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Problem 1: Classical and quantum thermal energy of the

simple harmonic oscillator (SHO)
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(b) Useful relations:
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At a very high temperature (large T ), β is small. We approximate the expression using the
Taylor series (to the first order):
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As T → ∞, β → 0, the first term can be neglected as it becomes smaller compared to the
second term:
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As the temperature approaches 0: T → 0, β → ∞,
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Alternatively, we can also directly apply the fact limx→∞ tanh(x) = 1 here.
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