https://image.lexica.art/full_jpg/566a2db6-7b59-4fc3-a38d-7608bc3009fb

A\

Philippe Schwaller

Laboratory of Artificial
Chemical Intelligence
(LIAC)

Unsupervised
learning /
- Explainability

\
o (\.}\
ﬂ\Q),
",\ B

Al for Chemistry

=P*L Recap 5
N S

a Molecular descriptors b Molecular representations
X
O x =< O. _.OH molecular graph
OH . binary fingerprints RS atom features
—_— — ol1]1fof1fof1]o]o]1
X of1]o]of1]1]o]o
OH ~ ~ . _bond features

1{0]1|0|1|1

®* molecular weight
classical descriptors

* logP . SMILES string
® nrings 0.2[0.6[0.3[0.2[0.9]0.1
®* n atoms — olc|(]|=|0|)]|c|1]|c|c|c|c]|c|1
® etc. |
d Traditional machine learning e Deep learning
RF GBM I
Random data Train on C e I I I p rO p
subsets residuals
¥

| [| o [
scilkit—-learn O PyTorch Lightning
- f
- . . W Sae KNN LSTM CNN Transformer
achine Learning in Python > k=3~ Q’ o o Q Q
e o ‘0 9, c t Ot c ¢ | > .
o: ¥ | L b4 { (mylihea ~. Hugging Face
0 T4 Ol »(h_)=>(h)=>(h,)> o) (0 I D — @)
® @) ° 2‘: b ¢); ¢); er dr

o o ¢ XX, ¢ ¢
A :

Exposing the Limitations of Molecular Machine Learning with Activity Cliffs

Derek van Tilborg, Alisa Alenicheva, and Francesca Grisoni*

@ Cite this: J. Chem. Inf. Model. 2022, 62, 23, 5938- Article Views Altmetric Citations
5951

Publication Date: December 1, 2022 v 7 3 3 3 6 0 -
https://doi.org/10.1021/acs.jcim.2c01073 LEARN ABOUT THESE METRICS

[] Copyright © 2022 The Authors. Published by
American Chemical Society

=P Key concepts — PyTorch/Pytorch lightning

= [hree things needed to train a deep learning model in Py Torch

1. Data: Methods to load your data and make it available for PyTorch to consume. This includes loading the
data from disk or memory, performing any necessary preprocessing (e.g., converting NumPy arrays to
PyTorch tensors), batching, shuffling, etc.

. Model: A class that describes your model structure and forward pass. PyTorch makes it convenient by
requiring you to define only the forward pass while relying on its built-in gradient tracking for the
backward pass. However, if you need to implement a custom function, you'll need to define both forward
and backward pass logic for that function. Most of the time, the functionalities you need are already
implemented in PyTorch.

. Training Loop: This is where everything is stitched together. The training loop involves loading data,
using it to train the model, calculating the loss function, propagating back the gradients, and updating the

model parameters. PyTorch's flexibility allows you to implement the training loop yourself, instead of

relying on higher-level abstractions like model. fit . This hands-on approach deepens your

understanding of deep learning.

https://www.eletreby.me/blog/getting-started-with-pytorch-dataset-and-dataloader

=PFL Key concepts — Dataset and Loader

= The Dataset class defines your dataset and how to fetch a single row.
= The Dataloader class handles batching and shuffling

Toy Dataset: FashionMNIST

from torch.utils.data import DatalLoader

from torchvision import datasets y h e

from torchvision.transforms import ToTensor sl sz =

training_data = datasets.FashionMNIST(
root="data ,

train_dataloader = Dataloader(training_data, batch_size=batch_size, shuffle=
test_dataloader = DatalLoader(test _data, batch_size=batch_size)
train= ,

download= , for X, y in test_dataloader:

transform=ToTensor(),

| | {X.shape}")
{y.shape} {y.dtypel}")

test_data = datasets.FashionMNIST(
root="data",
train= ,
down load= ,
transform=ToTensor(),

Output:

Shape of X [N, C, H, W]: torch.Size([c4, 1,
Shape of y: torch.Size([54]) torch.int64

