment

atomic environment Backbone architecture Target now

Rotational invariance Smoothness }

Closest neighbors Coordinate system

Target(time)

—— time now

target

time

Rotational invariance Smoothness

There are methods for adaptive local environment cutoffs to overcome that issue
(but it's always a trade-off between computational cost and smoothness)
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Small molecules

Biomolecules

Materials

“Unconstrained models” are on the rise.

Property Prediction

3%

) Dynamics Slmulatlon

-

&
&
R @ @ @ L o L
& O\; SchNet MEGNet DimeNet GemNet GearNet
CGCNN SphereNet ComENet
o Inv. Point Attention
S
& P ) ° ° ®
&S GVP-GNN PaiNN  Eq.Transformer TensorNet
<« 0O E(n)-GNN ClofNet
SO3krates
Geometric GNNs 1 | 1 1 Applications
| | | | I |
2018 2019 2020 2021 2022 2023
N
>
O A
& &
eR -\-\'DY\@ ® °® ® ( o
Qfo\?o\\ Tensor Field  Cormorant SE(3)- NequlP MACE eSCN
Network Transformer SEGNN Allegro
Equiformer
&
P
&S ForceNet Spherical FAENEet,
N @ Channel PET
Network

» https://arxiv.org/abs/2312.07511

e
g

Generatwe Modellmg

Structure Prediction


https://arxiv.org/abs/2312.07511
https://arxiv.org/abs/2312.07511

E P F L 4 Invariant Geometric GNNs

Invariant GNNs leverage 3D geometric information by pre-computing informative scalar
quantities between atoms, such as pairwise distances, triplet-wise angles, and quadruplet-wise
torsion angles, and using learned latent representations of these quantities during message
passing. Since these input scalar quantities are invariant to Euclidean transformations, the
intermediate representations and predictions of these models are guaranteed to be invariant.

5.1 Equivariant GNNs with Cartesian tensors

Invariant features
N
Cartesian EGNNs model atomic interactions in Cartesian coordinates and restrict the set of e
possible operations on geometric features to preserve equivariance. They often update (and 5 —_— ' x1 & -
combine) both scalar and vector messages in parallel. ~
S .~ Ox1 \-A
5.3 Equivariant GNNs with spherical tensors — Irreducible representations
Spherical EGNNSs not only restrict the set of learnable functions to equivariant ones, they
also use spherical tensor components, which correspond to the irreducible representations
of SO(3), as their feature types. This choice comes naturally because of the intimate
relationship of spherical tensors with the rotation group SO(3), which gives spherical tensors o
many convenient properties. Equivariant features

6 Unconstrained Geometric GNNs

Unlike other methods, architecturally unconstrained GNNs do not ‘bake’ symmetries into
their architecture, leading to greater flexibility in model design and more diverse optimization
paths. Instead, they let the model learn approximate symmetries, encourage approximate
symmetries through loss terms or data augmentation, or enforce symmetries through alternate
strategies such as (global or local) canonization.




=PFL  One unconstrained model from EPFL = PET
Point Edge Transformer

point cloud decorated with chemical species

{(l‘iy 3:’)}:’

input  displacement chemical specie
Z vector of the neighbor

messages messages

Concatenate:

MLP/Linear
3dppr — dppr

X predictions
atomic

environment
n; neighbors

predictions

Embedding dp

7]
)
]
1]
€n
o
g

messages



https://github.com/spozdn/pet

=PrL

How do unconstrained models work?

Backbone
architecture

- @

Backbone
architecture

On the fly data augmentation.

