
Methods in Drug Development

CH-455

Christian Heinis

- Associate Professor in Bioorganic Chemistry
- Laboratory of Therapeutic Proteins and Peptides (LPPT)
- Research interests
 - New molecule designs (bicyclic peptides, macrocycles)
 - Combinatorial methods (phage display, HTS)
 - Drug discovery and development
 - Translational research
- Contact details
 - BCH 5305, 021 693 93 50, christian.heinis@epfl.ch

Course Organization

Monday, 8:15-9:00 and 9:15-10:00, room: CHB331

Course Objectives

Phenotypic
screening

Target identification

Target validation

Antibody engineering

Getting
familiar with
a new field

*Learning modern methods in drug
development*

Gene editing

Covalent drugs

DEL libraries

Protein structure prediction

*Critically reading and understanding
scientific literature*

Read & understand
complex data

Critically read
scientific literature

Macrocycle drugs

Protein degradors

Single particle
cryo-EM

Extract key findings

Example paper

nature
chemical biology

ARTICLE

PUBLISHED ONLINE: 1 JUNE 2015 | DOI: 10.1038/NCHEMBIO.1837

SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice

James Palacino^{1,3}, Susanne E Swalley^{1,3*}, Cheng Song^{1,3}, Atwood K Cheung¹, Lei Shu¹, Xiaolu Zhang¹, Mailin Van Hoosear¹, Youngah Shin¹, Donovan N Chin¹, Caroline Gubser Keller², Martin Beibel², Nicole A Renaud¹, Thomas M Smith¹, Michael Salcius¹, Xiaoying Shi¹, Marc Hild¹, Rebecca Servais¹, Monish Jain¹, Lin Deng¹, Caroline Bullock¹, Michael McLellan¹, Sven Schuierer², Leo Murphy¹, Marcel J J Blommers², Cecile Blaustein¹, Frada Berenshteyn¹, Arnaud Lacoste¹, Jason R Thomas¹, Guglielmo Roma², Gregory A Michaud¹, Brian S Tseng¹, Jeffery A Porter¹, Vic E Myer¹, John A Tallarico¹, Lawrence G Hamann¹, Daniel Curtis¹, Mark C Fishman¹, William F Dietrich¹, Natalie A Dales¹ & Rajeev Sivasankaran^{1*}

Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (*SMN1*) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (*SMN2*) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of *SMN2* splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the *SMN2* pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-

Reading and discussing research papers

At home

- Read publication and if necessary Supplementary Information (SI)
- Make sure that you understand all figures and that you can explain data shown in figures

In lecture

- General introduction to field of paper (by Christian Heinis)
- Introduction to paper (by two students; 2 x 10 minutes)
- Discussion of all data by going through the figures (by all)

Figures

Introduction

SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice

James Palacino^{1,3}, Susanne E Swalley^{1,3}, Cheng Song^{1,3}, Atwood K Cheung¹, Lei Shu¹, Xiaolu Zhang¹, Mailin Van Hoosear¹, Youngha Shin¹, Donovan N Chin¹, Caroline Gubser Keller², Martin Beibel², Nicole A Renaud¹, Thomas M Smith¹, Michael Salcius¹, Xiaoying Shi¹, Marc Hild¹, Rebecca Servais¹, Monish Jain¹, Lin Deng¹, Caroline Bullock¹, Michael McLellan¹, Sven Schuierer², Leo Murphy¹, Marcel J J Blommers², Cecile Blaustein¹, Frada Berenshteyn¹, Arnaud Lacoste¹, Jason R Thomas¹, Guglielmo Roma², Gregory A Michaud¹, Brian S Tseng¹, Jeffery A Porter¹, Vic E Myer¹, John A Tallarico¹, Lawrence G Hamann¹, Daniel Curtis¹, Mark C Fishman¹, William F Dietrich¹, Natalie A Dales¹ & Rajevee Sivasankaran^{1*}

