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=P*L Today: Chemical reactions

A chemical reaction is a process in which one or more substances,
the reactants, are converted to one or more different substances, the products.


https://www.britannica.com/science/reactant
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Pd(OAc)2/BINAP,

- \ toluene, Cs2C0O3 N
~° T b O \/O\g/©/ O‘

example literature reaction

Machine Intelligence for Chemical Reaction Space. Schwaller et al. 2022
- https://wires.onlinelibrary.wiley.com/doi/full/10.1002/wcms.1604



=y Literature (broad, e.g, Thieme) Experiments ELN/HTE (narrow)
=Pl Data source's for ML?
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Triflyloxy Buchwald-
Hartwig amination

US20030166932A1: General Procedure H
A solution of trifluoromethanesulfonic
acid 3,5,8,8-tetramethyl-7,8-
dihydronaphthalen-2-yl ester (Compound
35,0.41¢g,1.2 mmol), Pd(OAc)2 (0.027 g,
0.12 mmol), BINAP (0.11 g, 0.18 mmol),
Cs2C03 (0.56 g, 1.72 mmol), ethyl 4-
aminobenzoate (0.25 g, 1.5 mmol) and 5
mL of toluene was flushed with argon for
10 min, then stirred at 100° C. in a sealed
tube for 48 h. After the reaction mixture
had been cooled to room temperature, the
solvent was removed, and the residue was
purified by flash column (hexane:ethyl
acetate=4:1) to give 0.34 g (80%) of the
title compound as a yellowish solid.

> how to make molecules

= Patents (broad, accessible) Simulations (narrow)



=PFL Chemuical reaction data

US Patents Millions of reactions

BrC(Br)(Br)Br.CC..>>... Benchmark sets
' CO.Nciccee([N+]...>>...
CC(=0)O[BH-]...>>... USPTO MIT
Text-minin g (OC(C)=0)OC(C)=0.>>... USPTO STEREO
(Lowe 2012/17)
precursors>>products
Reaction SMILES

CC(C)S.CN(C)C=0.FclccenclF.O=C([O-D[O-].[K+]. [K+]>>CC(C)SClnCCCC1F
2

\ 10+
— K+ 6N />9
V4 3

Drecursors >> products



=Pi-L 7

Synthesis procedures (patents/literature)

To a suspension of AICI3 (1.57 g, 11.84 mmol) in dichloromethane (50 mL) was added 5-Bromo-2-methyl-1H-pyrrolo[2,3-b]pyridine.
After stirring for 30 min, chloroacetyl chloride (1.33 g, 11.84 mmol) was added and the reaction mixture was stirred for 2 hours at
room temperature. On completion, solvents were evaporated and quenched with ag. NaHCQOS solution at 0° C. Resulting mixture was
extracted with EtOAc. The organic layer was dried over Na2504 and filtered through a plug of silica gel. Solvent was evaporated to
dryness to give 1-(5-Bromo-2-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-2-chloro-ethanone (0.650 g, 95% yield).

%" 1-(5-Bromo-2-methyl-1H-pyrrolo[2,3-b]pyridin-3-yl)-2-chloro-ethanone Product C10HgBrCIN,O 287.54 g/mol 2.261 mmol
S 5-Bromo-2-methyl-1H-pyrrolo[2,3-b]pyridine Reactant CgH7BrNo 211.058 g/mol
8" chloroacetyl chloride Reactant CoHoCl0 112.943 g/mol 11.84 mmol
AICI3 Agent AlCl3 133.34 g/mol 11.84 mmol
dichloromethane Solvent CH,Cl, 84.932 g/mol 781.209 mmol
H
N
H Nl
N N C DCM |
S AICI, y Y.
| / + —>» Br
= O
Br Cl
O
Cl

- Friedel-Crafts acylation (3.10.1)



="~ Reaction representations

Chemical reaction Meta data
precursors
| I
reactants reagents products reaction class - 1.3.4
Buchwald-Hartwig amination
Pd(OAc)2/BINAP,

H _—
NH, o N reaction yield - 80%

£ \\S,O toluene, Cs2C0O3
0] + \ -
M FT e ‘ \/0 O‘ ;
experimental procedures




cPrL
Chemical reactions from US patents (1976-Sep2016)

Dataset posted on 13.06.2017, 18:49 by Daniel Lowe 12748 8727
________ views downloads

©

“While typically correct, the atom-maps are wrong in many
cases and hence should not be entirely relied on.”

https://figshare.com/articles/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873



=PFL Chemuical reaction data

US Patents Millions of reactions

BrC(Br)(Br)Br.CC..>>... Benchmark sets
' CO.Nc1cccc([N+]...>>...
CC(=0)O[BH-]...>>... USPTO MIT
Text-minin g (OC(C)=0)OC(C)=0.>>... USPTO STEREO
(Lowe 2012/17)
precursors>>products
Reaction SMILES

CC(C)S.CN(C)C=0.FclccenclF.O=C([O-D[O-].[K+]. [K+]>>CC(C)SClnCCCC1F

2
F 1

10+
)LO Hs >:/<
— K+ 6N / 9
14 3

Drecursors >> products




"L Early work — expert systems (‘60s, ‘70s)

ORGANIZATION OF LHASA

The LHASA program is exceedingly complex - about
400 subroutines, 30,000 lines of FORTRAN code and a
data base of over 600 common chemical reactions.

11

LHASA—Logic and Heuristics Applied to Synthetic
Analysis

DAVID A. PENSAK

Central Research and Develop. Dept., E. 1. du Pont de Nemours and Co.,
Wilmington, Del. 19898

E. J. COREY
Dept. of Chemistry, Harvard University, Cambridge, Mass. 02138

R2 R2
R1-N => R1-B(OH)2 + HN

R3 R3

R1-0,S-R2 => R1-B(OH)2 + R2-0,S-H

4 I 6
/N / Z
QO
HECEE g T
o o . § X 'O / X‘\ Br
Empirical Explorations of NN — NN S 7 I
A 5 8 A
SYNCHEM v, P I -
The methods of artificial intelligence are applied to Fig. 1. Synthesis pathways discovered by '0

SYNCHEM that could lead to twistanone (1) A A

the problem of organic synthesis route discovery.