> (=

30
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Energy Error [meV/atom]

MC3D-
MC3D- rattled
random
MC3D
MC3D- MC3D-
surface surface
3
102 10
MAD
MC3D- MC3D-
cluster cluster
SHIFTML-
molfrags
MC2D
& SHIFTML-
molcrys

—— PET-MAD —=— MACE-MP-0L —=— Orb-v2 (non-conservative)

= https://arxiv.org/pdf/2503.14118

Most recent iteration PET-MAD

Force Error [meV/A]

MC3D-
MC3D- rattled
random
MC3D
MC3D-
104 surface
TR \110°
MAD
MC3D-
cluster
SHIFTML-
molfrags
MC2D
G SHIFTML-
molcrys

[Submitted on 18 Mar 2025]
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Symmetry Error [meV/atom]

MC3D-
MC3D- rattled
random
MC3D
0 101 102 10
AD
\‘/ \
SHIFTML-
molfrags
MC2D
s SHIFTML-
molcrys

—e— MatterSim-5M —— SevenNet-I3i5

PET-MAD, a universal interatomic potential for
advanced materials modeling

Arslan Mazitov, Filippo Bigi, Matthias Kellner, Paolo Pegolo, Davide Tisi,
Guillaume Fraux, Sergey Pozdnyakov, Philip Loche, Michele Ceriotti


https://arxiv.org/pdf/2503.14118
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Machine Leaming at Atomic Scale:
Interatomic Potentials

ML model is 103-10%x faster than reference QM
Improving at each iteration and converges ~ 5-10 iterations In,O5 particle SOAP-GAP FF
ML training takes ~10-24 hours

Schaaf L., Eako E., et al., npj Computational Materials (2023) 9:180

Edvin Fako
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1NEB =1Path

B Place ALL reactants on the surface, run a single NEB along the full reaction path:
B Number of potential calls:

B LIAC | Sion 24.03.2025

251

201

energy [eV]

054

001

Schaaf L., Fako E., et al., npj Computational Materials (2023) 9:180

151

101

B 200 /mages * 500 steps =200 nodes * 24 cpu * 92 hours — DFT
B 200 /images * 500 steps =24 cpu * 92 hours — SOAP - GAP MLIP

Hydrogen hops form O to In

"Hydrogen hops form O to/In’|

[ Hydi‘og'en‘ho'ps formOto O

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 % 95 100 105 110 115 120 125 130 135 140 145 150 155 160 165 170 175 180 185 190

U

Hydrogen hops form O to O

w
[

Edvin Fako
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LLM Agents in Chemistry



=P*L  From LLMs to LLM agents )

Ability to take actions
1. Reflect

User query External tools
» Database query
&IB loop * Web search

* Chemistry tools
3. Observe 2. Act .

\

An swer * Reduce hallucination
Generated * Better tools, better task solving
word by word. ReAct: Synergizing Reasoning and Acting in Language Models

Yao et al., ICLR 2023
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Bran, A. et al. Augmenting large language models with chemistry tools. Nat Mach Intell 6, 525-535 (2024, >500 citations)

ChemCrow - Augmenting LLMs with Chemistry Tools *

Expert-designed ___

Chain of thought reasoning loop

Chemistry-informed

chem|str¥ tools 1. thought
s reason, plan

>
Example input:
Plan and execute
the synthesis of an

analyze

insect repellent. .
P 4, observation

—>
2. action
selecttool | 1. Google search
2. Retrosynthesis
3. Procedure prediction
© 4. Execution on robot
Crow

sequence of actions

Synthesis of
DEET without }

User-defined

scientific tasks

Autonomous interaction with tools
and the physical world (e.g. RoboRXN)

use tool _human .
3. action input interaction.
Autonomous
’ experimentation
General tools

Molecule tools

« Safety Assessment
« Explosive Check

» SMILES to Weight
» SMILES to Price =
» SMILES to CAS —
o « Similarity
» Modify Mol
\©)LN/\ « Func Groups
K « Patent Check
» Name to SMILES « RXN Predict NN—= P
N « Synth Plan L