More information:

https://www.eletreby.me/blog/getting-started-with-pytorch-dataset-and-dataloader

Key concepts — PyTorch model

. Inherit from torch.nn.Module : This is the base class for all neural network modules in PyTorch.
. Implement an __init__ method: This method defines the model's components, such as layers and
activation functions.
. Implement a forward method: This method defines the forward pass, specifying how input data
propagates through the model components.
Lpor tore NeuralNetwork (
(flatten): Flatten(start dim=1, end dim=-1)
(11): Linear(in_features= , out _features=

from torch import nn

clas's (nn.Module):
def (self):
().__1nit__() (12): Linear(in features= . out_features=

(
.flatten = nn.Flatten() : _
9 = mnLliaeenian o (13): Linear(in_features= , out features=
(

.12 = nn.Linear , (relu): RelLU()

(
.13 = nn.Linear(,
(

)

.relu = nn.RelLU

(self, x):
.flatten(x)
.11(x)
.relu(x)
.12(x)
.relu(x)
logits = .13(x)
return logits Total parameters:

total _params = (p.numel() for p in model.parameters())
(1 11 parameter {total_params}")

Output:

model = NeuralNetwork()
(model)

I

I

I

bilas=
bias=
blas=

https://www.eletreby.me/blog/building-a-pytorch-model-class

=PFLKey concepts — Training loop

def (dataloader, model, loss_fn, optimizer):
size = (dataloader.dataset) 1. Cross-Entropy Loss (nn.CrossEntropylLoss): Used for classification problems. It combines

model.train() nn.LogSoftmax and nn.NLLLoss in a single class, making it ideal for multi-class classification

for batch, (X, y) 1n (dataloader): tasks like our FashionMNIST example.

X, vy = X.to(device), y.to(device)

2. Mean Squared Error (nn.MSELoss): Used for regression problems. It measures the average squared
Compute predictiol difference between the estimated values and the actual value.

pred = model(X)
10ss loss_fn(pred, vy) 3. Binary Cross-Entropy (nn.BCELoss): Used for binary classification problems where each output is

independently classified.

SO RS EEEIE =S 4. L1 Loss (nn.L1Loss): Also known as Mean Absolute Error, it's less sensitive to outliers than MSE.
loss.backward()

optimizer.step()

epochs =

optimizer.zero_grad() .
for t in : (epochs) :

1f batch % == 0: Y (f"Epoch {t+1}\n-
loss, current = loss.item(), (batch + 1) x (X) train(train_dataloader, model, loss_fn, optimizer)

(f"loss: {loss:>7f} [{current:>5d}/{size:>5d}1") test(test _dataloader, model, loss_fn)

def (dataloader, model, loss fn):
size = (dataloader.dataset)
num_batches = (dataloader)
model. ()
test loss, correct = O,

with torch.no_grad(): Recommendation: Start with code that
e worked for a similar problem, and adapt

X, y = X.to(device), y.to(device) _
pred = model(X) |t tO yOur new dataset.
test_loss += loss_fn(pred, y).item()
correct += (pred.argmax(l) == vy). (torch.
test_loss /= num_batches
correct /= size
(f"Test Error n A racy: T xcorrect) :>0 . 1f} . loss: {test loss:>8f}

https://pytorch.org/tutorials/beginner/basics/quickstart_tutorial.html
https://www.eletreby.me/blog/training-loop

=PFL. Py Torch Lightning

ass FashionMNISTModel(pl.LightningModule):
def __init__(self, learning_rate=1e-3):
super().__init_ ()

self.flatten = nn.Flatten()
self.linear_relu_stack = nn.Sequential(
o o nn.Linear(28%28, 512),
L]
Original PyTorch: an.ReLU(),
nn.Linear(512, 512),

o Components like the model, training loop, and data loading are separate pieces an.ReLU(),
nn.Linear(512, 10)
e You manually wrote functions for training and testing)
self. learning_rate = learning_rate
self.loss_fn = nn.CrossEntropyLoss()

e You explicitly managed device placement, optimization steps, and logging

forward(self, x):