H. L. Gelernter, A. F. Sanders, D. L. Larsen, K. K. Agarwal,
R. H. Boivie, G. A. Spritzer, J. E. Searleman

from available starting materials. Reaction

types used: alkylation alpha to a ketone (1 <~ 2,1 < 10, 8 < A + A); oxidation of a secondary
alcohol (2 « 3, 12 « 13); hydration of an alkene (3 « 4,3 « 6, 11 « 12, 13 «<A); Diels-Alder
reaction (4 <5+ A, 6 — 7,9« A + A, 14 «— A +A); Wittig reaction (7 < 8 + A); and re-
placement of an alcohol by a better leaving group (10 < 11, 4 < 9, 5 «— A). All compounds
labeled A were found by SYNCHEM on its list of available compounds.

= https://pubs.acs.org/doi/10.1021/acs.jcim.0c00448

END*REFERENCES

TYPICAL*YIELD GOQOD
RELIABILITY GOOD
REPUTATION GOOD
HOMOSELECTIVITY POOR
HETEROSELECTIVITY FAIR
ORIENTATIONAL*SELECTIVITY NOT*APPLICABLE
CONDITION*FLEXIBILITY POOR
THERMODYNAMICS GOOD

More expert systems:

« SECS by Wipke
 EROS by Gasteiger

« CAMEO by Jorgensen
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5 0
O = 3 H———N
J_L + =—N - H5

3H*lH4 5 A 4
Cl'O*H*HeC® N® c'o*H HC® N® c'oO*H HC
c' 021100 c'l0-100+10 ctlo1 111
02 240000 02|l-1+2 00 0 0O 02|l1 6 000
H 1100000 + H| 000000 H|1 0000
H* /1 00000 H'|oo0oo0000 H*!1 0000
c’loo0oo0o0 2 3 C3|+1000-20 c’l1 0000
N° 000032 N°| 000000 N° [0 0 0 0 3
be-matrix B r-matrix R be-matrix E

Bond electron matrix Reaction matrix
- diagonal: free valence electrons

- off-diagonal: bond order

An Algebraic Model of Constitutional Chemistry 2

as a Basis for Chemical Computer Programs

1973

Prof. Dr. James Dugundji

Department of Mathematics, University of Southern California, Los Angeles,
California, USA

Prof. Dr. Ivar Ugi

Department of Chemistry, University of Southern California, Los Angeles,
California, USA and Laboratorium fiir Organische Chemie der Technischen
Universitdt Miinchen

Bond electron matrix of the product



=L RXN-Insight

. . . ™
Rxn-INSIGHT: fast chemical reaction analysis ==

using bond-electron matrices

Maarten R. Dobbelaere', Istvan Lengyel'?, Christian V. Stevens® and Kevin M. Van Geem"

A. Reaction handling
Atom

Brc1ccecen1.0=Cc1ccc(B(0O)O)cc1>>0=Cc1ccc(-c2cccen2)cc

Br{c:7]1[cH:8][cH:9][cH:10][cH:11][n:12]1.0B(0)[c:6]1
[cH:5][cH:A4][¢:3)([CH:2]=[O:1])[cH:14][cH:13]1>>
[O:1]=[CH:2][c:3]1[cH:4][cH:5][c:6])(-[c:7]2[cH:8][cH:9]
[cH:10][cH:11][n:12]2)[cH:13][cH:14]1

B. Reaction Classification C. Functional group and

ring detection

~~ 7/ Om\
N \Br ':,-" é
CY Y el —
0 1 -1 0 0 0] ' O
1 0 0 0 -1 0 ;
7=[-1 0 6 0 0 0 g s :

0 0 0 -4 -1 0 . Boronic acid Pyridine
0 -1 0 -1 0 -1 5
0 0 0 0 -1 -4

Aromati'c halide

Phenyl

Reaction center as Ugi transformation matrix
Template-based Rule-based
Reaction class: carbon-carbon coupling functional group ring and scaffold
Reaction name: Suzuki coupling with boronic acid detection extraction
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=PFL. SOPHIA, a Knowledge Base-Guided
Reaction Prediction System

input Output

/ Reactants (starting material) + Reaction conditions | from the A system

Reactants (starting material) + Reaction conditions] from the B system
l Synthesis design system I Product (target) : .

( backward planning ) | éactants (starting material) + Reaction conditions | from the F system

l Reaction prediction system l Reactant + Reaction condition — Products + product ratio | <
( forward verification )

Figure 1. Difference between a synthesis design system and a reaction prediction system.

[ from the A’ system
from the B' system

Lfrom the F' system

Obtain the information

a:o wr‘l‘:ttlum: ludl %emam o Yes
Characteristics Incluaing roken bond 1 ... Match? — Output
the environments for ! . /‘ j P
every bond on the RR-Site | Product side No

and the PR-Site Fomed bond 1 ... Fail
Reaction path 1 : " Matching
. . = | React
Reaction path 2 Reaction condition | k::wI::ge
' base Y,
Figure 12. Reaction path evaluation, Hiroko Satoh
» Associate Prof at
Hiroko Satoh and Kimito Funatsu* ROIS, Japan.
Department of Knowledge-Based Information Engineering, Toyohashi University of Technology, e Researcher
Tempaku, Toyohashi 441, Japan : T
P Y P at Uni of ZUrich.

m Received March 28, 1994%®



cPrL C hem ati ca (Synth ia) ‘Et;;icient Syntheses of Diverse, Medicinally )