Safety tools

« Literature Search
« Web Search

« Code interpreter
« Human expert

« RXN to Name o

« Synth Execute

Reaction tools



=PFL  Co-Scientist (CMU) Autonomous chemica
research with large language models

a [ The module does not use LLMs
Input prompt from scientist B The module uses LLMs
Command used by LLM
I Coscientist
Google
Search /gPI SOOGLE— Physical world
hardware
Web searcher GOOGLE EXPERIMENT Automatlon * Cloud laboratory
* Liquid handler
Internet <——— BROWSE * Manual X
PYTHON DOCUMENTATION experimentation
Docs index
Docker Code " Retrieval and
container <—| e e Code execution Docs searcher “— summarization | > ggg‘rﬂr’g:é%n
Performed experiments Searching for - Performing Generating - Controlling a liquid handler
to validate the agent organic syntheses cross-coupling reactions SLL code for - Using a liquid handler and
online - Optimizing reaction acloud UV-Vis together
conditions laboratory

Liquid handler’s
pipettes

Heater-shaker
module

Laptop, accessing
a web server with
deployed Coscientist
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Problem (Hydrogen Atom Energy Levels)

photon in terahertz (THz).

An electron in a hydrogen atom transitions from an excited state with the principal quantum number n = 4 to the ground state (n = 1).
Calculate: a) The energy of the emitted photon in joules (J), b) The wavelength of the emitted photon in nanometers (nm), ¢) The frequency of the emitted

_H * (1/1%°2 - 1/4°2)
-2.18 x 10°-18 * (1 - 1/16) RH = 2.198722 x 10°-19 J (Rydberg constant for hydrogen)
-2.18 x 10°-18 * (15/16) 6.62607015 x 10°-34 J-s (Planck's constant)

_2.044 x 10°-18 J © = 2.99792458 x 10°8 m/s (Speed of light)

Step 2: Calculate AE using the Rydberg formula

Step 3: Calculate wavelength using E = he/A:
BB = |E1-E4| =RH*|1-1/16] = RH * (15/16)

A = he / A AE = 2.179872 x 10°-19 * (15/16) = 2.0436 x 10°-19 J
= (6.63 x 10°-34 J-s) * (3.00 x 10”8 m/s) / (2.044
x 10*-18 J) Step 3: Calculate A using A = he/AE
=9.724 x 10°-8 m = 97.24 mm A = (6.62607015 x 10°-34 * 2.99792458 x 10°8) / (2.0436 *
10°-19
Step 4: Calculate frequency using f = o/k: A= ,_;2" X 10°-7 m = 972.41 nm
£=c /A .
Step 4: Calculate f f=en
= (3.00 x 108 m/s) / (9.724 x 10%-8 m) op & feledate tusng
= 3.085 x 10°15 Hz = 3085 THz £ = (2.99792458 x 10°8) / (9.7241 x 10°-7)
£=3.0831 x 10°14 Hz = 308.31 THz
Error discovered: The energy difference should be positive as . bacand Revi d-Refi

energy is released during the transition.
Review 1: All calculations appear correct based on given

Final Answer: -2.044 x 107-18 J, 97.24 nm, 3085 THz constants.
Review 2: Results seem consistent with each other.

Final Answer: 2.0436 x 104-19 J, 972.41 nm, 308.31 THz

GPT-4's Output with CoT Prompting ' StructChem’s Output , ChemAgent's Output ‘
Execution Formulae Generation Task Decomposition
Step 1: We'll use the Rydberg formula to calculate the energy levels: (Formula 1) Rydberg formula: E n = -R_H * (1/n°2) 1. Calculate energy difference
En=-RH* (1/n*2), where R_H = 2.18 x 10*-18 J e ) T O A 2. Cakeulate wavelength

quency: 3. Calculate frequency
Step 2: Calculate the energy difference: Step-by-step Reasoning
= Memory Retrieval

=EBE1l-E4 Step 1: Retrieve constants
- Rydberg formula: E_n = -R_H * (1/n"2)

- Planck's constant: h = 6.62607015 x 10°-34 J-s
- Speed of light: c = 2.99792458 x 10"8 m/s
- Rydberg constant: R_H = 2.179872 x 10°-18 J