Spinal muscular atrophy (SMA), which results from the loss of expression of the survival of motor neuron-1 (SMN1) gene, represents the most common genetic cause of pediatric mortality. A duplicate copy (SMN2) is inefficiently spliced, producing a truncated and unstable protein. We describe herein a potent, orally active, small-molecule enhancer of SMN2 splicing that elevates full-length SMN protein and extends survival in a severe SMA mouse model. We demonstrate that the molecular mechanism of action is via stabilization of the transient double-strand RNA structure formed by the SMN2 pre-mRNA and U1 small nuclear ribonucleic protein (snRNP) complex. The binding affinity of U1 snRNP to the 5' splice site is increased in a sequence-selective manner, discrete from constitutive recognition. This new mechanism demonstrates the feasibility of leveraging this strategy in other splicing diseases.

SMA is a debilitating motor neuron disease with an estimated worldwide incidence of 1 in 11,000 live births¹. SMA is the most common genetic cause of mortality in children, with more than 50% of the affected patients dying before the age of two. The fundamental pathogenesis of SMA results from deficiency in SMN (survival of motor neuron) protein, which causes death of α-motor neurons in the spinal cord. Humans have two SMN genes, SMN1 and SMN2, which encode ~85% SMN protein. Full-length SMN (FL-SMN) protein is primarily a product of the SMN1 gene. Roughly 95% of SMA cases are due to a homozygous deletion of the SMN1 gene, and the remaining cases are attributed to point mutations in this gene^{2,3}. The SMN2 gene can partially offset the loss of SMN1. However, a single nucleotide variation^{4,5} in the SMN2 gene causes altered splicing and exclusion of exon 7, which in turn results in only 10–20% production of full-length SMN mRNA and protein. The remaining mRNA encodes a truncated and unstable protein^{6,7}. Phenotypically, there is an inverse relationship between disease severity and SMN2 copy number in SMA patients, leading to degrees of severity and differences in age of onset ranging from the most common, infantile onset (type I) to a rare, adult (type IV) form⁸.

Splicing is a robustly conserved mechanism of high-precision processing of pre-mRNA into a mature mRNA. Proper assembly of nearly all 213,400 exons in the human genome requires the U1–U2 major spliceosome. The spliceosome acts via a stepwise process to achieve catalytic ligation of the exons and release of an intron 'lariat' structure (reviewed in ref. 14). Although the system must function with precision to ensure proper assembly of transcripts, there is also dynamic regulation of transcript assembly, with

estimates that ~90% of all multixon genes are assembled into more than one splice isoform⁹. This process is regulated through the action of a large collection of splice enhancer and suppressor element cofactors that influence the recruitment of the spliceosome to alternatively spliced exons (reviewed in ref. 16).

Selective enhancement or alteration of exon splicing could be therapeutically beneficial in a broad spectrum of genetic disease, also known as splicing disorders (reviewed in ref. 17). For SMA, efforts to provide therapies have been focused on approaches to enhance expression of the SMN2 gene or correct aberrant splicing, for instance, by blocking a suppressor element with antisense oligonucleotides^{10,11}. Additionally, a recent report described small molecules that enhance exon 7-induced SMN2 levels, both *in vitro* and *in vivo*, albeit without providing information detailing the mechanism of action¹².

In this report, we describe the discovery and advancement of a pyridine class of orally active, small-molecule enhancers of SMN exon 7 inclusion. These splicing modulators elevate FL-SMN protein and in turn extend survival in a severe SMA mouse model. We show that these molecules function via stabilization of the transient double-stranded RNA (dsRNA) structure formed between the SMN2 pre-mRNA and U1 snRNP complex, a key component of the spliceosome^{13,14,15}. Furthermore, these compounds act by increasing the binding affinity of U1 snRNP to the 5' splice site (5'ss) in a sequence-selective manner that is discrete from constitutive recognition. Specific mutations of this sequence ablate enhancement of exon inclusion without adversely affecting baseline splicing efficiency. These studies reveal a new mechanism

¹Novartis Institutes for Biomedical Research, Cambridge, Massachusetts, USA. ²Novartis Institutes for Biomedical Research, Forum 1, Basel, Switzerland.

