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Gold Digger Simulator

1
2

3
Scenario

You’re digging for gold in a large field. You want 

to dig where the most gold is so you can sell it 

and be able to afford the unlimited Swiss train 

pass (in 1st class too!)

Problem

Where should you dig in this large field?

It takes a lot of time and money for each dig and 

you can’t dig everywhere!

Strategy

You dug and found 1 gold bar. You decide to dig 

somewhere else. 2 gold bars! You decide to dig 

close by because maybe there’s a lot of gold in 

this area.



Gold Digger Simulator
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Why follow this strategy?

You want to try digging in different places 

because you have no Prior belief on where the 

most gold is. Once you found an area with more 

gold, your Posterior belief compels you to dig in 

a nearby area

Bayesian Optimization Terminology

Exploration: You want to explore the dig site but 

not the entire dig site because that takes too 

much time and is too expensive. You are 

expanding your knowledge.

Exploitation: You want to take advantage of the 

information you have to make an educated guess 

(inductive bias) on where the most gold is. You 

are exploiting your knowledge.



Bayesian Optimization (BO)
• We encounter Optimization everywhere

1.Maximize your chemical reaction yield

2.Maximize your drug molecule for pIC50

3.Optimize your machine learning model 

hyperparameters to minimize the error

4.Minimize the cost to scale-up your

reaction

5.Minimize the energy consumption of your 

process reaction

Bayesian Optimization is a sequential optimization algorithm that uses Active Learning and aims to optimize 

an Expensive Oracle under Minimal Oracle Calls

We don’t have all the money and time in the world



Don’t be fancy

The Oracle as in some sort of experiment without a known mathematical form and is expensive

1.Computational calculation, e.g., Density Functional Theory (DFT)

2.Wet-lab experimentation, e.g., doing a chemical reaction

• If there is a known mathematical equation, just use calculus to optimize it

• If it is cheap, just do the experiment

There is always uncertainty when you use Bayesian Optimization. Remember, you never know for 

certain until you actually do the experiment and make the observation.

If experiments are cheap, just do all the experiments.



Data/Search Space

Data

• Previous observations

• Search space restrictions (maybe you 

don’t want to try every possible x value)

What is X (representation)?

• Reaction conditions to predict yield

• Molecular fingerprint to predict pIC50

• It can be anything, really

The most important part, like any 

machine learning application, is to have 

correct data and the more, the better



Surrogate Model

Surrogate Model

• Machine learning model that is used to predict F(x)

• The model’s prediction is passed to the Acquisition Function to decide the next experiment to do

• In general, all models are capable of predicting a value and an uncertainty

Gaussian Process (GP)

Tree-based Models 

(like Random Forest) Neural Network

Image from: https://www.tibco.com/reference-center/what-is-a-random-forest



Uncertainty in Random Forests and Neural Networks

• Take the standard deviation of each 

tree’s prediction in the ensemble

Tree-based Models 

(like Random Forest)

Neural Network

Image from: https://www.tibco.com/reference-center/what-is-a-random-forest

• Train an ensemble 

of neural networks

• Monte-Carlo 

Dropout



Gaussian Process Inference: 2-for-1 deal

• Gaussian Processes (GPs), by design, 

jointly predict a mean and variance that 

can be analytically computed

Why do all 3 possible equations pass 

through the blue dots?

There’s no uncertainty on 

observations we’ve already made

“Distribution over Functions”

concepts and presentation style adapted from https://www.youtube.com/watch?v=4vGiHC35j9s&ab_channel=NandodeFreitas

Mean (prediction)

Variance



Starbucks FrappBOccino Recipe

Ingredients

• Data

• Surrogate Model

• Acquisition Function

How should we use our surrogate model’s predictions to choose the next experiment to do?

• Splash of hope



Acquisition Function
Acquisition Function

• What experiment should I do next?

• We decide this by plugging in our surrogate 

model’s prediction and/or uncertainty into 

some heuristic

• Recall digging for gold – we wanted to do 

some exploration (use uncertainty) and 

exploitation (use prediction)

• Acquisition functions output some value 

(sometimes called utility) and we simply 

choose the experiment(s) with the highest 

utility to perform next
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Intuitive Acquisition Functions

Greedy

Do the experiment with the best predicted outcome (model’s prediction)

→Can be too exploitative (not exploring enough)

Uncertainty 

Do the experiment with your model’s most uncertain about (highest variance)

→Can be too explorative

Upper-confidence bound (UCB)

Linear combination between model’s prediction and uncertainty → tries to balance both exploration-exploitation

𝑼𝑪𝑩 = 𝒎𝒐𝒅𝒆𝒍′𝒔 𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒊𝒐𝒏 + 𝜷 ∗ 𝒎𝒐𝒅𝒆𝒍′𝒔 𝒖𝒏𝒄𝒆𝒓𝒕𝒂𝒊𝒏𝒕𝒚

𝑈𝐶𝐵 = 𝜇 + 𝛽 ∗ 𝜎

Other commonly used acquisition function →Expected improvement (EI),

→ balances exploration-exploitation by targeting next experiments with predicted mean 

above current best or high uncertainty



Squash the Uncertainty

https://ieeexplore.ieee.org/document/7352306

• Blue shaded region = uncertainty

• Where we have observations, there’s 

no uncertainty

• Where we don’t have observations, 

there’s more uncertainty



Serving the FrappBOccino

Steps

1. Train your initial surrogate model

2. Use the model to predict new values

3. Plug the predictions into your acquisition function

4. Choose the next experiments to do

5. Do the experiments and record the result

6. Update your surrogate model (posterior)

7. Repeat (until you succeed or run out of money )



FrappBOccino Sequel: Chemistry Flavoured

Nothing fundamentally different from 

classic Bayesian Optimization



https://github.com/emdgroup/baybe

Target

Search space

Recommender

(surrogate + aqc. func.)