Relevant Targets Planned by Computer and
Executed in the Laboratory

Tomasz Klucznik *, Barbara Mikulak-Klucznik !, Michael P. McCormack 2, Heather Lima ?,

2

= Largest expert rules system
= More than 100k human expert rules YTy p e p——r—

Rafat Roszak *, Ariel Adamski !, Bianka Sieredziriska !, Milan Mrksich * © &, Sarah L.). Trice ? 0 =,
= Sadly not open-source

Bartosz A. Grzybowski ' *® o =

Article | Published: 13 October 2020

Computational planning of the synthesis of complex

nBu—==

Bu),N Cl
et 6 natural products

ACO@' Barbara Mikulak-Klucznik, Patrycja Gotebiowska, Alison A. Bayly, Oskar Popik, Tomasz Klucznik,

NO
N : ,d\l Sara Szymku¢, Ewa P. Gajewska, Piotr Dittwald, Olga Staszewska-Krajewska, Wiktor Beker, Tomasz
[ :[ ] NO - . .
(\/ g 71 N N0 Badowski, Karl A. Scheidt, Karol Molga =, Jacek Mlynarski =, Milan Mrksich =1 & Bartosz A.
HoN 'I‘ O co,Me |

| | Grzybowski &1
CIOCHO\ /7 HN‘sqz/ Cl

" Nature 588, 83-88 (2020) | Cite this article
@/[K MeNH,-HCl 26k Accesses | 81 Citations | 188 Altmetric | Metrics
\_s
OH —

2
OAc /—7

Computer-Assisted Synthetic Planning: The End of the Beginning

Sara Szymku¢, Ewa P. Gajewska, Tomasz Klucznik, Karol Molga, Dr. Piotr Dittwald, Dr. Michat Startek,
Michat Bajczyk, Prof. Dr. Bartosz A. Grzybowski 224

First published: 08 April 2016 | https://doi.org/10.1002/anie.201506101 | Citations: 315

OH
OMe
MeO  HO O © O
OH




=rr. Example

Reaction Rule (A) 1

17 (H1);10 &
18 o O 50 ®) 12
H._|(H2,X4,R0,A);13z ,H>° ROX5(x4,A),[H2, H3]8 2 NOH 5oH 11
11 o /C 3
ATX4);1 ar’ O 14

[CH2,c,#1,CH3]16 14 7

[CX4'.A;:];1 C
(H1);3 (X4,A),[H2RO,H3];1 (A)8 H
name: "Stereoselective condensation of esters with aldehydes"
reaction SMARTS: ["[CX4H2RO,CX4H3:1)[C@@H:2]([OH:3]) [C@H:4]([C@@:9]([#1:50])([OH:10])[C@@H:11]([CX4,c:12])
[CX4H2R0:13][0:14][CX4:15]([#1:17])([#1:18])[CH2,¢,#1,CH3:16]) [CRO:5])(=[0:6])[0:7][CX4H2,CX4H3:8]>>[C:1][C@@H:2]([0:3])[
C:4][C:5](=[0:6])[0:7][C:8].[#1:50][C:9](=[0:10])[C@@H:11]([*:12])[C:13][O:14][CX4:15]([#1:17])([#1:18])[*:16]"]
protection_conditions_code: ["SB16","SC88"]
protections: ["[#6][CH2][OH]", "[#6][CH]([#6])[OH]", "[#6][C]([#6])([#6])[OH]", "[c][OH]", "[OH][c][c][OH]", "[#6][CH]=0",
"[#6]C([OH])=0", "[CX4,c][SX2H]", "[OH][CX4][CX4][OH]", "[OH][CX4]C[CX4][OH]", "[CX4,c][NH2]", "[CX4,c][NH][CX4,c]", "[nH] "]
incompatibilities: ["[#6][CH]=[SX1]", "[CX3]=[NX3+][O-]", "[CX4][O][S](=0)(=O)[#6]", "[#6]S(=0)[CI,Br,I]", "[#6]C(=[SX1])[#86]",
"[#6][SX3](=0O)[OH]", "[CX4]1[SX2][CX4]1", "[#6][S](= O)( O)[OH]", "[#6][N+]#[C-]", "[#6]N=C=[O,S]", "[#6][SX2,0]C#N",
"[#6]C(=0)[CI,Br,1]", "[#6]C(=[0])OC(=[O])[#6]", "CIC=N", "[#6]O[N+]([O-])=0" , "[#6]O[OH]", "[#6]00[#6]", "[#6][NX2]=0",
"[CX3]=[CX2]=0", "[#6]=[N+]=[N-]", "c[N+]#[N]", [CX3] [NX2H]", "[CX3]=[NX2][O]", "[#6][NX3][OH]", "[CX3]=[CX3][OH]",

"[OH][CX4][O]", "[#8][Li]", "[#6][BX3]([O,#6])[O,#6]", "[#6][Mg][*]", "[#6][B-](F)(F)F", "[#6][Zn][*]", "[#6][PX3]([#6])[#6]", "N=N",

"[#6][SX2][SX2][#6]", "[#6][SX3])(=0)[#6]", "[CX4][C],BrI]", "[Cl,Br,]]C¥C", "C#[CH]", "[#6][S](=0)(=0)[#6]", "[CX4]1[O,N][CX4]1",
"[#6]C(=O)[N]=[N+]=[N-]",  "[CX4IHO][N+]([O-])=0",  "[CX4IHO]JCHN",  "[#6]C(=O)[NH2]",  "[#6]C([NH][CX4,c])=[0,S]",
"[CX4!HO][C](=[O]) [OHO]", "[CX41HO]C(=O)N([#6])[#6]",