³These authors contributed equally to this work. *e-mail: sivasankaran@nibc.cambridge.novartis.com

ARTICLE

NATURE CHEMICAL BIOLOGY DOI: 10.1038/NCHEMBIOL1837

demonstrating the feasibility of using small molecules to attain sequence-selective splice modulation, opening the possibility of using similar strategies for other splicing diseases^{12,13}.

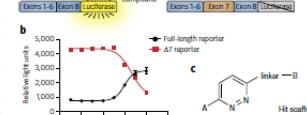
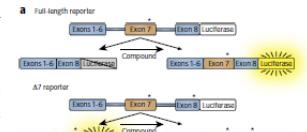
RESULTS

Identification of small-molecule SMN2 splicing modulators

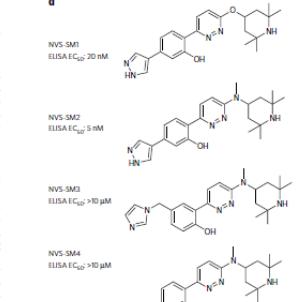
To identify small-molecule modulators of SMN2 exon 7 inclusion, we used an NSC4 motor neuron cell line expressing an SMN2 minigene reporter for high-throughput screening (HTS). The designed pair of SMN2-matched reporter constructs indicated either exon 7 inclusion (full-length reporter) or exon 7 exclusion (Δ7 reporter) based on in-frame luciferase expression (Fig. 1a). A screen of the Novartis HTS library (~1.4 × 10⁶ compounds) resulted in a hit rate of <1% (Supplementary Table 1). We selected hits on the basis of complementary changes in forward and reverse reporter activity, relative to control, that fit the anticipated profile for SMN2 splicing modulators (Fig. 1b). Molecules that scored positive in the HTS and elicited dose responsiveness were assessed via qPCR to confirm the desired splicing activity and by ELISA to confirm increased SMN protein levels in SMN7 mouse myoblasts, indicating efficacy on the endogenous gene.

One of the scaffolds identified from the HTS efforts contained a pyridine core group as the core functionality (Fig. 1c). Compound optimization aimed at maximizing cellular potency was led by the SMN ELISA assay in both mouse myoblasts and SMA patient-derived cell lines. This effort led to the identification of compounds NVS-SM1 (1) and NVS-SM2 (2), which are structural analogs NVS-SM3 (3) and NVS-SM4 (4) (Fig. 1d and Supplementary Fig. 1a,b). We observed favorable pharmacokinetics profiles of the two active compounds in rodents. Both NVS-SM1 and NVS-SM2 showed high plasma exposure, good bioavailability and notably, good distribution to the brain, a primary target tissue (Supplementary Fig. 1c).

