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I. INTRODUCTION

A. Electronic structure and quantum dynamics

The large field of quantum chemistry can be conveniently divided into the subfields studying the

electronic structure of molecules and molecular quantum dynamics. This division is far from precise

because the two subfields are closely related, in particular thanks to the feasibility and increasing

popularity of the “on-the-fly”quantum dynamics calculations relying on highly accurate electronic

structure methods.

Knowing the electronic structure basically means solving the time-independent Schrödinger

equation (TISE)

Hψ = Eψ (1.1)

for the electrons in the molecule. (Here H is the electronic Hamiltonian at a given nuclear configu-

ration, ψ is an electronic eigenfunction and E the corresponding eigenvalue of energy.) The hierar-

chy of electronic structure methods starts with the very accurate but computationally demanding

wave function based ab initio methods or the density functional theory (DFT), continuing with the

semi-empirical methods, and ending with the molecular mechanics force fields, which are the least

accurate but computationally the most effi cient. In this course, we will assume that the diffi cult

electronic structure problem has been solved, i.e., that the Born-Oppenheimer potential energy

surfaces (PESs) and possibly also the electric-dipole, nonadiabatic, and spin-orbit couplings are

known. The molecular quantum dynamics then studies the solution of the time-dependent

Schrödinger equation (TDSE)

i~
∂ψ

∂t
= Hψ (1.2)

for the nuclei. [Here ψ is the nuclear wavefunction and H is the nuclear Hamiltonian, which

contains the potential energy term depending on the solution of the electronic TISE (1.1).] The

motion of nuclei can often be treated by classical molecular dynamics but in many situations the

nuclear quantum effects are important. This is the case, e.g., in spectroscopy, in reactions involving

hydrogen transfer, at low temperatures, etc. If the PESs are strongly coupled, one has to solve the

molecular TDSE for electrons and nuclei simultaneously, and again quantum dynamics plays an

important role.

In this course, we will study the TDSE from several perspectives:

1) exact methods of solution,
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2) approximate and numerical methods of solution,

3) applications, and

4) mathematical formalism.

The three main areas that we will consider are

1) real-time quantum dynamics,

2) semiclassical approximation, and

3) imaginary-time quantum dynamics (i.e., quantum thermodynamics).

Let us demonstrate these three areas by three applications.

B. Photoabsorption spectrum by real-time quantum dynamics

The calculation of vibrationally resolved electronic spectra is a nontrivial problem in quantum

chemistry. We will learn a useful procedure that employs quantum dynamics, and therefore, follows

closely what happens at the microscopic level.

FIG. 1. Photoabsorption.

Postponing the details to a later chapter, let us summarize the procedure for evaluating the

photoabsorption spectrum of a diatomic molecule here (see Fig. 1):

The initial state |ψ(0)〉 is the vibrational ground state of the electronic ground PES Vg,

Hg|ψ(0)〉 = Eg,0|ψ(0)〉, (1.3)

where the ground-state Hamiltonian Hg = T + Vg and T is the kinetic energy operator. An

interaction with light induces a transition to the excited electronic PES Ve. Assuming a Franck-

Condon transition, Condon approximation, and time-dependent perturbation theory,

we can use the sudden approximation which implies that the initial state on the excited surface

is the exact image of the original state |ψ(0)〉. This state was a stationary state of Vg, but is no
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longer a stationary state on the excited PES. It will evolve under the quantum dynamics of Ve,

according to the TDSE

i~
d|ψ(t)〉
dt

= He|ψ(t)〉. (1.4)

We will soon learn various methods for solving this equation, but for now, we can write its solution,

i.e., the time-evolved state, formally as

|ψ(t)〉 = e−iHet/~|ψ(0)〉. (1.5)

The recurrences of the quantum dynamics are conveniently measured by the autocorrelation

function

C(t) = 〈ψ(0)|ψ(t)〉, (1.6)

equal to the overlap of the initial and time-evolved states (see Fig. 2).

FIG. 2. Autocorrelation function.

Finally, the photoabsorption spectrum σ(ω) can be computed, up to a prefactor, as the

Fourier transform of the autocorrelation function,

σ(ω) =
2πω

3~c

∫ ∞
−∞

C(t) eiωt dt, (1.7)

(see Fig. 3).