"[CX2]#[CX2]C(=0)[O,N,S]", "[CX3]=[CX2]=[CX3,CX2]", "[n][c:r6]([CI,F])[n,c]"]
typical reaction conditions: "1.LDA.THF then TMSCI 2.TiCl4.DCM"
references: " 10.1016/50040-4039(00)82373-4

diastereoselective: False

1 of 100k expert-written reaction rules

'[#6][S](=0)(=0)[NH2]", "[CX4,c][NX3][NH2]",
"[CX3]([#6,#1])([#6,#1])=[NX2][*10]", "[CX3!HO]=[CX3]C#N", "[CX31HO]=[CX3]C(=0)[O,N,S]", "[CX2]#[CX2]CHN",

Decision scheme transformation: General transformation

Stereoselective condensation

OH O R; on
NO_~intramolecular ~_YES Ry “‘J]\o’R1 2 + /[’O
reaction R, O R R
s . HO" R R—0 1 ’
Cannot apply the
YES ~“stereocenter at ~NO Ltransfonnatlon]

.

'd N\
Cannot apply the

transformation NO
A

position #
unsubstituted

YES
enolate

B face-selectivity

A

[Cannot apply the}

position
#3 hydroxyl

NO
!

Cannot apply the
transformation

transformation YES

position
#12 alkyl
or aryl

NO YES

v

r— [Cannot apply the}

transformation position #14

oxygen

YES

transformation

p
no| Cannot apply the]

\,

aldehyde
face-selectivity

positions
#15,416
bulky

NO

transformation

z
YES| Cannot apply the]

matched

stereochemistry at
#2 and #11

acyclic
substrates

transformation

p
Cannot apply the NO NO| Cannot apply the
transformation

\

.
Apply the
transformation

https://ars.els-cdn.com/content/image/1-s2.0-S2451929418300639-mmc4.pdf
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cPrL ) S
Reaction prediction

reaction classification task yield prediction task Pd(OAC)2/BINAP.

N2 - o%/ toluene, Cs2C0O3 ’P
Triflyloxy Buchwald- 9 1 % g TQ LY ‘ .
Hartwig amination \ / forward reaction prediction task

Pd(OAc)2/BINAP, ’P

NHe 0 toluene, Cs2CO3 N N °
\/O\H/Q/ : ET\s‘b B \/OTQ/ . \/O]/Q/ ' ? ’P

single-step retrosynthesis prediction task

example literature reaction

atom-mapping task l

H
N
25 23 NH, o 1t Pd(OAc)2/BINAP, s ) N~
15 17 F -~ 17 3 OO
,

25
) ) W O 4 toluene, Cs2C03 .
O 22 F>l/ % — O 18
16 21 3 \16/ 203 227 g 2

2T ‘ | multi-step synthesis planning task

a



=PL Early deep learning for reaction
prediction

= Kayala (2011), Fooshee (2018) & Baldi: neural network to predict
mechanistic steps through the identification and ranking of electron

sources and sinks
= Limitation: Hand-crafted rules as training (11k elementary reactions, not

open)
Reactant1 Reactant2 Reagent Product Structure
= Weil et al. (2016), reaction template e e gN S -
prediction (only 17 classes, i S " N
2 reactants, 1 reagent) Generation  WNNNNTD — (NENTH CHINIID g

Reaction

Neural Networks for the Prediction of Organic Chemistry Reactions v oo ot
Jennifer N. Weit, David Duvenaud¥ and Alan Aspuru-Guzik™® Neural 'ﬂ'i’ff_ﬂ-‘ n
Network ' L

View Author Information v Training o \ 1
:u;ii::ea:il'loi::;;f: gi:ot.b\zfi:l 42(;10:,62\,/1 0,725-732 Article Views Altmetric Citations Reaction Type
https://doi.org/10.1021/acscentsci.6b00219 31 3 83 1 68 274 Prediction
Copyright © 2016 American Chemical Society = | £/ pN ABOUT THESE METRICS |
llllllllllllllllll .l Target: O

SN

18



=PFL Template-based approaches with
automated extraction (Segler & Waller)

Reactanti  Resctantz  Reagent Product Structure
= Similar to the Wei approach N )f - C” % Syt o
= But automated extraction of senereten A
9k templates from Reaxys
« One ECFP fingerprint to encode Nour Transformation
reactants T,ai,,mzmw -

Prediclion:  CECECEEIITIITIED
Target.  CECITIITTTITTIIID)

Neural-Symbolic Machine Learning for Retrosynthesis and
Reaction Prediction

Marwin H. S. Segler, Prof. Mark P. Waller 52«

First published: 30 January 2017 | https://doi.org/10.1002/chem.201605499 | Citations: 244
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a) Forward Reaction c)
1. BU3AI, CH2C|2 Hadlus 0
-78 Cto rt Reaction
e Centre
2. DMP, CH.Cl, " H
(@)
Reactant Product d)
b) Retrosynthetic Reaction ‘,, S
Radius-1
4 Lo n
3
2 9
1
1 11 10
1 10 11
Product Reactant e)
Atom-mapped reaction SMILES ‘.\ e
[CH3:1][CH:2]1[CH2:3][CH2:4][CH:5]([C:6]2=[CH:12][CH2:11][CH2:10][CH2:9] -
[CH2:8][CH2:7]2)[0:15][C:14]1=[CH2:13]>>[CH3:1)[CH:2]1[CH2:3][CH2:4)/ Radius-2

[CH:5]=[C:6]2/[CH2: 7)[CH2:8][CH2:9)[CH2:10][CH2:11]CH:12]2[CH2:13)
[C:14]1=[0:15]