PYTOl'Ch Lightning: | x = self.flatten(x)

return self.linear_relu_stack(x)

e Everything is organized into two main classes:

ef training_step(self, batch, batch_idx):

e LightningModule (model + training logic) X, y = batch

logits = self(x)
. . - - loss = self.loss_fn(logits, y)
e LightningDataModule (data preparation and loading) R Io;g' Jiosgy
return loss
e The training loop is abstracted away by the Trainer class
validation_step(self, batch, batch_idx):
X, y = batch
logits = self(x)
loss = self.loss_fn(logits, y)

preds = torch.argmax(logits, dim=1)

. Less boilerplate code: The Lightning version eliminates repetitive code patterns acc = (preds == y).float().mean()

. Better organization: Clear separation of concerns between model, data, and training el Lo luell Tese, Lems, o sale= e

self.log('val_acc', acc, prog_bar=True)

. Built-in best practices: Lightning implements ML engineering best practices by P s

default def test_step(self, batch, batch_idx):

. Easier scaling: The same code can run on CPU, single GPU, or multiple GPUs with X, y = batch

logits = self(x)
minimal Changes loss = self.loss_fn(logits, y)

preds = torch.argmax(logits, dim=1)
acc = (preds == y).float().mean()
self.log('test_loss', loss, prog_bar=True)
self.log('test_acc', acc, prog_bar=True)
return loss

def configure_optimizers(self):
return torch.optim.SGD(self.parameters(), lr=self.learning_rate

pl.seed_everything(42)

model = FashionMNISTModel()
data_module = FashionMNISTDataModule()

checkpoint_callback = ModelCheckpoint (
monitor="'val_acc’,
mode="max",
save_top_k=1,
filename="best-checkpoint’

trainer = pl.Trainer(
max_epochs=5,
accelerator="auto',
callbacks=[checkpoint_callback],

trainer.fit(model, data_module)

trainer.test(model, data_module)

"L Chemprop

O chemprop / chemprop

¢> Code () Issues 45 i1 Pullrequests 15 UJ)

» ¥ main ~ chemprop / examples /| (4

= https://github.com/chemprop/chemprop/tree/main/examples

mpnn_fingerprints.ipynb

multi_task.ipynb

predicting.ipynb

predicting_regression_multicomponent.ipynb

predicting_regression_reaction.ipynb

rigr_featurizer.ipynb

000 0 0 00 O3

shapley_value_with_customized_featurizers.ipynb

Y training.ipynb

[training_classification.ipynb
[training_regression_multicomponent.ipynb

[training_regression_reaction.ipynb

https://github.com/chemprop/chemprop/tree/main/examples

=Pi-L

Unsupervised machine learning

=PFL Categories of unsupervised learning

Clustering

Automatic grouping of similar objects into sets.

Applications: Customer segmentation, Grouping
experiment outcomes

Algorithms: k-Means, spectral clustering, mean-
shift, and more...

K-means clustering on the digits dataset (PCA-reduced data)
Centroids are marked with white cross

= https://scikit-learn.org/stable/

Dimensionality reduction

Reducing the number of random variables to

consider.

Applications: Visualization, Increased efficiency
Algorithms: PCA, feature selection, non-negative
matrix factorization, and more...

- .
Virginica * o%p
versicolour

‘ o

° s.. NP }
S e o .
2 oo

_ Setosd” -

o2

Oofo' .
' .
‘.

scikit—1learn

Machine Learning in Python

10

=PFL Clustering — what is it?

= Grouping unlabelled examples

= Typically you have a large collection of molecules, and you would like to
divide them into small groups of similar molecules (clusters)

= This can help you analyse outcomes of high-throughput screening or
virtual screening, but also pick diverse molecules (1 from each cluster)

0O O
O\N ./©\N Z° Q\N// Q\rf
I | o | S \
0O O
O @)
\ \

11

=P7L K-Means clustering (centroid-based))

» Centroid ==

& ®
o°0° 8009 8o %% o o 08000 o
Oog% "o ° O%oooozoo 0300 @ ©
0@ o
80080000 & OO%OQJO%D% @OOO
B 00 o® 00 o o& o0 o0 90 o0°
d) O o oo
oo o) o (0] 0&3 @OO
Q 005 O%% ® © o
o OC%‘D 0008 o ©®
%963 &
(988%00 % o 000 OO%
o o %o 00, 00® o
S 8 0 0% 0
o (§3© ® ® 00o & Og
5 ® ®To0°
00 o

https://www.naftaliharris.com/blog/visualizing-k-means-clustering/

center of the cluster

K randomly chosen centroids (C) Assign points to Cs Assign new Cs

=Reassign points to closest C Reassign Cs Iterate until centroids do not change anymore

=PFL._How do you define K (the ’
number of clusters)?