Execution
Step 1: Calculate AE using the Rydberg formula

2 = |E_1 - E_4]
-R_E * 1/1°2) - (-RH * 1/4°2)]
H* |1 - 1/16|

* (15/16)

= 79872 = 10"-18 * (15/16)

= 2.0436 * 10°-18 J

e
I
R

Step 2: Calculate A using A = h * ¢/ AE
Step 3: Calculate fusing f = c /A
A = (6.62607015 x 10°-34 * 2.99792458 x 10°8) / (2.0436 x
107-18)
= 9.7241 x 10°-§ m = 97.241 nm

£ = (2.99792458 x 10°8) / (9.7241 x 10*-8)
= 3.0831 x 10%15 Hz = 3083.1 THz

Final Answer: 2.0436 x 107-18 J, 97.24 nm, 3083 THz

ﬁ. CHEMAGENT: SELF-UPDATING LIBRARY IN LARGE
LANGUAGE MODELS IMPROVES CHEMICAL REASON-

ING

Xiangru Tang" } Tianyu Hu'"*, Muyang Ye'!+*, Yanjun Shao'-*, Xunjian Yin',
Siru QOuyang?, Wangchunshu Zhou, Pan Lu®, Zhuosheng Zhang*, Yilun Zhao',
Arman Cohan', Mark Gerstein'

1Yale University 2UIUC 3Stanford University *Shanghai Jiao Tong University

xiangru.tang@yale.edu

38
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(a) Library-enhanced Reasoning

' Task: Calculate the de Broglie wavelength for (a) an electron with a kinetic energy of 100eV.

m-' The unit of the answer should be nm.
est se

@ Knowledge Memory Mi I
Decomposition

- / @ Plan Memory  Mp |

Sub-task 1: Use kinetic energy
formula to calculate velocity of

Sub-task 2: Use de Broglie

Sub-task n:
wavelength formula to

electron compute wavelength -0 T
retrieve B ' retrieve B ] retrleveT BE
R Libra B S . q (Updated) @
Y oT=0wm Library LM
Find relevant Find relevant
I memories 1 memories  seeees

Sub-solution 1:
[Formula1] p=m *vwherepis ....
[Step 1] Identify the given values:

Sub-solution 2:

Sub-solution n:
[Formula 1] The kinetic energy can | """ """

1
be calculated: KE = ;mvz, where...

Summarize and|generate

Fnal M

-~ |If memory not found, then generate a task as imagination.

| Task: Given that the work function for sodium metal is

(b) Library Construction

2.28eV, what is the threshold frequency v, for sodium?
Solution: First, we need to convert the work function ¢ from
electron volts (eV) to joules (J). This conversion can be done
using the relation: 1eV = 1.602 x 107197, ..... i
dev set

@ Split and verify

LLM

Condition 1: The work functlon for sodium metal is 2.28eV.
Condition 2: ......

?

Sub-task and sub-solution

LLM
/‘\‘ Q correct

e wrong @ Execution Memory Me

l {condition,, sub_task,, sub_solution, }

Discard!

\ /
! l

@ Plan Memory Mp

—» Library Iﬂ

(relevant task, relevant knowledge)

39



=PFL  How to build your first chemical LLM agent.

1. Agentic system for chemistry

1. Agentic system for chemistry
1. Agentic system for chemistry Phb

s

= + [?: 2. Example of chemistry agent (CACTUS) Chat w / Bound Tools

Ollama LangGraph  Chemistry agent P month ago
N
End

emis 3. Tools with pubchempy and rdkit

|
by PhD Gil . PhD Gil 1 i < Stort ! @ !
| 1

Playlist + 12 videos * 82 views

This is a hands-on session to develop Cheminformatics - S
agent with langgraph and ollama. This cour ...more el o - T 00 -l_ S

m Eld €& : 4. sLLM with tool calling (Ollama)  Fio cispioy |

month ago

i atonai sl 5. Hallucination in sLLM without tool calling

without tools onth ago

Github code material:

40


https://www.youtube.com/playlist?list=PL49ip_eZtzYgLSvXuA3YZRZbp1mHM0VEh
https://www.youtube.com/playlist?list=PL49ip_eZtzYgLSvXuA3YZRZbp1mHM0VEh
https://github.com/shkdidrlf/aichemist-cheminformatics-agent/tree/main/example_codes
https://github.com/shkdidrlf/aichemist-cheminformatics-agent/tree/main/example_codes
https://github.com/shkdidrlf/aichemist-cheminformatics-agent/tree/main/example_codes
https://github.com/shkdidrlf/aichemist-cheminformatics-agent/tree/main/example_codes
https://github.com/shkdidrlf/aichemist-cheminformatics-agent/tree/main/example_codes

EPFL def get_smi(compound_name: str) -> str:

Get smiles code of the compound. Search it using pubchempy library by the name of the compound.

1) Pubchempy library to search smiles code of compounds (pubchempy as pcp & pcp.get_compounds)
2) Return canonical smiles code downloaded at step 1.

Args:
compound_name: str

results = pcp.get_compounds(compound_name, 'name')
if results:

return results[@].canonical_smiles
return None

def check_lipinski_ro5(smiles: str) -> dict:

Check compliance with Lipinski's Rule of Five.

*Abbreviation*

mw: molecular weight

logp: octanol/water partition coefficient
hbd: hydrogen bonding donor

hba: hydrogen bonding acceptor

1) smiles code is needed to get rdkit mol, essential for computation of Lipinski's rule of five.
2) calculate mw, logp, hbd, hba using rdkit library.

3) check conditions (mw<=500, logp<=5, hbd<=5, hbd<=1@).

4) Three out of four conditions should be satisifed to comply with the Lipinski's rule of five.

5) Return the dictionary in which each condition to check compliance with Lipinski's rule of five.

Args:

smiles: str
mol = Chem.MolFromSmiles(smiles)
if not mol:

return None # Invalid SMILES



=PrL

messages = [HumanMessage(content="Check compliance of Lipinski's rule of five.")]

messages = react_graph_memory.invoke({"messages": messages}, config)
for m in messages|['messages']:
m.pretty_print()

Human Message

Get smiles code of Tylenol.

Ai Message

Tool Calls:
get_smi (84a738f4-3b86-410e—aa7b-bf425cd70dd5)
Call ID: 84a738f4-3b86-410e-aa’b-bf425cd70dd5
Args:
compound_name: Tylenol

Tool Message
Name: get_smi

CC(=0)NC1=CC=C(C=C1)0

Ai Message

The smiles code of Tylenol is CC(=0)NC1=CC=C(C=C1)0.
Human Message

Check compliance of Lipinski's rule of five.

Ai Message
Tool Calls:
check_lipinski_ro5 (8acf@224-c920-460a-hc9a-377b9ed4038a)
Call ID: 8acf0224-c920-460a-bc9a-377b9%ed4038a
Args:
smiles: CC(=0)NC1=CC=C(C=C1)0

Tool Message
Name: check_lipinski_ro5

{"Mw": 151.06, "LogP": 1.35, "HBD": 2, "HBA": 2, "R05_Compliant": true}

Ai Message

The Lipinski's rule of five for Tylenol has the following values:
- MW: 151.06

- LogP: 1.35

- HBD: 2

— HBA: 2

RO5_Compliant: true
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And a last highlight
from mylab...



=PFL |LLMs as chemical reasoning engines

Discovery: Latest LLMs reason about chemistry ¢ LLM as chemical reasoning engines
(functional groups & reactions)

p- |
— Expert query — Vi < Chemical
on \_Lon « Reactions —_— a0 reasoning LLM
oY / , . p= -
=N N =N » Disconnections ‘ ' b
HN N N . — N N _N — . .
¥ ] e L ] e Stratfeglc patte.rns
Ny Ny « Starting materials
N S . i
» Desired conditions r .