Automatic Extraction of Reaction
Templates for Synthesis Prediction

Amol Thakkar$* and Jean-Louis Reymond*

SSCS-Metrohm award for best oral presentation in Computational Chemistry

» AN

Reaction SMARTS - Shell/Radius 0
(ICH;D2;+0:4)=[C;H0;D3;+0:5]\[CH;D3;+0:6)-[CH2;D2;+0:1]-
[C;HO0;D3;+0:2]=[O;H0;D1,;+0:3])>>([CHZ;D1;+0:1]=[C;H0;D3;+0:2]-
(O;H0;D2;+0:3)-{CH;D3;+0:4]}-[C;HO;D3;+0:5]=[CH;D2;+0:6])

[ ——_
N6
: g
1 1 014
183 1N 15
o)
15

Reaction SMARTS - Shell/Radius 1
([C:1]-[CH;D3;+0:2)(-{CH2;D2;+0:10}-{C;HO;D3;+0:8](-
[C:9])=[O;HO;D1;+0:7])/[C:HO;D3;+0:3)(-[C:4])=[CH:D2;+0:5]\[C:6])>>([C:1}-
[CH;D2;+0:2]=[C;HO;D3;+0:3](-[C:4])-[CH;D3;+0:5](-[C:6])-[O;H0;D2;+0:7]-
[C:HO;D3;+0:8](-[C:9])=|CH2;D1;+0:10])

o
" 6
1 2 1 :
=353 “11 10
(@]
15

Reaction SMARTS - Shell/Radius 2
([C:1]-[C:2]-{CH;D3;+0:3]1-[CH2;D2;+0:13]-[C;H0;D3;+0:12]
(=[O;HO;D1;+0:14])-[C:10)(-[C;D1;H3:11])-[C:9]-[C:8)/
[CH;D2;+0:7]=[C;HO0;D3;+0:4]\1-[C:5]}-[C:6])>>([C:1]-[C:2]-
[CH;D2;+0:3]=[C;H0;D3;+0:4](-[C:5]-[C:6])-[CH;D3;+0:7]1-[C:8]}-[C:9]-[C:10](-
[C;D1;H3:11])-[C;HO0;D3;+0:12](=[CH2,D1,+0:13])-[O;H0;D2;+0:14}-1)

20



=P*L.Bond change prediction / graph edit- “

A. Reactant pool as molecules

23 3
o P NH, "
O )l\
238, 24

2€+,
5 ﬁ” 14'0 12 015
3
H,0 35
3
o)
10 2\\8/’

8
“HO 7 21

E. Predicted product species

1 3

0 0
N "
86% f\@“‘mw
0 NH,
\ Z

( 3

8
™| o OY X
N N
7z

\,
4 3

o‘
F N 87
A osen
Br 0
. J

000

ke 19
s °§/"\

based methods

B. Reactant pool as attributed graph

C. Predicted bond changes
Atom number [1-33]

(ve-2] Jequinu woy

9%

D. Combinatorially-enumerated candidate products (filter)

il

2
HyN F

p
"
o -
o, @ JC(
/s.\ F
0

w W Br F 4
QL
- )
HNT ST F NS

#invalid 9.

A\

# invalid ™
AN\

# Thvalid

000

DOI: 10.1039/C8SC04228D (Edge Article) Chem. Sci., 2019, 10, 370-377

A graph-convolutional neural network model for the
prediction of chemical reactivity?

Connor W. Coley ‘' 2 Wengong Jin ©, Luke Rogers ?, Timothy F. Jamison '’ ¢, Tommi S. Jaakkola 2, William H. Green '’ ? Regina

m  Barzilay *’and Klavs F. Jensen [

A. Reactant pool as attributed graph  B. Iterative convolutional embedding of atom feature vectors

f, €30

self features

f. f.. ©OOCO—-
fr fro SO 0CO-
fy £,y QOOQ9
u fu't‘
neighbor features

C. Calculation of local feature vectors D. Global attention mechanism to obtain atom-centered context vectors
Cuv \@
Ca OO~ @\
( ) /®- 0.7 (I(’p
w .
§ pairwise attention fav @—‘::l attention score
- )
§ (1] l
.‘5) Qqp o.7® C(J \ _
28 Op 0.4 (X Cp ~@- Sy
§ . global features
weighted sum of /
local atom features
000 ®_@\ Key
far G@—-MN—=O-{N-@380 Sav O atom ® summation
Cy GO0 / reactivity scores @O bond-like feature vectors & outer product
@“@ OO0 atom-like feature vectors @ neural network




=PrL Limitations of atom-mapping dependent
approaches

Reaction SMILES (text-based reaction representation, precursors>>products)

CC(=0)[0-].CC(=0)[0-].CC1=CCC(C)(C)c2cc(0OS(=0)(=0)C(F)(F)F)c(C)cc21.CCOC(=0)cacee(N)ccl.Celceceeecl.0=C([O-])[0O-].[Cs+].[Cs+].
[Pd+2].clccc(P(c2cceec2)c2cecc3cccec3c2-c2c(P(c3ceccee3)c3cceccece3)ccc3ccccc23)ecl>>CCOC(=0)cleecc(Nec2cec3ce(cc2C)C(C)=CCC3(C)C)cca

Atom-mapping (e.g. RXNMapper) ‘

Atom-mapped reaction (required for reaction template, centre and bond change extraction)

Atom-mapping dependent approaches

= & are only as good as this step.
5 Pd(OAC)2/BINAP, w  H o 4
. T tolueng, Cs2C03 o - OO |
St R T IA g Wrong atom-mapping
L , z 1 * Wrong graph-edits