= A good model has low inertia and low K.

1000 ® 1000 o

500 500

100 o 100
o

Inertia
w
o
o

)

o

o
o

Inertia measures how well a dataset was clustered by K-Means. It is calculated by measuring the distance between each data point
and its centroid, squaring this distance, and summing these squares across one cluster.

=L Density-based spatial clustering of
applications with noise (DBSCAN)

o
o o ° o
Y gbod)% @O g% %CJ)O ’ @ @ OOO(?O
o) 0 0 %% o ©
g Snkabar Fiam
® o8 B 28%Re 2% Ce 8o
% 0B 0, % %8 0% o
oP §°o o © ¥ @ © 0 o
0(90%90 @ O(B e} O o ® o9 CQ)
o aBo 8o & o 0 o e ® 8o o) &
0© o0 © 50 ® ©0 L B ® o &0
OO%oOo O%Ooc» oo d Ao 65 0830 o} 0.0 §o oocg%) S
o %o
Bos °F 0 0 0002 98 0 g Eo® 0005"%%‘3&9 o 4 o0 0 B oo
o) 00 @ 0008) ©%0 o o © e OQ) Qgcg © O(ggcgquo Cb@oo % 3
® oo & ©,9 %
& %) %C;S@ © oodjcg 8 °%° 0 8 &
80%° aPq ° %3 gO¥ oo 00 @ 880
°0 05 o080 ¢ 80558 2% a,00
o
%JCO @ S} O@O ° 6 ©% 5 @ ¥y © 3o
é;O@O o oo 8 o @
o o

= Point belonging to cluster is near lots of points in that cluster
= Start by picking random point, min points in distance => add to cluster
= \When no more point can be added, pick the next arbitrary point

= https://www.naftaliharris.com/blog/visualizing-dbscan-clustering/

14

=PFL.Comparison between k-Means and

= Advantage: You don't have to specify the number of clusters in advance
in DBSCAN
*»
DBSCAN &
.
*»
K-means -

15

16

=L Butina Clustering method
(centroid-based, like K-Means)

= Generation of Fingerprints.
= |dentifying Potential Cluster Centroids
= Cluster Algorithm Based on Exclusion Spheres at a Given Tanimoto Level

= Hence, cluster will only include molecules that are above a similarity
threshold

.e ®
3 Unsupervised data base clustering based on daylight's fingerprint and Tanimoto

similarity: A fast and automated way to cluster small and large data sets
D Butina - Journal of Chemical Information and Computer ..., 1999 - ACS Publications

One of the most commonly used clustering algorithms within the worldwide pharmaceutical
industry is Jarvis— Patrick's (J- P)(Jarvis, RA IEEE Trans. Comput. 1973, C-22, 1025- 1034).
The implementation of J- P under Daylight software, using Daylight's fingerprints and the
Tanimoto similarity index, can deal with sets of 100 k molecules in a matter of a few hours.
However, the J—- P clustering algorithm has several associated problems which make it
difficult to cluster large data sets in a consistent and timely manner. The clusters produced ...

Y% Save Y9 Cite Cited by 424 Related articles All 3 versions

= https://projects.volkamerlab.org/teachopencadd/talktorials/TO05 compound_clustering.html

=PFL Code examples

class ButinaClustering:
def _ _(self, cutoff= , metric='jaccard'):
sel toff = cutoff
self.metric = metric

fit(self, x):

ninin

Perform Butina clustering on a set of fingerprints.

