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=PFL - Gold Digger Simulator

Scenario

You're digging for gold in a large field. You want
to dig where the most gold is so you can sell it
and be able to afford the unlimited Swiss train
pass (in 15t class too!)

Problem
Where should you dig in this large field?

It takes a lot of time and money for each dig and
you can’t dig everywhere!

Strategy

You dug and found 1 gold bar. You decide to dig
somewhere else. 2 gold bars! You decide to dig

close by because maybe there's a lot of gold in

this area.



=PFL - Gold Digger Simulator

Why follow this strategy?

You want to try digging in different places
because you have no Prior belief on where the
most gold is. Once you found an area with more
gold, your Posterior belief compels you to dig in
a nearby area

Bayesian Optimization Terminology

Exploration: You want to explore the dig site but
not the entire dig site because that takes too
much time and is too expensive. You are
expanding your knowledge.

Exploitation: You want to take advantage of the
information you have to make an educated guess
(inductive bias) on where the most gold is. You
are exploiting your knowledge.



£PFL - Bayesian Optimization (BO)
* We encounter Optimization everywhere

1.Maximize your chemical reaction yield

2.Maximize your drug molecule for plCs,

3.0ptimize your machine learning model
hyperparameters to minimize the error

4.Minimize the cost to scale-up your
reaction

5.Minimize the energy consumption of your
process reaction

We don’t have all the money and time in the world

Bayesian Optimization is a sequential optimization algorithm that uses Active Learning and aims to optimize
an Expensive Oracle under Minimal Oracle Calls



=PFL Don't be fancy

The Oracle as in some sort of experiment without a known mathematical form and is expensive
1.Computational calculation, e.g., Density Functional Theory (DFT)
2.\Wet-lab experimentation, e.g., doing a chemical reaction

* If there is a known mathematical equation, just use calculus to optimize it
* [f it Is cheap, just do the experiment

There is always uncertainty when you use Bayesian Optimization. Remember, you never know for
certain until you actually do the experiment and make the observation.

If experiments are cheap, just do all the experiments.



=PFL - Data/Search Space

Data
* Previous observations

» Search space restrictions (maybe you
don’t want to try every possible x value)

What is X (representation)?

» Reaction conditions to predict yield
* Molecular fingerprint to predict plCs,
|t can be anything, really

The most important part, like any
machine learning application, is to have
correct data and the more, the better



=PFL - Surrogate Model

Surrogate Model
* Machine learning model that is used to predict F(x)

* The model’s prediction is passed to the Acquisition Function to decide the next experiment to do
* In general, all models are capable of predicting a value and an uncertainty

Tree-based Models
Gaussian Process (GP) (like Random Forest) Neural Network
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=PFL - Uncertalnty in Random Forests and Neural Networks

Tree-based Models Neural Network
(like Random Forest)
 Train an ensemble

l i l of neural networks
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 Take the standard deviation of each Dropout as a Bayesian Approximation:
tree’s prediction in the ensemble Representing Model Uncertainty in Deep Learning

Yarin Gal
Zoubin Ghahramani

University of Cambridge

YG279@CAM.AC.UK
7ZG201 @CAM.AC.UK

|
Image from: https://www.tibco.com/reference-center/what-is-a-random-forest



=PFL - Gaussian Process Inference: 2-for-1 deal

Gaussian Processes Jo!ntly Predict . . .
a Mean and Variance Possible equations that describe the Oracle

Why do all 3 possible equations pass
through the blue dots?

e Variaacs There’s no uncertainty on
1 observations we’ve already made

F(x)

e Mean (prediction)

F(x)

* Gaussian Processes (GPs), by design,
jointly predict a mean and variance that
can be analytically computed

“Distribution over Functions”

' ] 1 ' 1

1 2 3 4 5
X

|
concepts and presentation style adapted from https://www.youtube.com/watch?v=4vGiHC35j9s&ab_channel=NandodeFreitas



=PFL - Starbucks FrappBOccino Recipe

Obtain
new results
‘ : Until convergence O
Select the

(Re)/Train the

surrogate model next experiment

Ingredients
 Data

Optimise the acquisition function

* Surrogate Model

* Acquisition Function
How should we use our surrogate model’'s predictions to choose the next experiment to do?