This approach has several advantages over the direct (i.e., time-independent) calculation of

spectra:

1) The time-dependent approach makes the concept of a spectrum intuitive by relating the

spectrum to the dynamics of the nuclear wavepacket.

2) The knowledge of the vibrational eigenstates of Vg and Ve, which would require a very diffi cult

calculation, is not needed. This is a big advantage especially for polyatomic molecules.

3) A single quantum dynamics calculation gives the full spectrum. In particular, the use of

approximate quantum dynamics methods makes the calculation of a spectrum very simple.
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C. Semiclassical dynamics

1. Bohr model of the hydrogen atom

The semiclassical approximation which is now often wrongly considered a domain of specialists

was born before the discovery of the Schrödinger equation. The simplest example of a semiclassical

approximation is the old quantum theory, represented by the Bohr model of the hydrogen

atom.

In this model, the electron is considered to move in circles around the proton (Fig. 4). (Strictly

speaking, the motion is circular only if the angular momentum is zero. If the angular momentum is

nonzero, the electron moves on elliptic orbits, but for simplicity, we shall not consider that here. A

slightly more general version of Bohr-Sommerfeld quantization rules, described in a later chapter,

can be still used.) The electron is further assumed to have wavelike properties with a wavelength

λdB = h/p, (1.8)

called de Broglie wavelength. The Bohr-Sommerfeld quantization rules state that the

electron moves about the nucleus in circles whose circumference must equal an integer multiple of

the de Broglie wavelength:

nλdB = 2πr. (1.9)

Finally, the “classical”part in the semiclassical approximation states that the centripetal force

of the circular motion is given by the attractive Coulomb force,

mv2

r
=

e2

4πε0r2
. (1.10)

FIG. 3. Photoabsorption spectrum.
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Equations (1.8) and (1.9) together yield

nh = 2πrp (1.11)

and Eq. (1.10) can be written as

p2

m
=

e2

4πε0r
. (1.12)

Substituting p from Eq. (1.11) into Eq. (1.12) gives

r =
n2h2ε0

πme2
= n2a0, (1.13)

where a0 ≈ 0.529 Å is the Bohr radius. Now we can also compute the energy, which is

En =
p2

2m
− e2

4πε0r
= − e2

8πε0r
= − 1

n2

me4

8h2ε2
o

= −RE
n2

(1.14)

where RE ≈ 13.6 eV is the Rydberg energy. As the atomic unit of energy, one usually takes 1

Hartree = 2RE ≈ 27.2 eV .

Comments:

1) The above approach is completely semiclassical: it only uses classical trajectories and never

employs the Schrödinger equation.

2) The semiclassical hydrogen energies agree precisely with the exact quantum energies. This

is rather lucky. In general, semiclassical methods can be very accurate, but they are hardly

ever exact. The reason that the semiclassical energies are exact is deep and is connected to the

superintegrability of the Coulomb problem.

FIG. 4. Bohr model of the hydrogen atom.
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2. Radial distribution function of iodine

Later, we will also discuss more advanced semiclassical methods. However, they all share the

basic idea that the wavefunction can be written as a superposition of complex terms, each of which

can be computed from classical quantities only. E.g., in the simplest case of two semiclassical (SC)

contributions, the wave function would be

ψSC(q, t) = ψ1 + ψ2 = A1(q, t)eiS1(q,t)/~ +A2(q, t)eiS2(q,t)/~, (1.15)

where the phase of the jth term, Sj/~, is determined by the classical action Sj along a classical

trajectory j. Both Aj and Sj are real numbers.

Consider again a photoabsorption problem, e.g., of the I2 molecule (see Fig. 5), and assume

the Franck-Condon vertical transition. One would often like to know the radial distribution

function of the iodine molecule in the bound excited electronic state (see Fig. 6). Since the initial

state ψ(q, 0) is not a stationary state, the wave function of I2 will evolve after the excitation.

FIG. 5. Absorption of I2.

FIG. 6. Radial distribution function of I2.