CC(=0)[0-].CC(=0)[0-].Cclccececl.0=C([0-])[0-].0=S(=0)(O[c:11]1[cH:12][c:13]2[c:14]([cH:15][c:16]1[CH3:17])[C:18]([CH3:19])=[CH:20]
[CH2:21][C:22]2([CH3:23])[CH3:24])C(F)(F)F.[CH3:1][CH2:2][0:3][C:4](=[0:5])[c:6]1[cH:7][cH:8][c:9](INH2:10])[cH:25][cH:26]1.[Cs+].[Cs+]. * Wrong templates
[Pd+2].clccc(P(c2cceec2)c2ccc3cceccc3c2-c2¢(P(c3cecee3)c3cccece3)ccc3ceccc23)ccl>>[CH3:1][CH2:2][0:3][C:4](=[0:5))[c:6]1[cH:7][cH:8]
[c:9]([NH:10][c:11]2[cH:12][c:13]3[c:14]([cH:15][c:16]2[CH3:17])[C:18]([CH3:19])=[CH:20][CH2:21][C:22]3([CH3:23])[CH3:24])[cH:25][cH:26]1

Reaction template

Condensed Graph of Reaction

F
F_|_F

0=S=0
|
O b H O
NH, WOR8 ', N*

1§2E " ,:>1/ N 5( > Y jef7 \/O\Q/Q/NN. O‘

22



=Pi-L

SMILES-2-SMILES approaches
— How to overcome atom-mapping
dependence




=Pi-L

Atoms as letters, molecules as words

Precursors >> products

)L - H—

J J AV

CC(C)S.CN(C)C= O.Fclcccnch.O C([O-D[O-].[K+].[K+]>>CC(C)SclncccclF

‘ Split -> “sequences of atoms” called tokens

CC(C)S.CN(C)C=0.FclcccnclF.O0=C([O-])IO-].[K+].[K+]>>CC(C)ScdncccclF

- Borrow methods developed tor human languages

Nam & Kim, arXiv:1612.09529; Liu et al., ACS Centr. Sci. 2017; Schwaller et al., Chem. Sci, 2018



=r*- Sequence-2-sequence models

French: Le chat est noilr. German: Die Katze ist schwarz.

Interesting features

\ Vi Yy Vs Va

¢ 00000

—>

X X X X et 33332

X0 X1 X, X3 yo y1 Y, y3
Problem: fixed size
INPUTS = reactants + reagents OUTPUTS = products
Brclcncc(Br)cl.CN(C)C=0.C[0O-].[Na+] COclcncc(Br)ci1 END

- Sutskever et al., Sequence to Sequence Learning with Neural Networks. NeurIPS, 2014.
Cho et al., Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. EMNLP, 2014.



cPrL
Sequence-2-sequence models with attention

One state per input
he hy h, hy

y i .

memory bank

cosee 0000

Encoder-decod
X, X, X, X ncoder-decoder

attention yo yl y2 y3

Attention = ability to focus on most important features

Bahdanau et al., Neural Machine Translation by Jointly Learning to Align and Translate. ICLR, 2015
- Luong et al., Effective approaches to attention-based neural machine translation, EMNLP, 2015



cPrL :
Transformer architecture

output
® 6 0 00O
® 6 0 00
Input
encoder decoder

- Stacks of attention layers
- Multi-head attention

- Vaswani et al., Neural Machine Translation by Jointly Learning to Align and Translate. NeurIPS, 2017



=PrL
Molecular Transformer

products
precursors
‘ F F -

HS: /N\%O N/ \ 'O)J\O'

— K+ K+

) 0000
CC(C)S.CN(C)C=0.FclcccnclkF. input
O=C([O-])[0O-].[K+].[K+]
encoder decoder

* No rules integrated / no chemical knowledge
« Accurate predictions on unseen reactions
» Better than rule and graph-based approaches

Schwaller et al., Molecular Transformer — A Model for Uncertainty-Calibrated Chemical

Reaction Prediction. ACS Central Science, 2019
i IBM Research



=PFL
USPTO-MIT benchmark (no stereochemistry)

2018 2020

Top-1 Acc. [%] WLDNS5 Molecular Graph-NN Augmented MT.
Coley et al. Transformer Qian et a. Tetko et al.

separated 85.6 90

mixed 74 (earlier Not possible
version)




EPFL
Separated vs mixed setting

N +
‘ Na

Separated

reactants reagents products

Mixed

reactants & reagents products

: No distinction between reactants and reagents



=Pi-L

Human prediction benchmark

100 ’
80
X e b S W — = p———
%)
®© 60 -
-
)
5 ©
5 T 40
@ -
g 2 - = Molecular transformer
E 0 T Human (best)
2 = = \WLDN5
:% Human (av.)
E ° Q O O O O O \>
= O
|5 O D $ [ O I P
5 ¥ & ¢ & & 8
2 7 > & 9 P
© V N
% Reaction template popularity bins
<
5 common < > rare
-

87.5 % Molecular Transformer

76.5 % best human
72.5 % Coley et al. model

50.6 % average human

- 80 reactions (10 reactions per bin)
- Given to 11 chemists

HT™ML] A graph-convolutional neural network model for the prediction of chemical

reactivity
CW Coley, W Jin, L Rogers, TF Jamison... - Chemical ..., 2019 - pubs.rsc.org

We present a supervised learning approach to predict the products of organic reactions
given their reactants, reagents, and solvent (s). The prediction task is factored into two
stages comparable to manual expert approaches: considering possible sites of reactivity ...

vw 99 Cited by 132 Related articles All 8 versions

Graph-edit-based, atom-mapping dependent



=Pi-L

Methods Top-n accuracy (%)
1 3 5 10
USPTO_480k_mixed

MEGAN (Sacha et al., 2021) 86.3 92.4 94.0 95.4
Molecular Transformer (Schwaller et al., 2019) 88.6 93.5 904.2 94.9
Graph2SMILES (D-GCN) (ours) 90.3 94.0 94.6 95.2
Graph2SMILES (D-GAT) (ours) 90.3 94.0 94 .8 95.3
Augmented Transformer (Tetko et al., 2020) 90.6 - 96.1 -
Chemformer (Irwin et al., 2021) 91.3 - 93.7 94.0