:param x: A numpy array of binary data
:return: self

ninin

distance _matrix = []

X = X.astype(bool)

for 1 in range(1l, len(x)):
distances = pairwise_distances(x[i,:].reshape(l, -1), x[:1,:], metric=self.metric)
distance _matrix.extend(distances.flatten().tolist())

clusters = Butina.ClusterData(distance_matrix, len(x), self.cutoff, isDistData=True)
self.clusters = clusters

cluster_labels = np.full(len(x), -1, dtype=int)
for label, cluster in enumerate(clusters):
for index in cluster:
cluster_labels[index] = label

= cluster_labels
def fit_predict(self, x):

self.fit(x)
return 5@Lf.LabeL5|

=PFL Dimensionality reduction ;

= high-dimensional space into a low-dimensional space
= How to display molecules described with a 1024-dimensional fingerprint

in 2D?
High-dimensional 2D-Embedding
chemical data sets
Reality:
X1 a
% OOO
Examples o oo —ll o-coce-capee-e-eo—>
O

(for simplicity) 002 % PCL

"L Principal Component Analysis (PCA) 19

X1

* PCA finds directions of maximum e principal components are
variance orthogonal

A)
C
(P
IS

lys

a

An

i

n

e

n

oJe

m

o

| C

Ipa

rincig

P

FL

=P

PC1

=L T-Distributed Stochastic Neighbor
Embedding (T-SNE) ¢¢ eeeeeseee o

= For complicated datasets, PCA may not work well.

0000000 O
ol il olage R eee
oo mp eRllgS -
o e~
. @0 0000 —— - eREnE -
 {aees EEw oL WERE "
0 EEEEEE e EEE rEe s {aman | | mEe=
| {anEEEE" BEEE {Smae | e
= C e {Smmn | mees
[ﬁum aemEn meE EE {Enmmamw ||
~- Q g {SmmmmamE |
. Q- {am e |
O C {e e
O W = High similarity
© i. | = Low similarity
O Hii

E High S|m|Iar|ty
= Low similarity

o— . ar— —
{
i

» Calculate similarity scores in high dimensions (here 2D)
 Randomly place the samples in lower dimensionality (1D) S _
: : e : : roF] Visualizing data using t-SNE.
° Iteratlvely move the pOIntSs untll Slmllarlty matrlx IOOkS L Van der Maaten, G Hinton - Journal of machine learning research, 2008 - jmlr.org
same as in hlgh dlme”s'OnS ... For visualizing the structure of very large data sets, we show how t-SNE can use random ...

structure of all of the data to influence the way in which a subset of the data is displayed. We ...

v¢ Save 9YY Cite Cited by 33868 Related articles All 42 versions 99

= Youtube: v=NEaUSP4YerM

=PFL Uniform manifold approximation and
projection (UMAP)

= Main ideas are similar to t-SNE

= Compute similarity in high dimensions

= Move points in low dimensions according to high-D similarity
= Two key differences

= t-SNE starts with random initialisation in low-D (every time you use it
on same data, it will be different).
In contrast, UMAP always starts with the same points.

= t-SNE moves every point at every iteration. UMAP moves one or a
small subset of points (better scaling).

Umap: Uniform manifold approximation and projection for dimension

reduction
L Mcinnes, J Healy, J Melville - arXiv preprint arXiv:1802.03426, 2018 - arxiv.org
... approximated manifold. In explaining the algorithm we will rst discuss the method of

approximating the manifold ... simplicial set structure from the manifold approximation. Final

Y% Save UYY Cite Cited by 7605 Related articles All 12 versions $9

ly, we ...

22

=Pi-L

High-dimensional
chemical data sets

ree Map (TMAP)

TMAP

I: Indexing

a TMAP

0.4 |)

| 7 1ak. '
0.0 . ‘b:é:""”."(

-

1 1 |

0.2 ,g”;&w) XA

Il: KNN Graph Generation

HI: MST Computation

IV: Layout

(St) b

Yy . 0.0
';"é.k\,\.» 02 k

A 0.4 |
/

L}‘)\\:& 0.2 '-.