As the excited surface is bound, the wavepacket will oscillate. However, because the PES is

anharmonic, the different components of the wavepacket will oscillate with different frequencies.
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Instead of solving the TDSE exactly, one can use the semiclassical approximation and apply it to

the various components of the wavepacket. For the sake of argument, let us make a huge oversim-

plification and assume that the wave packet consists of only two components, a slow component

ψ1 and a fast component ψ2. The radial distribution function P (R) is the probability density at a

bond length R and can be computed from the wavefunction (1.15), here a function of R only, as

its probability density

P (R) = |ψ(R)|2 ≈ |ψSC(R)|2 = A2
1 +A2

2 + 2A1A2 cos [(S1 − S2) /~] .

Note the cosine term in the above equation: this term accounts qualitatively for the oscillations in

the experimentally observed radial distribution function. This cosine term describes interference

between the fast and slow components of the wavepacket. Just think of what happens at time

when the faster component bounces from the right turning point and starts moving left while the

slower component still moves to the right. The semiclassical approach can qualitatively and often

quantitatively describe not only interference, but also tunneling, zero point energy, and other

quantum effects.

D. Quantum effects on thermodynamic properties via quantum dynamics in imaginary

time: thermal energy of a diatomic molecule

An important part of physical chemistry is the study of thermodynamic properties such as ther-

mal energies, enthalpies, free energies, heat capacities, thermal rate constants, etc. In statistical

mechanics, it is shown that any equilibrium thermodynamic property can be derived from the

partition function,

Z =
∞∑
n=0

e−βEn (1.16)

where β := 1/kBT is the inverse temperature scaled with the Boltzmann constant. For example,

it is easy to show that the average thermal energy, defined as

〈E〉 :=
1

Z

∞∑
n=0

Ene
−βEn , (1.17)

can be obtained from the partition function using the relation

〈E〉 = −∂ logZ(β)

∂β
. (1.18)

If the partition function is computed classically, one obtains only the classical thermal energy. If

the partition function is computed quantum-mechanically, one obtains the full quantum thermal

energy.
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The reason why we discuss thermodynamics in a course on quantum dynamics is because of the

analogy

e−βE ↔ e−iHt/~ (1.19)

between the Boltzmann factor and the exponential in the formal solution (1.5) of the TDSE. While

on the left we have a real exponential and on the right a complex exponential, there are similarities

in the solutions of these two problems. Defining

τ := −i~β, (1.20)

the Boltzmann factor exp(−βH) becomes exp(−iHτ/~). Because of this, the quantum thermody-

namics can and often is interpreted as the quantum dynamics in imaginary time. For now,

you do not need to understand the analogy beyond the similarity of the equations.

Let us now consider the thermal energy of the vibrational motion of a diatomic molecule. For

simplicity, we will assume that the vibrations are harmonic and uncoupled from the rotations. I.e.,

we will consider the vibrational Hamiltonian of the simple harmonic oscillator (SHO),

H(q, p) =
p2

2µ
+

1

2
kq2, (1.21)

where µ is the reduced mass and q = R−Req is the extension of the bond length from equilibrium.

1. Classical thermal energy obtained from the equipartition theorem and from the classical molecular

dynamics

First, we can compute the classical thermal energy by the equipartition theorem which states

that every quadratic term in the Hamiltonian gives a contribution kBT/2 to the thermal energy.

For the SHO, this gives

〈E〉CL = 2× 1

2
kBT = kBT. (1.22)

In more complicated systems, the equipartition theorem cannot be used and instead one uses

molecular dynamics. In molecular dynamics, thermodynamic properties are computed by a

dynamics simulation with a thermostat keeping constant temperature. In case of the thermal

energy, the molecular dynamics evaluates numerically the integral,

〈E〉CL =
1

ZCL
h−n

∫
dnq

∫
dnpH(q, p) e−βH(q,p), (1.23)
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where

ZCL = h−n
∫
dnq

∫
dnp e−βH(q,p) (1.24)

is the classical partition function. Basically, the molecular dynamics consists of running a classical

trajectory that explores the whole available phase space and evaluates the energy at each point

along the trajectory (see Fig. 7).

