Molecular quantum dynamics: Solutions 4

Problem 1: Energy of a coherent state

Note that —ia; = —iag = mw > 0 and H(q;, pt) = % + %mw2qt2.
Prerequisites:
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Problem 2: Lagrangian and Hamiltonian for a diatomic
molecule (or the hydrogen atom)

a) We first invert

r=r,—r;
e
to obtain
rr=R-— %r
r; =R+ %r.
Then, we substitute r; and ry in the expression for the kinetic energy:
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and the Lagrangian is
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L(r,1,R) = §MR2 + 5#1’"2 —V(r).

b) For r we have
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Solution for R:

R(t) = Ry + Ryt,
which corresponds to a uniform motion, i.e., the velocity Ry is constant, as it should be for the
center of mass of a two-body system, where the interaction between the two particles is given
by the central potential V(r).
¢) Momenta are
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d) Hamiltonian is

e) For r:

For R:

Solving for R gives

H(r,R,p,P) =ip+RP — L(r,i,R)
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