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How Computational 
Methods and Data Shape 
AI for Discovery
of Functional Materials

Lausanne 07.05.2025
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▪ What are functional materials?

▪ Parallels between drug (molecule) and heterogeneous catalyst discovery 

▪ Materials as catalysts: How do materials facilitate chemical reactions?

▪ Descriptor versus dynamic approaches

• Descriptors in surface science

• Dynamic approaches in surface science

▪ MLIPs: Where do we stand?

▪ How to sample fragments on a surfaces?

GOAL: Motivate and empower you to generate and explore data!
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▪ Piezoelectric Materials 

▪ Ferro/Thermoelectric Materials

▪ Shape Memory Alloys (SMAs) 

▪ Electrochromic Materials

▪ Photovoltaic Materials

▪ Heterogeneous Catalysts

▪ …
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Why do we care?
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Why do we care?

The BASF site in Ludwigshafen, Germany, is the largest integrated 
chemical complex in the world operated by a single company. It's 
often referred to as BASF's headquarters and flagship site.

~6 raw materials coming in

~ 65 000 products going out
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Why do we care?

~ 39 000 people working

~ 200 plants

~ 2 power plants

power plant

power plant
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Parallels between drug and heterogeneous 
catalyst discovery 

Black box Black box
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Parallels between drug and heterogeneous 
catalyst discovery 



Heterogeneous Catalysis
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Heterogeneous Catalysts
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Even a simple H-H bond is very hard to simply pull apart…



Heterogeneous Catalysts
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Here is how the same profile looks if a metal surface is near by…



▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor based approaches: Activity of material described by an array of computationally available properties

d-band model

Bulk O vacancy

H/C/O/CO/OH Adsorption energy

Key/unique intermediate energy

Increasing computational cost

▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor versus dynamic approaches
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▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor based approaches: Activity of material described by an array of computationally available properties

d-band model

Bulk O vacancy

H/C/O/CO/OH Adsorption energy

Key/unique intermediate energy

Single bulk calculation required

Increasing computational cost

▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor versus dynamic approaches
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Stamenkovic et al. Nature Materials, 2007, 6, 241–247



▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor based approaches: Activity of material described by an array of computationally available properties

d-band model

Bulk O vacancy

H/C/O/CO/OH Adsorption energy

Key/unique intermediate energy

Single bulk calculation required

Increasing computational cost

Multiple slab calculations required

▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor versus dynamic approaches
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Stamenkovic et al. Nature Materials, 2007, 6, 241–247; Khatamirad, Fako et al. Catal. Sci. Technol., 2023,13, 2656-2661



Decide on what is the base material and search domain

CO2 reduction on promoted In2O3

What if we oversimplify a Real Catalysts?
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Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661
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Find a model structure capable of 

expressing the effects across the design space

What if we oversimplify a Real Catalysts?
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Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661
CO2 reduction on promoted In2O3
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Hypothesized reaction

intermediaries used as probes. 

They need to be placed at the active site

in a consistent and strategic way.

What if we oversimplify a Real Catalysts?
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Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661
CO2 reduction on promoted In2O3
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Density Functional Theory driven simulations to find the local minima.

These energies express the effect of the promoter on the base structure.

Prohibitively expensive for high-throughput screening!

What if we oversimplify a Real Catalysts?
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Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661
CO2 reduction on promoted In2O3
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High-throughput screening measurements are performed 

for different catalytic materials in parallel.

What if we oversimplify a Real Catalysts?
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Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661
CO2 reduction on promoted In2O3
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And different catalytic 

conditions in sequence.

What if we oversimplify a Real Catalysts?
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Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661
CO2 reduction on promoted In2O3
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Ready to join experimental 

and computational data!

What if we oversimplify a Real Catalysts?
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CO2 reduction on promoted In2O3
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Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661
CO2 reduction on promoted In2O3
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SISSO (sure independence screening and sparsifying operator) 

What if we oversimplify a Real Catalysts?
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SISSO (sure independence screening and sparsifying operator) 

What if we oversimplify a Real Catalysts?
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Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661
CO2 reduction on promoted In2O3
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Density Functional Theory driven simulations are employed to find the local minima.

These energies express the effect of the promoter on the base structure.

Prohibitively expensive for high-throughput screening!

Limitations of this approach
L
IA

C
 |
 S

io
n
 2

4
.0

3
.2

0
2
5

E
d
v
in

 F
a
k
o

30

Khatamirad, Fako et. al. Catal. Sci. Technol., 2023, 13, 2656–2661



◼ ML model is 103-106x faster than reference QM 

◼ Improving at each iteration and converges ~ 5-10 iterations  

◼ ML training takes ~10-24 hours

In2O3 particle SOAP-GAP FF

Schaaf L., Fako E., et al., npj Computational Materials (2023) 9:180

Machine Learning at Atomic Scale: 
Interatomic Potentials

31
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▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor based approaches: Activity of material described by an array of computationally available properties

d-band model

Bulk O vacancy

H/C/O/CO/OH Adsorption energy

Key/unique intermediate energy

Single bulk calculation required

Increasing computational cost

Multiple slab calculations required

▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor versus dynamic approaches
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Descriptor based approaches: Activity of material described by an array of computationally available properties

d-band model

Bulk O vacancy

H/C/O/CO/OH Adsorption energy

Key/unique intermediate energy

Increasing computational cost

▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor versus dynamic approaches
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Descriptor based approaches: Activity of material described by an array of computationally available properties

d-band model

Bulk O vacancy

H/C/O/CO/OH Adsorption energy

Key/unique intermediate energy

Increasing computational cost

Mechanistic approach: derive a complete mechanism (intermediates + TS), discuss barriers, build microkinetic models etc.