In vivo efficacy of SMN splicing modulators

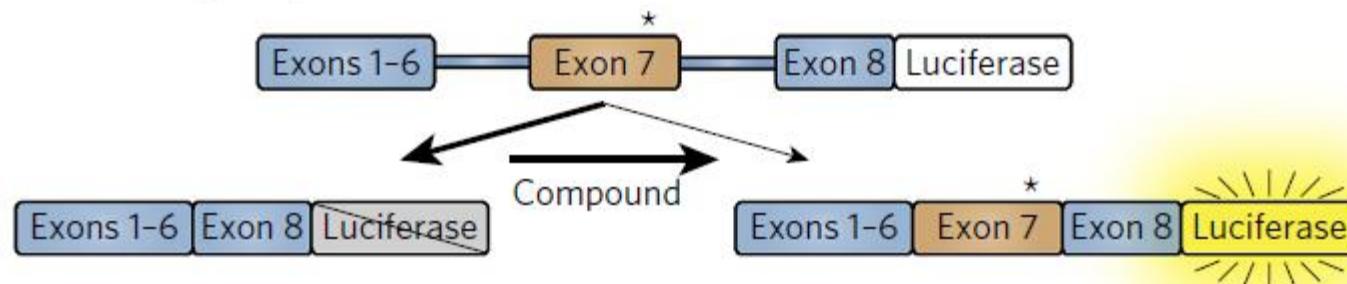


As NVS-SM1 and NVS-SM2 were suitable *in vivo* tools, we sought to explore whether the molecular activity we observed translated to *in vivo* activity. For this purpose, we used the C57BL/6J SMA mouse model¹⁶. After oral administration, both compounds produced dose-dependent elevations of SMN2-FL transcript and SMN protein in brain and spinal cord (Fig. 2a,b), thus establishing robust *in vivo* splicing activity and pharmacodynamic relationship. Although both compounds showed dose-responsive activity in the C57 model (Fig. 2a,b), NVS-SM1 exhibited efficacy at lower doses and exposures, and thus this analog was studied further in additional cellular and animal models. NVS-SM1 showed robust activity across disease-relevant induced pluripotent stem cell (iPSC)-derived neurons (Supplementary Fig. 2a,b). We also demonstrated the desired transcript response in SMA-type III PBMCs after NVS-SM1 treatment, suggesting that this readout could serve as a peripheral pharmacodynamic marker in the clinic (Supplementary Fig. 2c).

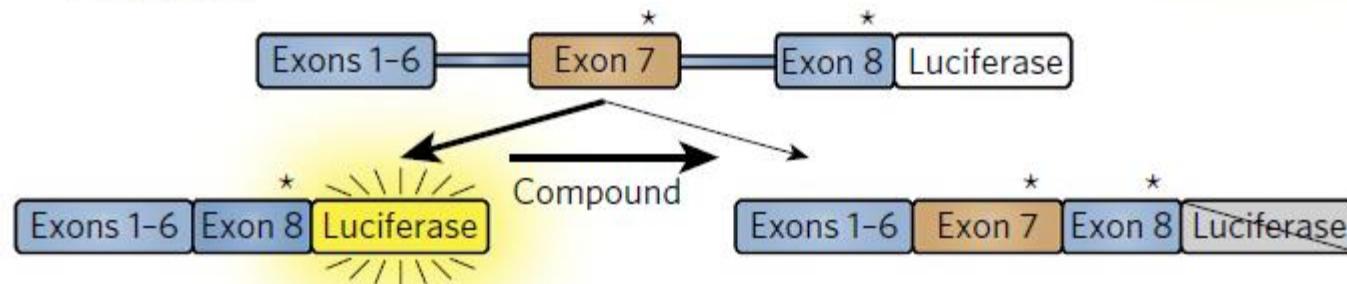
In the cellular setting, we observed that SMN protein levels remained elevated after compound treatment, which is in agreement with published findings¹⁸ and suggests that SMN protein has a long half-life. We hypothesized that this finding in the C57 mouse model, a life form, could affect the design of long-term efficacy studies. In fact, a single, 30 mg per kg body weight oral dose of NVS-SM1 resulted in significant ($P < 0.05$) and durable SMN protein elevation in brain for up to 160 h (Fig. 2c).


To evaluate the efficacy of NVS-SM1, we used the SMNAT mouse model, which displays a severe phenotype. In the specific colony used for this study, death typically occurs before postnatal day 15 (ref. 27). We were pleased to observe that, in addition to a dose-dependent elevation of SMN protein in the brain (Fig. 2d), oral administration of NVS-SM1 improved body weight (Fig. 2e) and extended lifespan, with 50% of the animals in the 1 mg per kg

