Molecular quantum dynamics: Solutions 8

a)

The coefficients of the exact solution for the TDSE are
e(t) = —% et (1) em(t), (1)

where wy, = (E,, — Ex)/h. Therefore, we get

. i t(w—w

Ca(t) = —ﬁUe( ey (t) (2)
: i —i(w—w,

G(t) = —ﬁUe (W=wante (1), (3)

Differentiating ¢,(t) and substituting ¢,(¢) and ¢ (t), we obtain

C - _i i(w—wap)t W — Wap t(w—wgep)t
Cal(t) the Cy(t) + o7 Ue cp(t) (4)
2
= _Wca(t) +i(w — wap)Ca(t) (5)

This is a second order differential equation of the following type:
Z4+br+kxr=0 (6)
and if b? < 4k, the solution is
z(t) = e™[C) cos(Bt) + Cysin(Bt)], (7)

where a = —b/2 and 8 = (1/2)V/4k — b2, In our case, b = —i(w — wy) and k = U?/(4h?) so
b*> < 4k. The solution for ¢,(t) is given as

ca(t) = @ a2[C) cos(wyt) + Cy sin(wyt)] (8)
Similarly for ¢,(t), ,
Ep(t) +i(w — wap) () + 4—h20b(t) =0 (9)
with the solution
cp(t) = e Wmwal’2[ Dy cos(w,t) + Dy sin(wyt)). (10)

From ¢,(t = 0) = 1 we obtain C; = 1 and from ¢,(t = 0) =0, D; = 0.
We need to know ¢é,(t = 0) and ¢é,(t = 0) to figure out Cy and Ds.

WU

ul0) =~ (0) = 0 (11)
4(0) = —oea(0) =~ (12)



On the other hand, differentiating the solutions of ODEs give

i(w — wWap)
2
i(w — wap)

&(t) = —ch(t) + e~ Wmwan)t/2, D, cos(wyt) (14)

Cao(t) = ca(t) + ei(‘”_“’ab)tﬂ[wrcg cos(wyt) — w, sin(w,t)] (13)

Substituting t = 0 to Eq. (13) and Eq. (14) gives

ca(0) = w + 0w, Cy (15)

&(0) = w, Dy (16)

Finally, we obtain Cy = —i(w — wa)/(2w,) and Dy = (—iU)/(2hw,) to get the final solution as

Co(t) = @) 2 cos(w,t) — W sin(wyt)] (17)
itz U
o(t)=e [—QFLwr sin(w,t)] (18)
b)
The transition probability P, ,(t) is given by
U? sin®(w,t) (U/h)?
P w(t) = |ap(t)]? = = in®(w,t). 1
—>b( ) ‘cb( )| Ah2 w% (w _ Wab)2 + (U/h)2 Sin (w ) ( 9)

Both the fraction and sin?(w,t) do not exceed 1 so the transition probability also doesn’t.

2
lea(t)]? = cos?(w,t) + (“’4—“;”) sin®(wyt) (20)
w"'
U /12
o2 2
= cos” (wyt) + (1 T L ) sin®(w;-t) (21)
Finally,
lca()]? + |ep(t)]* = cos?(w,t) + sin®(w,t) = 1 (22)

c)
When ,

u 2

) << (W — wWap)*, (23)
ie, if U << M(w — wgp) then w, &~ (w — wgp)/2. This gives

_ U sin’[(w — wa)t/2]

Pt = 4w — o)/ P .
~ (U\’sin’[(E, — B, + E)t/2h]
- <2> (F— By E)J2P (#)

which agrees with the TDPT result we derived in the lecture.



d)

For a normalized quantum state 1, both ¥ and A\ represent the same physical state, where
A is a non-zero complex number satisfying |A| = 1. [Such a A can be written as A\ = exp(i¢).]
Therefore, as long as |c|?> = 0, the system returns to the original state. The systesm first
returns to its original state at
T
= 26
o (26)