» Splash of hope



=PFL - Acquisition Function

Acquisition Function
* \What experiment should | do next?

* We decide this by plugging in our surrogate
model’s prediction and/or uncertainty into
some heuristic

» Recall digging for gold — we wanted to do
some exploration (use uncertainty) and
exploitation (use prediction)

* Acquisition functions output some value
(sometimes called utility) and we simply
choose the experiment(s) with the highest
utility to perform next




=PFL  Intuttive Acquisttion Functions

Greedy
Do the experiment with the best predicted outcome (model’s prediction)

-> Can be too exploitative (not exploring enough)

Uncertainty
Do the experiment with your model’'s most uncertain about (highest variance)

- Can be too explorative

Upper-confidence bound (UCB)
Linear combination between model’s prediction and uncertainty - tries to balance both exploration-exploitation

UCB=u+p*o

UCB = model's prediction + B + model's uncertainty

Other commonly used acquisition function 2>Expected improvement (El),
-> balances exploration-exploitation by targeting next experiments with predicted mean
above current best or high uncertainty



=PFL - Squash the Uncertainty

n= 2

* Blue shaded region = uncertainty

« Where we have observations, there’s
bt A no uncertainty

¥ acquisition max  Where we don’t have observations,

there’s more uncertainty
. acquisition function (u(-))

n= 3

observation (x)

new observation (x,)

posterior mean (u(-))

posterior uncertainty -

(u(-) xo(-))

|
https://ieeexplore.ieee.org/document/7352306



=PFL - Serving the FrappBOccino

Obtain
new results
Until convergence d
(Re)/Train the Select the
Steps surrogate model next experiment

. Train your initial surrogate model

. Use the model to predict new values

. Plug the predictions into your acquisition function
. Choose the next experiments to do

. Do the experiments and record the result

. Update your surrogate model (posterior) Optimise the acquisition function
. Repeat (until you succeed or run out of money ®)

~N O O~ WIN -



=PFL - FrappBOccino Sequel: Chemistry Flavoured

Bayesian reaction optimization as a tool for chemical

synthesis Phoenics: A Bayesian Optimizer for Chemistry

Benjamin J. Shields, Jason Stevens, Jun Li, Marvin Parasram, Farhan Damani, Jesus |. Martinez Florian Hase, Loic M. Roch, Christoph Kreisbeck, and Alan Aspuru-Guzik*

Alvarado, Jacob M. Janey, Ryan P. Adams 1 & Abigail G. Doyle @ Cite this: ACS Cent. Sei. 2018,4,9,1134-1145 Article Views Altmetric Citations
Publication Date: August 24, 2018 ~

Nature 590, 89-96 (2021) | Cite this article https://doi.org/10.1021 /acscentsci.8b00307 1 5937 23 1 67

- I Copyright © 2018 American Chemical Society LEARN ABOUT THESE METRICS

52k Accesses | 214 Citations | 180 Altmetric | Metrics RIGHTS & PERMISSIONS (]

A Multi-Objective Active Learning Platform and Web App for Reaction Optimization

Jose Antonio Garrido Torres, Sii Hong Lau, Pranay Anchurl, Jason M. Stevens, Jose E. Tabora, Jun Li, Alina Borovika, Ryan P Adams, and Abigail G. Doyle*

& Cite this: J Am. Chem. Soc. 2022, 144,43, 19999- Article Views Altrmetric Citations Share Addto Export
20007

Publication Date: October 19, 2022 ~ 6 544 1 7 5 @ @ @
https://doi.org/10.1021 fjacs.2c08592 LEARN ABOUT THESE METRICS