FIG. 7. Molecular dynamics in a simple harmonic oscillator.

The arithmetic average of the energy values along the trajectory can be shown to equal the

phase space average energy (1.23).

Exercise 1 (Molecular dynamics by pen and paper) Obtain the thermal energy for the SHO

by evaluating the integrals (1.23)-(1.24) analytically. Does the result agree with the result obtained

by the equipartition theorem?

2. Quantum thermal energy obtained from the partition function and from the path integral molecular

dynamics

The quantum thermal energy for the SHO can also be obtained analytically. Recall that the

energy levels are

En = ~ω
(
n+

1

2

)
. (1.25)

First, we get an analytical expression for the partition function: Defining x := exp(−β~ω), we have

Z =

∞∑
n=0

e−β~ω(n+ 1
2

) = x1/2
∞∑
n=0

xn = x1/2 1

1− x =
1

x−1/2 − x1/2
(1.26)

=
1

eβ~ω/2 − e−β~ω/2
=

1

2 sinh β~ω
2

.
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Now we can substitute the result for Z into the general expression (1.18) and find

〈E〉QM =
~ω/2

tanh β~ω
2

. (1.27)

Exercise 2 Show that the exact quantum result for thermal energy reduces to:

1) the zero point energy E0 = ~ω
2 for low temperatures T → 0 K and

2) the classical energy 〈E〉CL = kBT for high temperatures T →∞.

As in the classical case, the quantum thermal energy cannot be computed analytically for most

molecules. However, there is an effi cient generalization of the classical molecular dynamics, called

path integral molecular dynamics (PIMD) which makes such a calculation possible for general

systems. The PIMD takes into account anharmonicity, zero-point energy, coupling of vibrations

and rotations, and correctly quantizes the nuclear motion.

Simply put, each atom in a molecule is replaced by P replicas (artificial atoms) which are

connected with artificial harmonic bonds that correspond to the quantization of nuclear energy

(see Fig. 8). For P = 1 one obtains classical thermodynamics and can perform usual molecular

dynamics. For P →∞ one obtains the exact quantum thermodynamics. However, in practice, the

nuclear quantum effects can be described adequately by a finite and relatively small value of P .

E.g., at room temperature a suffi cient value is P = 4 for heavy atoms like oxygen and P = 32 for

hydrogen. If our diatomic molecule were H2 at room temperature, we would obtain an artificial

molecule consisting of 2 × 32 = 64 atoms. The quantum thermodynamics of the H2 molecule

is in PIMD replaced by the classical thermodynamics (i.e., classical molecular dynamics) of this

so-called “ring polymer”consisting of 64 atoms.

E. Operators and observables

Recall that in quantum mechanics, a state of a mechanical system is represented by a vector

in a complex Hilbert space and physical observables are represented by linear operators acting

on these vectors. One often employs a specific representation, such as the position representa-

tion, in which the state is represented by a wavefunction. Below is a table containing several

observables together with corresponding operators and the effect on the wavefunction ψ(q, t) in
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position representation.

Observable Operator Effect on the wavefunction

position q̂ q ψ(q, t)

momentum p̂ ~
i∇ψ(q, t)

potential energy V̂ = V (q̂) V (q)ψ(q, t)

kinetic energy T̂ = p̂2

2m − ~2
2m∇

2ψ(q, t)

Hamiltonian Ĥ = T̂ + V̂ − ~2
2m∇

2ψ(q, t) + V (q)ψ(q, t)

F. Dirac notation

It is often convenient to employ the Dirac notation, which simplifies expressions for expec-

tation values of observables, overlaps of states, and the change of representation. In the Dirac

notation, a vector in the Hilbert space is represented by a ket |ψ(t)〉, whereas a vector in the dual

space (i.e., a linear form on the Hilbert space) is denoted by a bra 〈ψ(t)|. Note that there is only

time dependence but no position dependence because both the ket and bra are independent of

FIG. 8. Path integral molecular dynamics in a simple harmonic oscillator.
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representation. E.g., the TDSE, written in the wavefunction form as

i~
∂

∂t
ψ(q, t) = − ~

2

2m
∇2ψ(q, t) + V (q)ψ(q, t), (1.28)

is simplified in the Dirac notation to the representation-independent expression

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉, (1.29)

Ĥ =
p̂2

2m
+ V (q̂) . (1.30)

Let us summarize the basic quantum-mechanical notions in the Dirac notation and compare them

to the wavefunction form.