Simple surfaces 
(metals) + small 

molecules

Simple surfaces 
(metals) + larger 

molecules

Increasing complexity

Complex surfaces 
(oxides, alloys, etc.) + 

small molecules

Complex surfaces 
(oxides, alloys, etc.) + 

large molecules

▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor versus dynamic approaches
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35
Schaaf L., Fako E., et al., npj Computational Materials (2023) 9:180

Schaaf L., Fako E., et al., npj Computational Materials (2023) 9:180

1 NEB  = 1 Path
35
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◼ Place ALL reactants on the surface, run a single NEB along the full reaction path:
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Increasing complexity

Descriptor based approaches: Activity of material described by an array of computationally available properties

d-band model

Bulk O vacancy

H/C/O/CO/OH Adsorption energy

Key/unique intermediate energy

Increasing computational cost

Mechanistic approach: derive a complete mechanism (intermediates + TS), discuss barriers, build microkinetic models etc.

Simple surfaces 
(metals) + small 

molecules

Simple surfaces 
(metals) + larger 

molecules

Complex surfaces 
(oxides, alloys, etc.) + 

small molecules

Complex surfaces 
(oxides, alloys, etc.) + 

large molecules

reliable

▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor versus dynamic approaches
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Increasing complexity

Descriptor based approaches: Activity of material described by an array of computationally available properties

d-band model

Bulk O vacancy

H/C/O/CO/OH Adsorption energy

Key/unique intermediate energy

Increasing computational cost

Mechanistic approach: derive a complete mechanism (intermediates + TS), discuss barriers, build microkinetic models etc.

Simple surfaces 
(metals) + small 

molecules

Simple surfaces 
(metals) + larger 

molecules

Complex surfaces 
(oxides, alloys, etc.) + 

small molecules

Complex surfaces 
(oxides, alloys, etc.) + 

large molecules

reliable

▪ Approaches of tackling complexity in heterogenous catalysis

Descriptor versus dynamic approaches
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Common issue:
Under-sampling!



How to understand structures of materials?
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[1] J. Phys. Chem. C 2023, 127, 50, 24168-24182; https://www.youtube.com/stevemould

side view top view YT Steve Mould: 3000 ball bearings

not surface

surface

site

Metal atoms can make multiple covalent 
bonds, as a result they pack like rigid 
spheres!



How to understand structures of materials?
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[1] J. Phys. Chem. C 2023, 127, 50, 24168-24182; https://www.youtube.com/stevemould

side view top view

not surface

surface

The densest packing is the (111)-like, that 
makes it most stable.

As a result, all other facets can be understood 
as “steps” of this facet.

site



How to sample fragments on a surfaces?
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Use *SMILES to sample:

• All species

• All binding motifs

Find all sites on any surface:

• What atoms can be “touched”

• Which of those are “sites”

10.26434/chemrxiv-2025-79nj4



AutoAdsorbate
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▪ Enumerate:

• All sites 

• All species

• All binding motifs

▪ DOSads as property of the 
surface

▪ Rich information about the 
chemical properties of the 
system

10.26434/chemrxiv-2025-79nj4
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▪ Enumerate:

• All sites 

• All species

• All binding motifs

▪ DOSads as property of the 
surface

▪ Rich information about the 
chemical properties of the 
system

10.26434/chemrxiv-2025-79nj4
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▪ Enumerate:

• All sites 

• All species

• All binding motifs

▪ DOSads as property of the 
surface

▪ Rich information about the 
chemical properties of the 
system

10.26434/chemrxiv-2025-79nj4
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▪ Enumerate:

• All sites 

• All species

• All binding motifs

▪ DOSads as property of the 
surface

▪ Rich information about the 
chemical properties of the 
system

10.26434/chemrxiv-2025-79nj4
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▪ Compare holistic picture 
of energetics

• Computer Vision

▪ AdsMT – like approach:

• Predict the DOSads

[1]

10.26434/chemrxiv-2025-79nj4
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▪ Compare holistic picture 
of energetics

• Computer Vision

▪ AdsMT – like approach:

• Predict the DOSads

[1] J. Phys. Chem. C 2023, 127, 50, 24168-24182

[1]
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▪ Compare holistic picture 
of energetics

• Computer Vision

▪ AdsMT – like approach:

• Predict the DOSads

[1] J. Phys. Chem. C 2023, 127, 50, 24168-24182

[1]



▪ A sustainable future depends on Heterogeneous Catalysis

▪ ML can provide a path forward

▪ We need better data

▪ MLIP are mature enough to take on the task

▪ Structure generation is open source

= All the power is in your hands!
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▪ A sustainable future depends on Heterogeneous Catalysis

▪ ML can provide a path forward

▪ We need better data

▪ MLIP are mature enough to take on the task

▪ Structure generation is open source

= All the power is in your hands!
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Dynamic

Gen AI rewards?

Dynamic

LM rewards?

MLIP improvements?

Deep descriptor ML

(e.g. comp. vis.)

Bayesian

atomistic optimization?

Agents for simulation?



Thank you for your 
attention!

AutoAdsorbate configurations
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