2D-Embedding

.0
-

1 1 1 1 1

-04 -0.2 0.0

Cytochrome

Other Enzyme ® Membrane Receptor

(&)
o
® Epigenetic R
® lon Channel

p450 ® Kinase

egulator ® Protease

-04 -0.2 0.0 0.2 0.4

® Other
Transcription Factor
® Transporter

23

2 3

0

mTML) Visualization of very large high-dimensional data sets as minimum

spanning trees
D Probst, JL Reymond - Journal of Cheminformatics, 2020 - jcheminf.biomedcentral.com

... large data sets due to their tree-like nature, increased local and ... topographic maps (GTM)
and self-organizing maps (SOM), ... Here we present an algorithm, named TMAP (Tree MAP), to ..

v¢ Save UYY Cite Cited by 140 Related articles All 21 versions $9

L Natural Product Atlas — with TMAP

W
e

\ {
AL S

el S
’ =

SO \

T o ,-f;«w— Wy

Build your own: https://tmap.gdb.tools/

24

https://tmap.gdb.tools/src/npatlas/index.html

=Pi-L

2 | RESEARCH ARTICLE | CATALYSIS f ¥ in & % =

Accelerated dinuclear palladium catalyst identification
through unsupervised machine learning

JULIAN A. HUEFFEL , THERESA SPERGER , IGNACIO FUNES-ARDOIZ , JAS S. WARD , KARI RISSANEN , AND FRANZISKA SCHOENEBECK Authors Info

& Affiliations

SCIENCE - 25 Nov 2021 - Vol 374, Issue 6571 = pp.1134-1140 - DOI: 10.1126/science.abj0999

¥ 10300 99 15 ‘ [l 7

= Catalyst optimization is often difficult to do rationally.
= very small class of phosphine ligands known for stabilising Pd dimers.

= Hueffel et al. used machine learning to search for patterns in this known
class of ligands and thereby guide the discovery of variants that likewise
stabilize the dimers. => K-Means clustering

= [he authors were able to synthesize eight previously unreported dimers.
= More on that in the exercises!

25

=Pi-L

Unsupervised learning in Deep Learning
— representation learning

=PFL Autoencoder — dimensionality reduction

latent representation

high dimensional Encoder Decoder high dimensional

i

Bottleneck

O o O o

low dimensional

» for molecules: encoder and decoder could be recurrent neural networks/Transformers on SMILES

* There is an information bottleneck, the model has to compress the high dimensional data in a way
to be able to reconstruct it.

* Trained no a reconstruction loss

* No guarantee that close points in bottleneck are close points in high dimensional space

27

=PFL Variational Autoencoder

latent input
: input representation reconstruction H
simple
autoencoders X Z = e(x) d(z)
latent sampled latent input
. L. input distribution representation reconstruction
variational
autoencoders X p(z|x) z ~ p(z|x) d(z)
neural network neural network
encoder decoder
N\
X =d(z)
N\
loss = ||x-X]|]? + KLI N, 1)1 = || x-d() ||> + KL ,N(O, 1)]

28

g
b
-

V what we want to obtain with regularisation

Auto-encoding variational bayes

DP Kingma, M Welling - arXiv preprint arXiv:1312.6114, 2013 - arxiv.org

... variational lower bound yields a simple differentiable unbiased estimator of the lower bound;
this SGVB (Stochastic Gradient Variational Bayes... , we propose the AutoEncoding VB (AEVB...
Y% Save Y9 Cite Cited by 25476 Related articles All 41 versions 99

= https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

=Pi-L

How to apply deep learning In
the low data regime.

=Pi-L

Unsupervised learning in Deep Learning
— pretaining

Pretaining Fine-tuning

2.4M

Compounds

@
Indications
@
Mechanisms

i‘ f‘ .7 @

CHEMBL dataset
(Millions of structures —
not labeled for your task)

Your task

100 labeled datapoints
— (Not enough to train a deep learning model)

What can we do?

30

31

=PFL Self-supervised learning / pretraining

A Systematic Survey of Molecular Pre-trained Models
(Chemical Language Models)

This is a repository to help all readers who are interested in pre-training on molecules. If you find there are other
resources with this topic missing, feel free to let us know via github issues, pull requests or my email:
xiajun@westlake.edu.cn. We will update this repository and paper on a regular basis to maintain up-to-date.

