

# Molecular quantum dynamics: Solutions 4

## Problem 1: Energy of a coherent state

Note that  $-i\alpha_t = -i\alpha_0 = m\omega > 0$  and  $H(q_t, p_t) = \frac{p_t^2}{2m} + \frac{1}{2}m\omega^2 q_t^2$ .

Prerequisites:

$$\begin{aligned}
 \int |\psi(x, t)|^2 dx &= 1 \\
 \int (x - q_t) |\psi(x, t)|^2 dx &= 0, \\
 \int (x - q_t)^2 |\psi(x, t)|^2 dx &= \frac{\hbar}{2m\omega}, \\
 \frac{\partial^2}{\partial x^2} \psi(x, t) &= \left\{ -\frac{1}{\hbar^2} [\alpha_0(x - q_t) + p_t]^2 + \frac{i}{\hbar} \alpha_t \right\} \psi(x, t) \\
 &= \left\{ -\frac{1}{\hbar^2} [\alpha_0^2(x - q_t)^2 + 2\alpha_0 p_t(x - q_t) + p_t^2] + \frac{i}{\hbar} \alpha_0 \right\} \psi(x, t) \\
 x^2 \psi(x, t) &= \{(x - q_t)^2 + 2q_t(x - q_t) + q_t^2\} \psi(x, t).
 \end{aligned}$$

$$\begin{aligned}
 E(t) &= \langle \psi(t) | \hat{H} | \psi(t) \rangle \\
 &= \int \psi(x, t)^* \left[ -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} \psi(x, t) + \frac{1}{2} m \omega^2 x^2 \psi(x, t) \right] dx \\
 &= \int \psi(x, t)^* \left[ \frac{1}{2} \left( m \omega^2 + \frac{\alpha_0^2}{m} \right) (x - q_t)^2 + \left( \frac{\alpha_0 p_t}{m} + m \omega^2 q_t \right) (x - q_t) \right. \\
 &\quad \left. + \frac{p_t^2}{2m} - \frac{i\hbar}{2m} \alpha_0 + \frac{1}{2} m \omega^2 q_t^2 \right] \psi(x, t) dx \\
 &= \frac{1}{2} \left( m \omega^2 + \frac{\alpha_0^2}{m} \right) \int (x - q_t)^2 |\psi(x, t)|^2 dx + \left( \frac{\alpha_0 p_t}{m} + m \omega^2 q_t \right) \int (x - q_t) |\psi(x, t)|^2 dx \\
 &\quad + \left( \frac{p_t^2}{2m} - \frac{i\hbar}{2m} \alpha_0 + \frac{1}{2} m \omega^2 q_t^2 \right) \int |\psi(x, t)|^2 dx \\
 &= \frac{\hbar}{4m\omega} \left( m \omega^2 + \frac{\alpha_0^2}{m} \right) - \frac{i\hbar}{2m} \alpha_0 + \frac{p_t^2}{2m} + \frac{1}{2} m \omega^2 q_t^2 \\
 &= \frac{\hbar\omega}{4} + \frac{\hbar\omega}{4} + \frac{p_t^2}{2m} + \frac{1}{2} m \omega^2 q_t^2 \\
 &= H(q_t, p_t) + \frac{\hbar\omega}{2}
 \end{aligned}$$

## Problem 2: Lagrangian and Hamiltonian for a diatomic molecule (or the hydrogen atom)

a) We first invert

$$\mathbf{r} = \mathbf{r}_2 - \mathbf{r}_1$$

$$\mathbf{R} = \frac{m_1 \mathbf{r}_1 + m_2 \mathbf{r}_2}{M}$$

to obtain

$$\mathbf{r}_1 = \mathbf{R} - \frac{m_2}{M} \mathbf{r}$$

$$\mathbf{r}_2 = \mathbf{R} + \frac{m_1}{M} \mathbf{r}.$$

Then, we substitute  $\mathbf{r}_1$  and  $\mathbf{r}_2$  in the expression for the kinetic energy:

$$\begin{aligned} T &= \frac{1}{2} m_1 \dot{\mathbf{r}}_1^2 + \frac{1}{2} m_2 \dot{\mathbf{r}}_2^2 \\ &= \frac{1}{2} m_1 \left( \dot{\mathbf{R}} - \frac{m_2}{M} \dot{\mathbf{r}} \right)^2 + \frac{1}{2} m_2 \left( \dot{\mathbf{R}} + \frac{m_1}{M} \dot{\mathbf{r}} \right)^2 \\ &= \frac{1}{2} (m_1 + m_2) \dot{\mathbf{R}}^2 + \frac{1}{2} \left( \frac{m_1 m_2^2}{M^2} + \frac{m_2 m_1^2}{M^2} \right) \dot{\mathbf{r}}^2 \\ &= \frac{1}{2} M \dot{\mathbf{R}}^2 + \frac{1}{2} \mu \dot{\mathbf{r}}^2 \end{aligned}$$

and the Lagrangian is

$$L(\mathbf{r}, \dot{\mathbf{r}}, \dot{\mathbf{R}}) = \frac{1}{2} M \dot{\mathbf{R}}^2 + \frac{1}{2} \mu \dot{\mathbf{r}}^2 - V(\mathbf{r}).$$

b) For  $\mathbf{r}$  we have

$$\begin{aligned} \frac{\partial L}{\partial \mathbf{r}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\mathbf{r}}} &= 0 \\ - \frac{\partial V(\mathbf{r})}{\partial \mathbf{r}} - \mu \ddot{\mathbf{r}} &= 0 \\ \mu \ddot{\mathbf{r}} &= - \frac{\partial V(\mathbf{r})}{\partial \mathbf{r}} \end{aligned}$$

For  $\mathbf{R}$  we have

$$\begin{aligned} \frac{\partial L}{\partial \mathbf{R}} - \frac{d}{dt} \frac{\partial L}{\partial \dot{\mathbf{R}}} &= 0 \\ 0 - M \ddot{\mathbf{R}} &= 0 \\ M \ddot{\mathbf{R}} &= 0 \end{aligned}$$

Solution for  $\mathbf{R}$ :

$$\mathbf{R}(t) = \mathbf{R}_0 + \dot{\mathbf{R}}_0 t,$$

which corresponds to a uniform motion, i.e., the velocity  $\dot{\mathbf{R}}_0$  is constant, as it should be for the center of mass of a two-body system, where the interaction between the two particles is given by the central potential  $V(\mathbf{r})$ .

c) Momenta are

$$\begin{aligned} \mathbf{p} &:= \frac{\partial L}{\partial \dot{\mathbf{r}}} = \mu \dot{\mathbf{r}} \\ \mathbf{P} &:= \frac{\partial L}{\partial \dot{\mathbf{R}}} = M \dot{\mathbf{R}} \end{aligned}$$

d) Hamiltonian is

$$\begin{aligned}
 H(\mathbf{r}, \mathbf{R}, \mathbf{p}, \mathbf{P}) &= \dot{\mathbf{r}}\mathbf{p} + \dot{\mathbf{R}}\mathbf{P} - L(\mathbf{r}, \dot{\mathbf{r}}, \dot{\mathbf{R}}) \\
 &= \frac{\mathbf{p}^2}{\mu} + \frac{\mathbf{P}^2}{M} - \left[ \frac{\mathbf{p}^2}{2\mu} + \frac{\mathbf{P}^2}{2M} - V(\mathbf{r}) \right] \\
 &= \frac{\mathbf{p}^2}{2\mu} + \frac{\mathbf{P}^2}{2M} + V(\mathbf{r})
 \end{aligned}$$

e) For  $\mathbf{r}$ :

$$\begin{aligned}
 \dot{\mathbf{p}} &= -\frac{\partial H}{\partial \mathbf{r}} = -\frac{\partial V(\mathbf{r})}{\partial \mathbf{r}} \\
 \dot{\mathbf{r}} &= \frac{\partial H}{\partial \mathbf{p}} = \frac{\mathbf{p}}{\mu}
 \end{aligned}$$

For  $\mathbf{R}$ :

$$\begin{aligned}
 \dot{\mathbf{P}} &= -\frac{\partial H}{\partial \mathbf{R}} = 0 \\
 \dot{\mathbf{R}} &= \frac{\partial H}{\partial \mathbf{P}} = \frac{\mathbf{P}}{M}
 \end{aligned}$$

Solving for  $\mathbf{R}$  gives

$$\begin{aligned}
 \mathbf{P}(t) &= \mathbf{P}_0 \\
 \mathbf{R}(t) &= \mathbf{R}_0 + \frac{\mathbf{P}_0}{M}t.
 \end{aligned}$$