Copyright © 2022 American Chemical Society
RIGHTS & PERMISSIONS +" Subscribed

Grvrrin: An algorithm for Bayesian optimization of categorical

(IR, — variables informed by expert knowledge ©

Florian Hase & © ; Matteo Aldeghi @ ; Riley J. Hickman © ; Loic M. Roch @ ; Alan Aspuru-Guzik =
Nothing fundamentally different from M) Check for updates
classic Bayesian Optimization + Author & Artcle Information

Applied Physics Reviews 8, 031406 (2021)
https://doi.org/10.1063/5.0048164  Article history



F F README Apache-2.0 license E
E L as B Ap 4 from baybe.parameters import ( &
CategoricalParameter, EE; r1
NumericalDiscreteParameter, ea rC Space
SubstanceParameter,
failing Regular Check Reliilals] Mpassing )

Supports Python 3.10 | 3.11 | 3.12 PyPI Version v0.13.0 Downloads 1.6k/month Issues 18 open PRs 16 open parameters = [

CategoricalParameter(
name="Granularity",
values=["coarse", "medium", "fine"],
encoding="0HE", # one-hot encoding of categories

License Apache 2.0

Bayoe

Bayesian Back End

),
NumericalDiscreteParameter/(
name="Pressurel[bar]",
values=[1, 5, 101],
tolerance=0.2, # allows experimental inaccuracies up to 0.2 when re

),
SubstanceParameter (
name="Solvent",
data={
"Solvent A": "COC",
"Solvent B": "CCC", # label-SMILES pairs
Homepage - User Guide + Documentation - Contribute "Solvent C": "Q",

"Solvent D": "CS(=0)C",

H

BayBE — A BayeSian BaCk End for DeSign Of | encoding="MORDRED", # chemical encoding via scikit-fingerprints
Experiments ]

h . K End . | Ibox f X ) ¢ ) from baybe.recommenders import (
The Bayesian Back End (BayBE) is a general-purpose toolbox for Bayesian Design of Experiments, et e

focusing on additions that enable real-world experimental campaigns. FPSRecommender, Re CO m m e n d e r

TwoPhaseMetaRecommender,

) (surrogate + aqc. func.)

recommender = TwoPhaseMetaRecommender (
from baybe.targets import NumericalTarget initial_recommender=FPSRecommender(), # farthest point sampling

. . . . . . recommender=BotorchRecommender(), # Bayesian model-based optimization
from baybe.objectives 1import SingleTargetObjective () yesl ptimizati

target = NumericalTarget/(
name="Yield",

mode="MAX", Target

) campaign = Campaign(searchspace, objective, recommender)

from baybe import Campaign

objective = SingleTargetObjective(target=target)

df = campaign.recommend(batch_size=3)

print(df)
Ask for suggestions Add results

Granularity Pressurel[bar] Solvent df["Yield"] = [79.8, 54.1, 59.4]
15 medium 1.6 Solvent D campaign.add_measurements(df)

https://github.com/emdgroup/baybe 16 coarse 10.6 Solvent C

29 fine 5.0 Solvent B



https://github.com/emdgroup/baybe

=Pr-L

Going beyond standard BO



=rrL. Bayesian Optimization for large batches

Best results from two experimentalist-designed HTE plates

Results of initial plate from our ML optimisation workflow

Joshua Sin
(with Roche)
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» Uses special acquisition function (QNEHVI)
* Incorporates constraints from HTE platform




Victor Sabanza Gil 30

=prL Multi-fidelity BO

Select experiment

Diverse chemistry tasks m High-fidelity Best-practice guidelines for:
experiment multi-fidelity = > random
expensive

Covalent Low-fidelity & St o

organic experiment "_':,.

frameworks @ cheap s Ths

_ approximate B 1. ________
- ]JI g " ‘.1
Molecular .,20‘} O g %
properties X E .
- m I

i i ol i i i

o 5 10 15 20 25 =0

Experimental budget

OO —00

Chemical reactions

(Re)train model

Best Practices for Multi-Fidelity Bayesian 7 ATINARY
= Optimization in Materials and Molecular Research @ N . .



