Molecular quantum dynamics: Solutions 7

Problem 1: Nonadiabatic transitions

(a) The Hamiltonian for the whole system is

A

H=Hy(t) +V, (1)

~ - Oélt 0 S 0 ‘/12

Hy(t) = ( 0 a2t) and V = (Vm 0 ) (2)
We first solve the problem in the absence of perturbation, i.e., for Hy(t). The states 1 and 2
form a slowly changing adiabatic basis |n(t)) that satisfies at all times the relation

where

Ho(1)[n(t)) = En(t)[n(t)) (3)
for n = 1,2. We may expand the solution to the TDSE in the form of
() = D fa®)In(t)- (4)
n=1,2

From the lecture notes, with the adiabatic approximation, if the non-adibatic couplings Dy, =
(k|n) can be neglected, we have for each n

iBfn(t) = Eu(t) fa(t) ()
with the solution
Jalt) =fa )t B (6)
=fa(0)e facomtrin (7)
=fa(0)e7 " (8)
We set f,,(0) = 1 for each n, and obtain the time-dependence of the probability amplitude f,, ()

i

for the system to be in state |n(t)) as f,(t) = e 2
The states |n(t)) evolve slowly and we may neglect their time-dependence and take |n) = |n(t))
for simplification. Now we use the following ansatz to solve the wavefunction for the perturbed
system:

ant2

and the full Hamiltonian from Eq. (1).

o d 3
ih— (1) = H(t) [4(2)) (10)

ihéy () f1(t) 1) + anter (t) f1(8) [1) + ihéa(t) f2(2) |2) + astea(t) f2(2) |2)
= ater(t) f1(8) [1) + c2(t) f2(H)Viz [1) + aatea(t) f2() [2) + ea(t) f1(8) V2 [2) (11)
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We see that two terms on the left-hand side cancel out with two terms on the right-hand side
and we obtain

ihey(t) f1(t) 1) + ihéa(t) f2(t) 12) = ca(t) f2()Va [1) + 1 () fr(8) Va2 |2) (12)
Multiplying from the left by (1| gives
ihé1(t) f1(t) = ea(t) fo () Viz (13)
whereas multiplying from the left by (2| gives
ihéa(t) f2(t) = er(t) fu(t)Vaz. (14)

Finally, we apply perturbation theory to the results in Eqs. (13-14). We assume that all the
population was originally on state 1. The zero-order (unperturbed) coefficients are then c§°’ =1
and cgo) = 0; they correspond to the coefficients at time t — —oo. First-order perturbation
theory expression is obtained by replacing ¢ (t) in Eq (14) with its time-independent zero-order

a : : (0).
pproximation ¢y :

ihey(t) fot) = OVinfi(t) (15)
: 1A
&(t) = _ﬁfg—(t)‘/u (16)
&(t) = _%ei(arm)ﬁ/%vm (17)

We integrate the last expression over the whole time that the perturbation is “on”, meaning
from —oo to some time ¢:

. t
o) = —5V / elen=ar s (18)

—00
Now we look for the transition probability at time ¢ — oo (long time after the crossing):
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_ % 1)
P o= Jim ") (19)
2 oo 2
2V
_ 21
FL|O{2—O./1| ( )

The integral is solved in the following way:

—00 0
o] _ 2 o) o 2
= 92 (/0 CoS —(a2 27?1)7 dT—i-z'/O sin —(a2 2;;1)7_ dT) (23)

Introduce a change of variables: z = \/(ag — ) /2h7, dx = \/(ay — ay)/2hdT.

/OO ei(ag—a1)72/2hd7_ (24)
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Then the transition probability expression reads:

4V 2 2h
P, —2 2
12 2 Jas—ai| +Z (26)
2V
_ 27
h |Oé2 — Oél| ( )

(b) The Landau-Zener expression for the transition probability is Py = 1 — e ™. Taylor
expansion of the second term around v = 0 leads to

=21y +.... (29)
Therefore,
2V 2
Py — 2 — 30
2y T ho|sy — sa| (30)
Since IE iE. d
ay, = dtn = drnd_z =s,v, for n=1,2, (31)
we get v|s; — $a| = |1 — ag|, and
2V 2
Py 12 (32)
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