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a)

The coefficients of the exact solution for the TDSE are

ċk(t) = − i
~
∑
m

e−iωkmtVkm(t)cm(t), (1)

where ωkm = (Em − Ek)/~. Therefore, we get

ċa(t) = − i

2~
Uei(ω−ωab)tcb(t) (2)

ċb(t) = − i

2~
Ue−i(ω−ωab)tca(t). (3)

Differentiating ċa(t) and substituting ċb(t) and cb(t), we obtain

c̈a(t) = − i

2~
Uei(ω−ωab)tċb(t) +

ω − ωab
2~

Uei(ω−ωab)tcb(t) (4)

= − U
2

4~2
ca(t) + i(ω − ωab)ċa(t) (5)

This is a second order differential equation of the following type:

ẍ+ bẋ+ kx = 0 (6)

and if b2 < 4k, the solution is

x(t) = eαt[C1 cos(βt) + C2 sin(βt)], (7)

where α = −b/2 and β = (1/2)
√

4k − b2. In our case, b = −i(ω − ωab) and k = U2/(4~2) so
b2 < 4k. The solution for ca(t) is given as

ca(t) = ei(ω−ωab)t/2[C1 cos(ωrt) + C2 sin(ωrt)] (8)

Similarly for cb(t),

c̈b(t) + i(ω − ωab)ċb(t) +
U2

4~2
cb(t) = 0 (9)

with the solution
cb(t) = e−i(ω−ωab)t/2[D1 cos(ωrt) +D2 sin(ωrt)]. (10)

From ca(t = 0) = 1 we obtain C1 = 1 and from cb(t = 0) = 0, D1 = 0.
We need to know ċa(t = 0) and ċb(t = 0) to figure out C2 and D2.

ċa(0) = −iU
2~
cb(0) = 0 (11)

ċb(0) = −iU
2~
ca(0) = −iU

2~
. (12)
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On the other hand, differentiating the solutions of ODEs give

ċa(t) =
i(ω − ωab)

2
ca(t) + ei(ω−ωab)t/2[ωrC2 cos(ωrt)− ωr sin(ωrt)] (13)

ċb(t) = −i(ω − ωab)
2

cb(t) + e−i(ω−ωab)t/2ωrD2 cos(ωrt) (14)

Substituting t = 0 to Eq. (13) and Eq. (14) gives

ċa(0) =
i(ω − ωab)

2
+ ωrC2 (15)

ċb(0) = ωrD2 (16)

Finally, we obtain C2 = −i(ω− ωab)/(2ωr) and D2 = (−iU)/(2~ωr) to get the final solution as

ca(t) = ei(ω−ωab)t/2[cos(ωrt)−
i(ω − ωab)

2ωr
sin(ωrt)] (17)

cb(t) = e−i(ω−ωab)t/2[
−iU
2~ωr

sin(ωrt)] (18)

b)

The transition probability Pa→b(t) is given by

Pa→b(t) = |cb(t)|2 =
U2

4~2
sin2(ωrt)

ω2
r

=
(U/~)2

(ω − ωab)2 + (U/~)2
sin2(ωrt). (19)

Both the fraction and sin2(ωrt) do not exceed 1 so the transition probability also doesn’t.

|ca(t)|2 = cos2(ωrt) +
(ω − ωab)2

4ω2
r

sin2(ωrt) (20)

= cos2(ωrt) +

(
1− U2/~2

4ω2
r

)
sin2(ωrt) (21)

Finally,
|ca(t)|2 + |cb(t)|2 = cos2(ωrt) + sin2(ωrt) = 1 (22)

c)

When (
U

~

)2

<< (ω − ωab)2, (23)

i.e, if U << ~(ω − ωab) then ωr ≈ (ω − ωab)/2. This gives

Pa→b(t) =
U2

4~2
sin2[(ω − ωab)t/2]

[(ω − ωab)/2]2
(24)

=

(
U

2

)2
sin2[(Ea − Eb + E)t/2~]

[(Ea − Eb + E)/2]2
, (25)

which agrees with the TDPT result we derived in the lecture.
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d)

For a normalized quantum state ψ, both ψ and λψ represent the same physical state, where
λ is a non-zero complex number satisfying |λ| = 1. [Such a λ can be written as λ = exp(iφ).]
Therefore, as long as |cb|2 = 0, the system returns to the original state. The systesm first
returns to its original state at

t∗ =
π

ωr
(26)
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