Molecular quantum dynamics: Solutions 3

Problem 1: Ion in a uniform electric field

As we shall see, the solution of the time-dependent Schrodinger equation ihdi(t)/dt = [T'(p) +
V(¢)]w(t) with a potential energy function V(g) that is linear in position ¢ is a Gaussian
wavepacket,

U(g,t) = exp{% [%%(q—%)“m(q—%) +%} } (1)

at all times ¢ if the initial state is also a Gaussian wavepacket. Therefore, we will use the
Gaussian wavepacket as an ansatz.
The time-dependent Schrodinger equation in the g-representation is given as
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The required partial derivatives of Eq. are
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Substitution of these in Eq. with V(q) = —QFEq yields
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Equation has to hold for all g. Collecting terms of the same order in (¢ — ¢;) gives us the
following three equations.
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We first solve Eq. (0):
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Next we solve Eq. . We first use that the position ¢; and the momentum p; are real, i.e.
Im(q;) = Im(p;) = 0 and take the imaginary part of Eq. (7)):

Tm(ay)d; = Im(at)% (13)
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where we used the fact that Im(ay;) > 0 in a Gaussian wavepacket.
Substituting Eq. back into Eq. (7)) yields

= QFE. (15)
We solve Eq. to obtain p; = pg + QFE't, then substitute this into Eq. and solve for ¢;:
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Finally, let us substitute Eq. into Eq. to obtain
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Integrating Eq. gives
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with z(t) = m + apt to obtain
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Noting that L. in Eq. is a quadratic function of t, we finally get
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