<analysis> <mechanism> ) | LLM score: x/10
Protection reaction, o Nucleophilic attack of the
specifically an amine to primary amine on the Boc Traditional |/ LLM-guided strategi.t-: solutions.
carbamate conversion anhydride [...] search — | 4 - =
using a Boc protection. o Elimination of tert- algorithm The proposed synthetic route shows excellent
</analysis> butoxide leaving group [...] . alignment with the query requirements

</mechanism> many solutions for several reasons: [...] <score>9</score>
——— Top-ranked synthetic route

N Expert query: 15 st D =N\_pr
: steps
I-‘l N Me Break pyrimidine in the P NHZHO o Y last step A = Natural language
NN _ early stage but getall > . ¥ . — :
D A ’ r b [ “NH « Full route analysis
N other rings from :> ¥ \) N lecti
(\N commercially available Me OHC « Route selection
ME/“\) materials. available available
Weel kinase inhibitor by Merck LLM score: 9/10

Chemical reasoning in LLMs unlocks steerable synthesis
planning and reaction mechanism elucidation
AM Bran, TA Neukomm, DP Armstrong, Z Joncev, P Schwaller .
= arXiv preprint arXiv:2503.08537 (in review, Nature) N7



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:JoZmwDi-zQgC
https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:JoZmwDi-zQgC




=PFL Reaction mechanism elucidation

claude-3-7-sonnet
I ] I \ mm claude-3-5-sonnet
. - d k-3
Actions: elementary steps g8 —m—
%‘-‘ \ E gpt-4o-mini
» Ionization moves - Attack moves g e ]
; (€] ; o
(i, %, y) (i, x, ) o ‘
E—— —_ .— - 4
U : |
(i, %, y) © (i, %, y) B2
.i) —_— .@_ @—l— [ == 8
0
u #1 #2 #3 #a #5 #6 #7 #8 #9 #10 #11 #12
Nu. attacks Acetalizations Task Michael add. Miscellaneous
Task #1: Task #2: Task #3: .

Nu attack of NH, on cyclohexanone:

Selective Nu attack of NH, on dione:

Selective Nu attack of NH, on dione:

Acyl chloride formation with SOClz:
o o

14 mov.
Ph/\)l\OH - on /\)J\cw L

*  socl, S0,

== Nucleophilic additions

== Acetalizations

== Michael additions

o o o o HN OH O 4
NH, + 4 mov. NH, e 4 mov. o o o mov. o od
g . N + M \)ULM. — M \)ULME NH; + Me w Ma\)U<Me
Task #4: Task #5: Task #6:
Hemiacetal formation: Hemiacetal to Acetal: Intramolecular acetal formation:
OH o
4 mov. Me  HO 8 o
o « w 4mov. " - Mo+ o o + H ve M mov. Me H,0
M /?0 H Ma)\o’Me H Me/l\o Mo_on ———= Mo Ao Me T M HD\/\:H oW Eo></Me -
Me — OH
Task #7: ) , L Task #9: Task #11:
Enolate Formation + Michael Additon: Borohydride reduction of ketone: Wittig Reaction:
weoc O 12 mov. Meoc oH o 8 mov.
Netiuduse il SIE-Se WRPEREE IS TS
MeO, MeO, . o8
OH" asH,
Task #8: : )
Tautomerisation + Michael Addition: Task #10: Task #12:

Transformation of molozonide to ozonide:

8 mov.

o [o]
o 5y

Miscellaneous reactions

Prampt I I

W Without expert description
6 W With expert description

3]

gpt-4o
mini

gpt-do

deepseek-3  claude-3.5 claude-3.7

Sonnet Sonnet

Model

Expert reaction description
in prompt helps weaker
models.



=PrL

LLMs enable chemists
to talk to machine leaming tools
In their language.



=rrL Code and report submission

Updated deadline: Sunday, June 1st (end of day, CET) following a
request by one of your fellow students.
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