=Pr-L

Let’s talk about representations



=PFL - How to represent chemistry? =2 plenty of possibllities

Reaction to optimize (
0.0
0 0O Catalyst
—— Ligand Target objective(s)
s 0 Additive > e vield / selectivity / ...
I Base
Solvent OH
Light O
Machine-readable representations
Individual molecule descriptors ‘ Reaction descriptors
MODaQ
{u|={=]sla|
* One-hot encoding (1D) !q F | I& 5 z e SchneiderFP B
Bases [AdaBwed  Sovents > Heuristics
* Atom connectivity-based (2D/2.5D) NN L0 * Differential Reaction Fingerprint (DRFP)
L U
e QM descriptors (3D) © * Reaction Fingerprint (RXNFP) } Data-driven
P > & # )\
1
o Catalyst
g oY oy e O
— - Al gé.:.im ) ™
0 Ligand \_ s — o
I
Input vectors for Bayesian Optimization A l
T e+ T T 11T .. + (00 conditions (I I I TT 1]+ [0 conditions
Concatenated molecule representations (variable length) Fixed-size reaction representation

x can just be a vector that

= contains chemistry-related values
https://chimia.ch/chimia/article/view/2023 31/2023 31



cPrL " One hot encoding often similar to QM descriptor performance

Predicting reaction performance in C—N cross-coupling
using machine learning

DEREK T. AHMEMAN , JESUS G. ESTRADA, SHISHI LIN , SPENCER D. DREHER , AMD ABIGAIL G. DOYLE Authors Info & Affiliations
SCIENCE - 15 Feb 2018 - Vol 360, Issue 6385 - pp. 186-190 - DOLE10.1126/5cience.aars169
A Linear Model KN svM Comment on “Predicting reaction performance in C—N
100- R2=0.67 I . R2=0.64 . R2=0.66 iLsC) . . . . ”
RMSE = 15.5 Ly @ RMSE = 16.3 . ests  RMSE=158 CfOSS'COUPlII’Ig USII'Ig machlne Iearnlng
75+ S | P gt . A KANGWAY V. CHUANG AMD MICHAEL J. KEISER Authors Info & Affiliations
50" SCIENCE - 16 Moy 2018 « %ol 362, lssue 6476 - DO 10.1126f/science. aat8603
25 =
o "don’t need QM descriptors, you can get similar
< 0- . . ”
o performance with one-hot encoding
g Bayes GLM Neural Network Random Forest
2 100 R2=0.87 . | R2=0.92
®) RMSE =9.7 L AT RMSE=7.8 ] ]
- s You can extract feature importance if you use
| meaningful descriptors though
25~
N One-hot does not always work

25 0 25 50 75 100 -25 0 25 50 75 100 -25 0 25 50 75 100
] Predicted Yield



=PTL  But which representation is right for me?

+ Better representations = Better BO @

35



=PTL  But which representation is right for me?

+ Better representations = Better BO @
» OHE works the best &

36



=PrL  But which representation is right for me?

+ Better representations = Better BO @

« OHE works-the best &

Distribution of Top 5 [%] by Representation

Kernel
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--+-- Repr. mean
P
'ﬁ 014
c
S
T
n 0.3
o
2
0.2
0.1

0.0-

Representation

Issue 4, 2024

From the journal:

Digital Discovery

BayeSian Optimisation fOI‘ additive | ’.) Check for updates‘
screening and vield improvements -
beyond one-hot encoding

Bojana Rankovi¢, & *2 Ryan-Rhys Griffiths, €5 © Henry B. Moss € and Philippe

Schwaller (&) *@

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
- -
- 0.