PERMUTATION INVARIANT GRAPH-TO-SEQUENCE
MODEL FOR TEMPLATE-FREE RETROSYNTHESIS AND

s REACTION PREDICTION Graph2SMILES

Zhengkai Tu'? and Connor W. Coley!3

Chemformer: a pre-trained transformer for computational
chemistry

Ross Irwin!, Spyridon Dimitriadis"?, Jiazhen He' and Esben Jannik Bjerrum

State-of-the-art augmented NLP transformer models

for direct and single-step retrosynthesis Molecule Edit Graph Attention Network: Modeling Chemical Reactions as Sequences of

Graph Edits

Mikotaj Sacha, Mikotaj Btaz, Piotr Byrski, Pawet Dgbrowski-Tumaniski, Mikotaj Chrominski, Rafat Loska, Pawet Wtodarczyk-Pruszynski, and

Stanistaw Jastrzebski* M E G A N

Igor V. Tetko &, Pavel Karpov, Ruud Van Deursen & Guillaume Godin

Augmented Transformer




cPrL , :
Extensive data augmentations

H,N clc(N)ccc(C)cl  Cclccc(N)ccl
s clcc(C)ccclN c1(N)ccc(C)ccl

\©\ — clc(Ceccc(N)el  Ncleec(C)eel

cl(C)ccc(N)ccl  clcc(N)cceclC

Molecule SMILES randomizations

{aryl_halide}.{methylaniline}.{pd_catalyst}.{ligand}.{base}.{additive}>>{product}
{ligand}.{base}.{methylaniline}.{additive}.{pd_catalyst}.{aryl_halide}>>{product}
{base}.{methylaniline}.{pd_catalyst}.{aryl_halide}.{additive}.{ligand}>>{product}
{additive}.{base}.{aryl_halide}.{ligand}.{methylaniline}.{pd_catalyst}>>{product}
{aryl_halide}.{pd_catalyst}.{base}.{ligand}.{methylaniline}.{additive}>>{product}

Molecule permutations

Data augmentation strategies to improve reaction
yield predictions and estimate uncertainty

State-of-the-art augmented NLP transformer models
for direct and single-step retrosynthesis

Philippe Schwaller!? Alain C. Vaucher! Teodoro Laino!
Igor V. Tetko &, Pavel Karpov, Ruud Van Deursen & Guillaume Godin phs@zurich.ibm. com ava@zurich.ibm.com teo@zurich.ibm. com

Jean-Louis Reymond?
jean-louis.reymond@dcb.unibe.ch



cPrL .
Large-scale pretraining

______________________________________________ 5
|( Step 1: Pre-train on 100M molecules |
| | cnre(=0)cze(nen2€)nic)c1=0<e> | :
| T ) S i
| Bidirectional = Autoregressive :
: Encoder ) Decoder |
| 4 ) :
: | cn1 <MASK> 2¢(ncn2¢) <MASK> O | <> cn1c(=0)c2¢(nen2€)n(c)c1=0 | '
| rfE\----\ '
I \ Modification » :
: b \ |
| |
| |
| |
| |
T e S B S S S S S e e e T S s e e R e )
B T e T T T e e e i T T T T e T e \
: Step 2: Fine-tune on downstream tasks 2.38 |
j products <e> new molecule <e> | :
: r N r - D [ G 8 ) :
: Encoder |wmp| Decoder Encoder Jﬂ Decoder ] Encoder |
| @ Yy @ Yy L A
| ¥ ¥ ¥ t $ |
| reactants <s> products <opt> molecule | <> newmolecule | | <task> molecule | |
|

{ Reaction Prediction Molecular Optimisation Property Prediction |
______________________________________________ >

Chemformer: a pre-trained transformer for computational
chemistry

Ross Irwin', Spyridon Dimitriadis"?, Jiazhen He'! and Esben Jannik Bjerrum3" (2}

B BMES590 / Accelerating Chemical Synthesis with Transformers



=Pi-L

Graph2SMILES -> Graph encoder
with a SMILES decoder

BrCclcccecl.Oclecc(O)c(Br)cl  SMILES reader /@:
HO

-~

I
I
I
I
|
I
I
I
|
I
I
|
|
I
I
I
I
I
I
|
|
I
I
|
I
I
I
I
I
I
I
|
I
I
|
|

1->2
2->3
15->16
15->17

\

Source SMILES

- —————————— — —— — — —— — — —————————————— e e e -
-— - -

Atom representations
(with local context)

1
2
3

16
17

Atom features

ﬂl:

Bond features

-00..1
0-1..0
01-..1

RDKit

______________________

Permutation invariant

D-GAT

path lengths

Compute shortest

Molecular graphs ; _
ik : graph encoding
' Input
@\/Br | features
i RDKit | | o Global
featurization attn.
Br \\

______________________

Atom representations ° .

(with both local and
global contexts)

\ g
[ E E et
.
L 8
||
[
,|Global ,
—~ ﬁ - attn.
.
-
= =
1
[
AT :
:
j/
012 ..3 TPy Fy eee Iy
101 ..2 r Rl e T,
210 ..1 Embedding L N PR
......... 1 I - ses ese oo T
ooku 1
32110 P r,r,r, r, r, Graph-aware

= 8

positional embedding

o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

Encoder-decoder

[ S ——

_____________________________

Autoregressive decoding

\

-

o s e e e e e E E e GE S EE EE EE S S EE D D G EE S G G GE S G GE G e s ae e

attention

- - ——— —

. Target SMILES
Oclccc(OCc2ccccc2)c(Br)cl

!