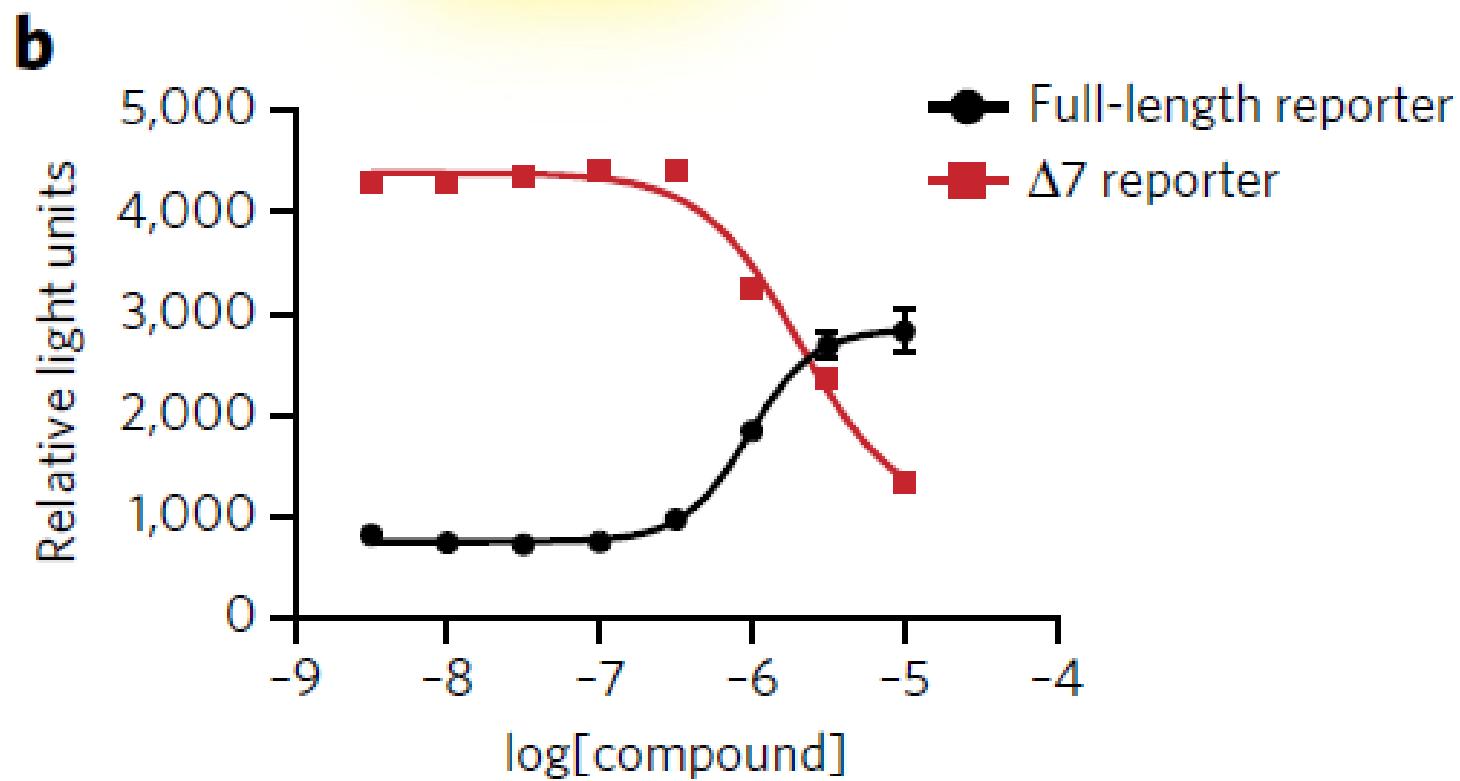
body weight group and 62% of animals in the 3 mg per kg body weight group showing increased survival (Fig. 2f).

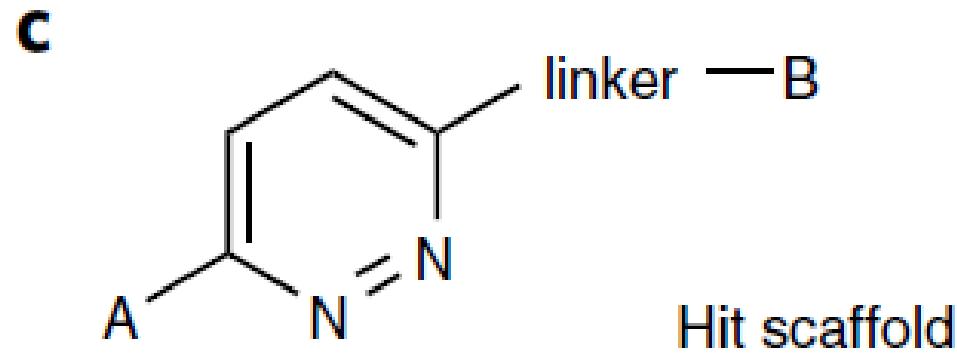
Next, we evaluated whether NVS-SM1 elicited sustained efficacy by comparing two additional cohorts; the first cohort continued with 1 mg per kg body weight daily dosing of NVS-SM1 for an additional two weeks until day 49, whereas the second cohort received only


c Hit scaffold structure for pyridine molecules.