Buchwald- f
: Hartwig |
790 data points
= 32 dimensions
2
& Additive
screening

720 data points
720 dimensions

- **
""""
----------------------------------------------------------------------------------------------------------------------------------------
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=Pr-L

Example of a collaboration with an
experimental group



=PrL B0 for linking synthesis parameters to shapes

Can we design Cu nanocrystals with a particular shape (=> reactivity)?
—> Collaboration with Buonsanti group

Previous

lab experiments

\\6
o .
'\ Electronic Lab
> Notebooks
(1)

Bayesian optimization

ﬁ approach for
‘ (4) machine-learning @) &

: based control of
Experimental Machine-Learning

———— — — T — — — — — — — — — -

Validation nanocrystal Shapes Readable Data
S
(3) D
N
~—~7 & S
< S/ F
O Qi@
O
=T o GQO
\9[/0 # $°°
Ns Machine y

Learning Models

A holistic data-driven approach to synthesis predictions of colloidal nanocrystal shapes
= LEF Zaza, B Rankovic, P Schwaller, R Buonsanti (JACS)



https://scholar.google.com/citations?view_op=view_citation&hl=en&user=Tz0I4ywAAAAJ&sortby=pubdate&citation_for_view=Tz0I4ywAAAAJ:wbdj-CoPYUoC

cPrL  BO for linking synthesis parameters to shapes \11%

BoLudo (starting questions) J A ( : S

This article is licensed under CC-BY 4.0 @ @

No SMILES = No DRFP _

' ?
What ligand: A Holistic Data-Driven Approach to Synthesis Predictions of
How much? Colloidal Nanocrystal Shapes

Ludovic Zaza,” Bojana Rankovic,” Philippe Schwaller,* and Raffaella Buonsanti*

I: I Read Online

What temperature?

Cite This: J. Am. Chem. Soc. 2025, 147, 6116—-6125

How long?

What heating ramp?

How to combine all of that? &
What kernel to use? &
What is the output?

40



=PrL  BO for linking synthesis parameters to shapes \11%

BoLudo (starting questions) J A C S

o N O SM I L ES ) N O D R F P JOURNAL OF THE AMERICAN CHEMICAL SOCIETY This article is licensed under CC-BY 4.0 '@ @
pubs.acs.org/JACS

« What ligand? . : : -
g A Holistic Data-Driven Approach to Synthesis Predictions of
e How much? Colloidal Nanocrystal Shapes
Ludovic Zaza,” Bojana Rankovic,” Philippe Schwaller,* and Raffaella Buonsanti*

I: I Read Online
 How long? |
. What heating ramp? S

 What temperature?

Cite This: J. Am. Chem. Soc. 2025, 147, 6116—-6125

1.065 1.1 1.119 1.196 1.300 1.410 10° eV
Truncated Cuboctahedron Octahedron Rhombic Cube Tetrahedron
octahedron dodecahedron
OHE+mmol quantities Numerical

time temp heating_ramp

30.0 335.0 11.0

oleylamine tri-n-octylphosphine oxide copper(l) bromide

139.292970 0.0 0.000000

30.0 335.0 11.0
150 335.0 11.0 .
60.0 210.0 11.0

145.349186 0.0 0.000000
148.377295 0.0 0.000000
30.281081 25.0 3.000000




=PrL " optimizing for known cubes (removing them from training set)

PR Data types
Y -~ s .
/; * AN R ® Initial training data
ll \-@38,' % Model suggestions
\ 2 ‘l' H ® Known cubes
\ l' ————————————————————
U | . |
\\\_8_111 PPN ! 1-6 lterations !
- T ETEmTmTmTmmsmmsmsm e
- ,
-7 4 N
/” 3 // 7 5 /f*T\\
ré Vi 4 LA N Tl
! 7/ / 7
4 RN
l\g?) % ’/ ®. @ -
. s < - m O e
N ,*"s\ D \\
‘\\ \\\ o DS
N L e e T
\\\ \\ = Ty
4 ~. BT .
N -2 & i
TR @
\_7 @
o ®
H o .
f\.
[k 3N O
\ N
\ N O Q
\\ N D
\ \
® N1
\
RN *
° ® | © o
@
\\ \
NS
\~l
O ° 0
HBm
@]
® 0
© g B

/

Iterations

42



43

=PFL Multiple syntheses lead to the same outcome
(ground truth not unique)