———————————————

——————————

from encoder

)

Helper

N
(—_-—.
-

-« ==
C

C
C

]
C
(

-
BB o

‘-———.
e

\

-
-

—
- e e e e e e e e e e e e G e e e e e e -

Transformer I

PERMUTATION
MODEL FOR TEMPLATE-FREE RETROSYNTHESIS AND
REACTION PREDICTION

N decoder ,

o - - - - - —— -

—— - - - — -

INVARIANT

GRAPH-TO-SEQUENCE

Zhengkai Tu'? and Connor W. Coley'-3



="~ Stereochemistry & experimental validation

 14-step synthesis of a lipid-linked oligosaccharide
« >40% accuracy increase with Carbo Transformer ﬁ &ﬁ

» Similar performance gains on JACS/CARBO test sets

o—P\OR1

BnO

O H
0O N

o&w/ “~_ -Cbz BnO

HTCA o
O N @) NHCbz
TMSOTf 3 O HTcR/\/
H —> ?oi
N3
H
O 0

DCM C
"o O sph ’ %Sut' Ph—5 score = 0.77
oo Bz encoder decoder BnO B
Precursors Products

Transfer learning is applicable to any reaction subspace of interest!

Transfer learning enables the molecular transformer to predict regio- and steryfselectlv
reactions on carbohydratess ~ wesw

lesi* Schwaller* et al., Nature C cations, 2020
_ Pesciullesi*, Schwaller* et a ature Communications IBM Reseal‘Ch




*"“What Is transfer learning ?

Training strategy it < il

« Patent reactions [— Large generi

ogge = = dztaese: o‘;lyc + + -
(1 mlu.lOn) =

o

« Carbohydrate \

. Small specific
reaCtlonS data set only - -

(few thousands)

EE - \

++ ++
Cal‘bOhyd ra.te Multi-task transfer learning
Transformer

Sequential transfer learning

- Transfer learning applicable to any reaction subspace of interest!



cPrL : :
Molecular Transtormer for enzymatic reactions

How to represent the enzymes?

0 ) omega-transaminase J\/O
/O\)k from arthrobacter S

v v t

o0 0 00
_omega - trans

COCC(=0)C aminase_from — w —> COC[C@H](C)N

_arthrobacter

0000 b

-] ° u
precursors & Enzymatic David Kreutter

- roducts Reymond group  busersme
enzyme descriptions Transformer P

Kreutter et al., Predicting enzymatic reactions with a molecular transformer. Chem. Sci., 2021



=PFL Harder benchmark

@ typically reaction predictors
assessed on in-distribution @ here we assess on more
data realistic out-of-distribution data
S . ammn
P = ] . e y s = —
o it
ey
=
| test reactions ; \test reactions
) & é,} ﬁ é}ﬁ}‘ . ad T {q}ﬁ’y é:‘§"y dﬁ}f}y eee
train reactions trawn reactions
0.65 B 1.0 1800
Training cut off —#*— Acc. (LH axis) "
0.60 1 1996 —— 2008 —— 2016 _.._ Num. BH rxns seen :'I - 1600 o
- 2000 —— 2012 —— 2020 0.8 - Mg @0 | £ Ly go
— 2004 \ 2020 :5
050 7 I\:, 2016 o - 1200 ‘2
oas ] .“,II \ g 2012 § 0.6 - .é
\IpY . B
X ‘\' 1V, 2008 S S
0.40 - I\ 7N 2, 2004 £ - 800 ©
\ W 8 0.4 1 s
0.35 - \ < 600
0.30 02 - [ 400 g
0.25 L 200 ~
0.20 — — — — — 0.0 0
1980 1990 2000 2010 2020
Test year Dataset trained on includes reactions <= this year

ARTICLE | March 12,2025

Challenging Reaction Prediction Models to Generalize to Novel

Chemistry

John Bradshaw, Anji Zhang, Babak Mahjour, David E. Graff, Marwin H. S. Segler, and Connor W. Coley*

Ing needed

a. Model 1 Top-N 0 Previous
Model2 | accuracy Q work
ChORISO - e Sk N\(------Cooooooooooooo-
Academic Chemistry
reactions relevant
dataset metrics This
_____________________________________ work
Literature *Q Out-of- . .Out. of j&
reactlons distribution dlstl‘lbutlon .
splits robustness II;J\Q» -
Sustainability
assessment 'ﬂ
b. Identifying failure modes in reaction prediction
0 0
o) 0
| ON R 0 ’/{) R O ’/{‘)
| : G ¥ 50T
o 0 N A HO_5_OH ?
0 o

Incorrect selectivity Poor out-of-distribution generalization

[Submitted on 14 Dec 2023]

Holistic chemical evaluation reveals pitfalls in
reaction prediction models

Victor Sabanza Gil, Andres M. Bran, Malte Franke, Remi Schlama, Jeremy S. Luterbacher, Philippe Schwaller

39



=Pi-L

Template-based approaches (atom-mapping dependent)

Template Product ranking (after

NH; 0 = classification template application)
. m/@ L. O‘ Pd(OAC)2/BINAP, - template 772 - product 772
e I F>1/ © HolIene; 082003 - template 123 - product 521

- template 921 - product 921
fingerprint '

Graph edit-based approach (atom-mapping dependent)

\ Pd(OAC)2/BINAP, \, a‘
g T\O toluene, Cs2C03 .f \

Sequence-based approach (atom-mapping independent)

o0 000
NH
Pd(OAC)2/BINAP, H '
P >l/ % toluene, Cs2CO3 o
o0 000
? Encoder-decoder model

CC (=0)[0-].CC(=0)[0-].CC1=CCC(C)(C)c2cc(0S(=0)(=0)C(F)
(F)F)c(C)cc21.CCOC(=0)clcce(N)ecl.Celeceec.0=C((0-) > CCOC(=0)clccc(Nc2cc3c(cc2C)
[0-].[Cs+].[Cs+].[Pd+2].c1ccec(P(c2cccec2)c2ecec3cecce3c2- C(C)=CCC3(C)C)ccl
c2c(P(c3cceee3)c3cccee3)cce3ccccc23)cecl atom-wise product prediction

bond change prediction



=P*L Projects

Data Is key!