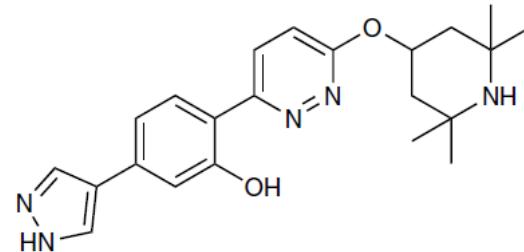

Figure 1 | Screening paradigm and molecules. (a) Schematic representation of SMN minigene constructs. Full-length construct (top) expresses luciferase in frame when exon 7 is included in transcript. Δ7 construct (bottom) expresses luciferase in frame when exon 7 is skipped in transcript. Asterisks indicate significant differences in luciferase reading times for compound-treated and control samples to adjust for the appropriate splice variant. (b) Data from example hit from the high-throughput screen showing elevation of full-length reporter luciferase signal (black) and a concomitant reduction in Δ7 reporter luciferase signal (red). Data represent mean ± s.e.m. ($n = 2$). (c) Hit scaffold structure for pyridine molecules. (d) Chemical structures of NVS-SM1, NVS-SM2, NVS-SM3 and NVS-SM4 with SMN ELISA half-maximum effective concentration (EC₅₀) values.

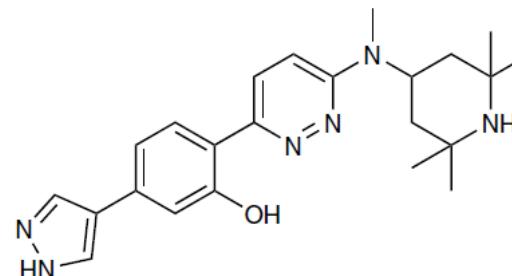
Figures


a Full-length reporter

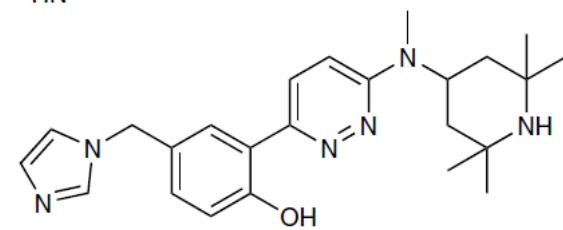

$\Delta 7$ reporter

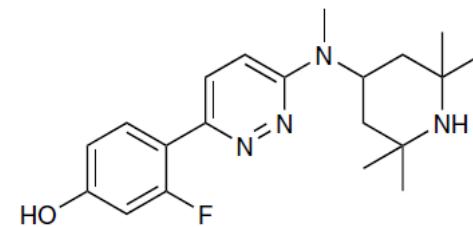
Figures


Figures


Figures

d


NVS-SM1
ELISA EC₅₀: 20 nM


NVS-SM2
ELISA EC₅₀: 5 nM

NVS-SM3
ELISA EC₅₀: >10 μ M

NVS-SM4
ELISA EC₅₀: >10 μ M

Course Material

<http://moodle.epfl.ch>

CH-455

- Papers (PDF)
- Supplementary information (SI, as PDF)
- Figures (PPT presentations)
- General introduction to fields (PPT presentations)

Assessment

- Written exam at the end of the course (80%)
- Oral presentations during the course (20%)

Exam

- Written exam (2 hrs)
- Questions about the 12 papers
 - (I will show figures and ask mostly questions of understanding)
- It is important to read and fully understand the research papers
- No need to memorize information