Time Temp. Heat. ramp CuBr TOPO
(min) (°C) (°C/min) (mmol) (mmol)
285 16

70
15
50 | /
\ 13
50 -
270 12
11
401 . 265
\\\ 10 )
30- 260 = 9-

Time Temp. Heat.ramp CuBr CuCl Cul TOA TMP TOP
(min) (°C) (°C/min) (mmol) (mmol) (mmol) (mmol) (mmol) (mmol)

14+ 141 ~
320 | \ 0.1¢ 10 -
60 | 1.2
13 1 0.10 - 51 [
200 - aee?
ol \ / 1.0 08{ |
| \\280 12 0.08 4.0 [
<] / 0.8 vl 06| |
40 2604/ 0.06 /
0.6 - 35 - /
111 0.3 04!
30 - 40 - 04 ] 0.2 0.04 - /
2%0 = 0.2 0.02 (| 027
20 | < Al | Ll
)
g 0.0 0.0 oo e 0.0~

------- Unseen Syntheses from Dataset —— BO Discovered Syntheses
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=PFL Discovering a new shape (rhombic dodecahedral)

a Observed Shape

W%
o

Initial Suggestions

TEM

XRD
Cu (111) ‘
5 ‘
®
%‘ Cu (200) | |
c ’ |
5] | |
= | | Cu(220) ’L | | ' | A l
r-JLJs.-JL—. Jt __.._.-J\ = ._J\\_, hacZ N\ _/x = Nm Mww bt/ Md'wq \ e
40 45 50 75 | 40 45 50 75 | 40 45 50 75 75 40 45 50 75 /40 45 50 75 40 45 50 75
26 (deg) 26 (deg) 26 (deg) 26(deg) 26 (deg) 26 (deg) 206 (deg)
>
1-2 3 4 5 6 7-8 5

Iterations



=Pr-L

Back to representations...



=Pl Could we find a more holistic representation? \11%

THE ONLY THING MORE EXTRAORDINARY
THAN THEIR MUSIC IS HIS STORY

S ' . S5 Aty 2 ST 'l:c‘o‘-""# LR ¢ ey ‘ 5
RO A et Yt S s R SR P L e e
g -“-_; _ R L N St '..7“7 o —"_, B ok '-,-‘.;*ﬁl;:f‘:j.' 4’.&:"- o RN Lo
il 33l : @ = ; S8 OSSR
g ) G o2 ‘.". _', = ”f'.
\ S 1 <
L N 3 1 \ >
o \

And input that vector to a GP? ) ES

Why not represent all of it as text?

And use an LLM to encode the text to a vector?

The reaction was prepared with:
> Flexible temperature: {numerical_valuel}°C

solvent: {solvent_smile}

ligand: {ligand_smile}

INCCINEMAS OCTOBER 24

> Continuous Matérn kernel

Starring: Bojana Rankovic, Philippe Schwaller

> Unified representation categorical, numerical, smiles, iupac
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=PrL Fixed LLM embeddings as an input to the GP _ ", == 7y \11%

BoChemian: Large Language Model Embeddings for Bayesian
Optimization of Chemical Reactions

Bojana Rankovic, Philippe Schwaller

40 I Representation Type
) V Chemistry-related
35 T BUt Why - B Encoder
1 @® Enc-Dec
30 € Decoder

N
0

7

Top 5% Coverage [%]
o o

=
o

Representation 47



=PrL  Fixed LLM embeddings as an input to the GP

BoChemian: Large Language Model Embeddings for Bayesian
Optimization of Chemical Reactions .. it's about structure