Ask for suggestions Add results

https://github.com/emdgroup/baybe


Going beyond standard BO



Bayesian Optimization for large batches 29

Joshua Sin

(with Roche)

• Uses special acquisition function (qNEHVI)

• Incorporates constraints from HTE platform



Multi-fidelity BO 30Víctor Sabanza Gil



Let’s talk about representations



How to represent chemistry? →plenty of possibilities

https://chimia.ch/chimia/article/view/2023_31/2023_31

x can just be a vector that 

contains chemistry-related values



”don’t need QM descriptors, you can get similar 

performance with one-hot encoding”

You can extract feature importance if you use 

meaningful descriptors though

One-hot does not always work

One hot encoding often similar to QM descriptor performance



But which representation is right for me?

• Better representations = Better BO 

35



• Better representations = Better BO 

• OHE works the best 

36

But which representation is right for me?



• Better representations = Better BO 

• OHE works the best 

37

But which representation is right for me?



Example of a collaboration with an 
experimental group
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Can we design Cu nanocrystals with a particular shape (=> reactivity)?

→ Collaboration with Buonsanti group

A holistic data-driven approach to synthesis predictions of colloidal nanocrystal shapes

LEF Zaza, B Rankovic, P Schwaller, R Buonsanti (JACS)

BO for linking synthesis parameters to shapes

https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:wbdj-CoPYUoC


BoLudo (starting questions)

• No SMILES = No DRFP 

• What ligand?

• How much?

• What temperature?

• How long?

• What heating ramp?

• How to combine all of that? 

• What kernel to use? 

• What is the output?

40

BO for linking synthesis parameters to shapes



BoLudo (starting questions)

• No SMILES = No DRFP 

• What ligand?

• How much?

• What temperature?

• How long?

• What heating ramp?

41

BO for linking synthesis parameters to shapes

OHE+mmol quantities Numerical
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Optimizing for known cubes (removing them from training set)
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43Multiple syntheses lead to the same outcome
(ground truth not unique)

cubes

tetrahedral



44Discovering a new shape (rhombic dodecahedral)



Back to representations… 



Could we find a more holistic representation?

Why not represent all of it as text?

And use an LLM to encode the text to a vector?

And input that vector to a GP?

➢ Flexible

➢ Continuous      Matérn kernel

➢ Unified representation      categorical, numerical, smiles, iupac

46

Starring: Bojana Ranković, Philippe Schwaller

BoChemia

n(Rhapsody)`

`



Fixed LLM embeddings as an input to the GP

47

But why? 
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Why do some embeddings perform better

… it’s about structure

Fixed LLM embeddings as an input to the GP

But why? 



Training LLM embeddings jointly with Gaussian Process

59
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Implicit metric learning with LLM-based Deep Kernel Gaussian process surrogates

Initial latent 

space organization

Implicit contrastive learning effect in the latent space



Embedding space reorganisation during optimization
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Latent space and suggested points during the 50 iterations of optimization

Iteration: 0 Iteration: 25

Vanilla GP 50 suggestions

in the initial latent space

Larger size = Higher design space uncertainty

Iteration: 50
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Extensive evaluation of LLM-based Deep Kernel in Chemistry

Robust to input formatting 
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Robust to input formatting 

Robust to pretraining 

Extensive evaluation of LLM-based Deep Kernel in Chemistry
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Robust to input formatting 

Robust to pretraining 

Robust to architecture 

Extensive evaluation of LLM-based Deep Kernel in Chemistry
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Robust to input formatting 

Robust to pretraining 

Robust to architecture 

Robust to hyperparametr. 

Extensive evaluation of LLM-based Deep Kernel in Chemistry
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Robust to input formatting 

Robust to pretraining 

Robust to architecture 

Robust to hyperparametr. 

Robust to tasks 

19 datasets: 

14 reaction/process 

optimization

5 molecular optimization

Extensive evaluation of LLM-based Deep Kernel in Chemistry
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GOLLuM: Gaussian Process Optimized Large Language Models

GOLLuM learns it

https://github.com/schwallergroup/gollum

https://github.com/schwallergroup/gollum


Challenges

• Can Bayesian optimization be practical in large design spaces?

→ Imagine you want to optimize a chemical reaction

→There are > 106 possible combinations of reagents

→Can BO find a good solution under a practical budget?

• Can we trust the uncertainty quantification of Gaussian Processes? Random Forests? Neural Networks?

→ If the acquisition function uses uncertainty, this can be detrimental to overall performance

• If I don’t have any initial data, how can I choose the initial experiments to try? What are the implications on 

the overall BO trajectory?

• How can ML practitioners work with experimentalists best?

→ If you apply BO and it suggests performing a reaction due to exploration and the outcome is bad, this is 

discouraging for the experimentalist but useful for the model

→How do we navigate these situations?



Dr. Edvin Fako on “How Computational Methods and Data Shape AI 
for Discovery”

I’ll be at the Bürgenstock conference.

Next week: 
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