

Molecular quantum dynamics: Solutions 3

Problem 1: Ion in a uniform electric field

As we shall see, the solution of the time-dependent Schrödinger equation $i\hbar d\psi(t)/dt = [T(\hat{p}) + V(\hat{q})]\psi(t)$ with a potential energy function $V(q)$ that is linear in position q is a Gaussian wavepacket,

$$\psi(q, t) = \exp \left\{ \frac{i}{\hbar} \left[\frac{1}{2} \alpha_t (q - q_t)^2 + p_t (q - q_t) + \gamma_t \right] \right\}, \quad (1)$$

at all times t if the initial state is also a Gaussian wavepacket. Therefore, we will use the Gaussian wavepacket as an ansatz.

The time-dependent Schrödinger equation in the q -representation is given as

$$i\hbar \frac{\partial \psi(q, t)}{\partial t} = \left[-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial q^2} + V(q) \right] \psi(q, t). \quad (2)$$

The required partial derivatives of Eq. (1) are

$$\frac{\partial \psi}{\partial t} = \frac{i}{\hbar} \left[\frac{1}{2} \dot{\alpha}_t (q - q_t)^2 + (\dot{p}_t - \alpha_t \dot{q}_t) (q - q_t) - \dot{q}_t p_t + \dot{\gamma}_t \right] \psi, \quad (3)$$

$$\frac{\partial^2 \psi}{\partial q^2} = \left\{ \left(\frac{i}{\hbar} \right)^2 [\alpha_t (q - q_t) + p_t]^2 + \frac{i}{\hbar} \alpha_t \right\} \psi. \quad (4)$$

Substitution of these in Eq. (2) with $V(q) = -QEq$ yields

$$\begin{aligned} & - \left[\frac{1}{2} \dot{\alpha}_t (q - q_t)^2 + (\dot{p}_t - \alpha_t \dot{q}_t) (q - q_t) - \dot{q}_t p_t + \dot{\gamma}_t \right] \\ & = \frac{\alpha_t^2}{2m} (q - q_t)^2 + \left(\frac{\alpha_t p_t}{m} - QE \right) (q - q_t) + \frac{p_t^2}{2m} - QE q_t - \frac{i\hbar \alpha_t}{2m}. \end{aligned} \quad (5)$$

Equation (5) has to hold for all q . Collecting terms of the same order in $(q - q_t)$ gives us the following three equations.

$$(q - q_t)^2 : \quad \frac{1}{2} (\dot{\alpha}_t + \alpha_t^2/m) = 0 \quad (6)$$

$$(q - q_t)^1 : \quad \alpha_t \dot{q}_t - \dot{p}_t = \alpha_t \frac{p_t}{m} - QE \quad (7)$$

$$(q - q_t)^0 : \quad \dot{\gamma}_t = -\frac{p_t^2}{2m} + p_t \dot{q}_t + QE q_t + \frac{i\hbar}{2m} \alpha_t \quad (8)$$

We first solve Eq. (6):

$$\alpha_t^{-2} \frac{d\alpha_t}{dt} = -m^{-1} \quad (9)$$

$$\int_{\alpha_0}^{\alpha_t} \alpha^{-2} d\alpha = - \int_0^t m^{-1} d\tau \quad (10)$$

$$-\alpha_t^{-1} + \alpha_0^{-1} = -t/m \quad (11)$$

$$\alpha_t = \frac{m\alpha_0}{m + \alpha_0 t} \quad (12)$$

Next we solve Eq. (7). We first use that the position q_t and the momentum p_t are real, i.e. $\text{Im}(q_t) = \text{Im}(p_t) = 0$ and take the imaginary part of Eq. (7):

$$\text{Im}(\alpha_t)\dot{q}_t = \text{Im}(\alpha_t)\frac{p_t}{m} \quad (13)$$

$$\dot{q}_t = \frac{p_t}{m}, \quad (14)$$

where we used the fact that $\text{Im}(\alpha_t) > 0$ in a Gaussian wavepacket.

Substituting Eq. (14) back into Eq. (7) yields

$$\dot{p}_t = QE. \quad (15)$$

We solve Eq. (15) to obtain $p_t = p_0 + QEt$, then substitute this into Eq. (14) and solve for q_t :

$$\dot{q}_t = \frac{1}{m}(p_0 + QEt) \quad (16)$$

$$q_t = q_0 + \frac{p_0 t}{m} + \frac{QEt^2}{2m}. \quad (17)$$

Finally, let us substitute Eq. (14) into Eq. (8) to obtain

$$\dot{\gamma}_t = L_{\text{cl}} + \frac{i\hbar}{2m}\alpha_t \quad (18)$$

with

$$\begin{aligned} L_{\text{cl}} &= \frac{p_t^2}{2m} + QEq_t \\ &= \frac{p_0^2}{2m} + QEq_0 + \frac{2QEp_0 t}{m} + \frac{Q^2E^2t^2}{m}. \end{aligned} \quad (19)$$

Integrating Eq. (18) gives

$$\int_{\gamma_0}^{\gamma_t} d\gamma = \int_0^t L_{\text{cl}} d\tau + \frac{i\hbar}{2m} \int_0^t \alpha_\tau d\tau \quad (20)$$

$$\gamma_t = \gamma_0 + \int_0^t L_{\text{cl}} d\tau + \frac{i\hbar}{2m} \int_0^t \alpha_\tau d\tau. \quad (21)$$

We note that

$$\alpha_t = m \frac{\dot{z}}{z} = m \frac{d}{dt} \log(z) \quad (22)$$

with $z(t) = m + \alpha_0 t$ to obtain

$$\int_0^t \alpha_\tau d\tau = m \log[z(t)/z(0)] = m \log(1 + \alpha_0 t/m). \quad (23)$$

Noting that L_{cl} in Eq. (19) is a quadratic function of t , we finally get

$$\gamma_t = \gamma_0 + \left(\frac{p_0^2}{2m} + QEq_0 \right) t + \frac{QEp_0 t^2}{m} + \frac{Q^2E^2t^3}{3m} + \frac{i\hbar}{2} \log \left(1 + \frac{\alpha_0 t}{m} \right). \quad (24)$$