Molecular quantum dynamics: Solutions 12

Problem 1: Classical and quantum thermal energy of the

simple harmonic oscillator (SHO)
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(b) Useful relations:

tnh(@) = St e =3 it
anh(z) = - e —k:Ok!— T
hw 1 huw exp(fhw) + 1

(E)om = = —

Ttanh% 2 exp(ﬁhw) —1
At a very high temperature (large T'), § is small. We approximate the expression using the
Taylor series (to the first order):
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As T — oo, B — 0, the first term can be neglected as it becomes smaller compared to the

second term: ]
(E)qu ~ 5=

As the temperature approaches 0: T'— 0, [ — oo,
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Alternatively, we can also directly apply the fact lim,_,,, tanh(z) = 1 here.