Last update date: 2023-3-09
https://github.com/junxia97/awesome-pretrain-on-molecules

Strategies for pre-training graph neural networks Pre-training molecular graph representation with 3d geometry

W Hu, B Liu, J Gomes, M Zitnik, P Liang... - arXiv preprint arXiv ..., 2019 - arxiv.org S Liu, H Wang, W Liu, J Lasenby, H Guo... - arXiv preprint arXiv ..., 2021 - arxiv.org

... For Context Prediction illustrated in Figure 2 (a), on molecular graphs, we define context ... the Graph Multi-View Pre-training (GraphMVP) framework, where a 2D molecule encoder is
graphs by setting inner radius r1 = 4. On PPI networks whose diameters are often smaller than 5... pre-... Finally, we summarize a broader graph SSL family that prevails the 2D molecular graph ...
Y¢ Save DY Cite Cited by 666 Related articles All 13 versions 99 ¥ Save D9 Cite Cited by 68 Related articles All 5 versions 9

=P*L_What does self-supervised learning
mean?

= We have a lot of unlabelled data (molecules without corresponding
activity), and we invent a task that we can train on without labels.

= Corrupt the graph / hide an atom, and let the model predict it
= For SMILES-based language models, predict the next SMILES token

» Predict any part of the input from any

other part.
» Predict the ‘uiure from the past.
» Predict the fuiure from the recent past.

» Predict the na<! from the present.

» Predict the (op from the bottom.

» Predict the occluded from the visible

A
» Pretend there is a part of the input you « Past Present Future —
” don’t know and predict that. ‘ Slide: LeCun

32

33

=PFL. Masked Language Modelling (MILM) and
next sentence prediction

KSP Mask LM Ma% LM \ @ mf’ Start/End Spm
* *

. . »
e Jln) (o)Umen Ly) el e LT) -
N P
- T {-p>
BERT TR ’. BERT
Eos || By | - Ey E[SEP] = e Ey Erevs, E, .. Ey E[SEP] B .. Ey
—{ 1 L — /1 —{—F {1
[[CLS]][To;ﬂ 1 { Tol|<N] [[SEP]][To;<1 1 TokM { [CLS]]{ To;<1] [Tol|<N 1 [[SEP]] (To;<1] TokM
| | | |
Masked Sentence A P Masked Sentence B Question P Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair
Pre-training Fine-Tuning

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk
[SEP].
Label = IsNext

BERT:: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight . .) o
##tless birds [SEP] Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova

Label = NotNext Google Al Language
{jacobdevlin, mingweichang, kentonl, kristout}@google.com

=PFL Auto-regressive language modelling

My

=
<

(rame) [)
F 05 B — @

=
<

[
[
|
|

My

= https://thinkingneuron.com/sentiment-analysis-of-tweets-using-bert/

. Here the model predicts a masked word in the sentence.
name IS
} [S vain

=PFL Semi-supervised learning

A ® Class 1 B

4 A Class 2 4
® Unlabeled ;
®: A ® A
.. 2 | A *. %0 % o ®A
i A A A & ® ® :'A A A.
xil &9 ’ A Xi| o @ o A
¢ ¢ A A .“‘.:’AA‘A
e o T 4 A A R Y
s * AA *®® o o AA
2 : A o © ",' .A ® o
X2 X2

ML Model
000 000 g00
0960 ﬁ 000 000 g0
2000) A 000 000 g9
(Y XX e — ‘900 000 000
DEDO AllO 000 000 0060

Small amount of

|

labeled dataset B e B ML Model trained
: :: : :: : :: seraahmen L on labeled + pseudo-labeled
000 000 000 dataset
Large amountof ©®©®® ©66 900

unlabeled dataset

https://www.enjoyalgorithms.com/blogs/supervised-unsupervised-and-semisupervised-learning

=P*L Projects

= Groups of up to 3-4
= ML project in chemistry
= Collect data from literature / online / from a project you have worked on
= Train ML models (GitHub repo, 30%)
= Write a 4-page report including intro/task/data/methods/results (40%)
= Present outcomes in the last course session (15-20 min per group, 30%)

= Sign up on Google Form
= Fill it in by next week

36

=PFL Potential topics — select a use case

= Molecular / reaction property prediction
= Reaction/process condition optimization
= De novo molecular optimization

= Free topic

= |t's fine to start from an open-source codebase and build on top.

= Please let us know what you are most interest in, in the google form,
and we can provide useful pointers to data, baseline models, etc.

37