Bojana Rankovic, Philippe Schwaller

Why do some embeddings perform better$

10 : DRFP)
I Representation Type
P, V Chemistry-related Correlation: 0.92
35 k But why* bR s 35 ion: 0.
— 1 @® Enc-Dec
X 30 \ ‘ Decoder T5Chem-SMILES
Q
& 25 1
O A 30
v X
> —_
20
$*| v ‘ :
2 \Y ]
A 15 2 e qwen2-78_ Al ModernBERT
o3 O O ”b ‘
= 10 X GTE-Qwen2- 6
o T5Che ‘.
IS]
5
Mistral-Adapted-7B
\ / 20 Instructor 6
0 Q\/c, A oo . @ C o o o LLama3-8B
L FFE N T NEFF N LT
O Y & & o Q N F O 20 &
© @) Q}Q Q\Q/ \Y\Q ,<’) Q\, g)&, Q& Q&,
& S O o) SOV G 15 3-Adapted-8B
& K\ & W VN ama3-Adapted-
o A > <
« '\(}( ,b((\’o
N g 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Representation GP Learned Lengthscale / Average Pairwise Distance



EPFL
Training LLM embeddings jointly with Gaussian Process

Parameters Parameters

Text input Text 1input

Text 1input

v

Representation Type
@® Enc-Dec ’ Decoder B Encoder V Chemistry-related

4-—""/#. .
Text input | ! -
: . ~N .
| |
Featurization LM . .
(DRFP/FP) : LLM :
| |
. ¢ ; A0 T+
: . . 1
- -
. + ELU : < —IT
' I — 30
| [ | @
] L] &n
: : C
] . g
2 20 |
LN =/ \S 2 5 Y e
] 1 o v
' 1 2
] " - _ - ]
' fixed weights ( trainable weights ) - 10
. .
GP Bochemian PLLM LLMd PLLMd : ;
. . : . L. - i’ SRR CRNE? Y S R P
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Embedding space reorganisation during optimization

Latent space and suggested points during the 50 iterations of optimization

Vanilla GP 50 suggestions Y Suggested Points

in the initial latent space “. A Initial Points

. Design Space

Larger size = Higher design space uncertainty

Suggested Points
Initial Points
Design Space
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Extensive evaluation of LLM-based Deep Kernel in Chemistry \11%
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=PrL Extensive evaluation of LLM-based Deep Kernel in Chemistry
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6 Future work

This research underscores the potential of using BO for accelerating additive

discovery in chemical reactions, paving the way for more efficient experimental

design and optimisation in the field of chemistry. The reaction type and its
unique chemical features influence the performance of specific chemical
representations in the optimisation process. In addition, devising methods to

evaluate the fit of different representations for distinct sets of reactions could

enhance the optimisation process, leading to more accurate and reliable

results.

Future research should focus on determining the optimal reaction

representation, jor possibly a dynamic combination of representations for

employing bo on different reaction types while incorporating domain

knowledge. For example, switching from one reaction representation to

GOLLuM: Gaussian Process Optimized Large Language Models \11%

Issue 4, 2024 Previous Article Next Article

Digital
Discovery

From the journal:

Digital Discovery

BaVQSian Optimisation fOI‘ additive | '.) Check for updates‘
screening and yield improvements - |
beyond one-hot encoding

Bojana Rankovic, *@  Ryan-Rhys Griffiths, b Henry B.Moss € and Philippe

Schwaller *d

GOLLuM learns it @}

https://github.com/schwallergroup/gollum
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=PFL - Challenges

 Can Bayesian optimization be practical in large design spaces?
-> Imagine you want to optimize a chemical reaction

- There are > 10° possible combinations of reagents

- Can BO find a good solution under a practical budget?

« Can we trust the uncertainty quantification of Gaussian Processes? Random Forests? Neural Networks?
- If the acquisition function uses uncertainty, this can be detrimental to overall performance

* |f | don’t have any initial data, how can | choose the initial experiments to try? What are the implications on
the overall BO trajectory?

 How can ML practitioners work with experimentalists best?

- If you apply BO and it suggests performing a reaction due to exploration and the outcome is bad, this is
discouraging for the experimentalist but useful for the model

- How do we navigate these situations?



=rrL. Next week:

Dr. Edvin Fako on "How Computational Methods and Data Shape Al
for Discovery”

I'll be at the Burgenstock conference.
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