An overlap of states ψ and ϕ (i.e., their inner product) is denoted by 〈ψ|ϕ〉 and satisfies

〈ψ|ϕ〉 =

∫
ψ(q)∗ϕ(q)dq. (1.31)

An expectation value of an operator Â in the state ψ is denoted by 〈A〉 or, more precisely, by

〈A〉ψ. If the operator Â ≡ A(q̂) is independent of momentum p̂, then

〈A〉 = 〈ψ|Â|ψ〉 =

∫
ψ(q)∗A(q)ψ(q)dq. (1.32)

If Â ≡ A(p̂) is independent of position q̂, then

〈A〉 = 〈ψ|Â|ψ〉 =

∫
ψ(q)∗A

(
~
i

∂

∂q

)
ψ(q)dq. (1.33)

A wave function ψ(q) in position representation is written as

〈q|ψ〉 = ψ(q), (1.34)

while the same state ψ in momentum representation would be written as

〈p|ψ〉 = ψ(p). (1.35)

The eigenvector of the position operator q̂ with eigenvalue q′ is called the position state,

denoted by |q′〉, and satisfies

q̂|q′〉 = q′|q′〉. (1.36)

Similarly, the momentum state |p′〉 satisfies

p̂|p′〉 = p′|p′〉. (1.37)

The momentum state is often called a plane wave.
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A separable Hilbert space has an at most countable orthonormal basis, the vectors of which

are denoted by ϕn(q) in the wavefunction form and simply by |n〉 using the Dirac notation (n ∈ N).

An orthonormality condition means that different vectors are orthogonal, i.e., 〈n|m〉 = 0 for

n 6= m and that each vector is normalized, i.e., has a unit norm ‖n‖ := 〈n|n〉1/2 = 1. The

orthonormality condition is expressed compactly as

〈n|m〉 = δnm, (1.38)

where δnm is the Kronecker delta symbol:

δnm =

 0 for n 6= m

1 for n = m
.

This was a discrete basis, but one sometimes encounters a continuous basis, such as the basis

of position eigenstates, in which the overlap of two basis states satisfies

〈q′|q′′〉 = δ(q′ − q′′) (1.39)

where δ(q) is the Dirac delta function. The “Dirac delta function” is, in fact, not a function,

but rather a distribution. Roughly speaking, its value is zero for all q 6= 0 while δ(0) = ∞ and

its integral is given by ∫ ∞
−∞

δ(q)dq = 1. (1.40)

More precisely, it is defined by the following relation satisfied by any “test”function f :∫ ∞
−∞

f(q − q′)δ(q′)dq′ = f(q). (1.41)

Since an orthonormal basis is a complete orthonormal set, we can obtain the following relation,

called a resolution of identity, which expresses the identity operator Id as a sum or integral and

is extremely useful in derivations:

Id =
∑
n

|n〉〈n| =
∫
dq|q〉〈q| =

∫
dp|p〉〈p|. (1.42)

Using the above, we can already write a position state |q′〉 in position representation,

ψq′(q) = 〈q|q′〉 = δ(q − q′). (1.43)

The plane wave |p′〉 in position representation is an exponential (you have seen this in a basic

course on quantum mechanics by solving the Schrödinger equation for the free particle),

ψp′(q) = 〈q|p′〉 =
1√
2π~

eiqp
′/~. (1.44)
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Example 3 Using the above rules in Dirac notation, we can derive the transformation of a position

representation wavefunction to the momentum representation:

ψ(p) = 〈p|ψ〉 =

∫
dq 〈p|q〉 〈q|ψ〉 =

1√
2π~

∫
dq e−iqp/~ ψ(q). (1.45)

In other words, the momentum wavefunction is obtained by Fourier transforming the position

wavefunction.

Details: The first equality is the momentum representation expression (1.35), the second equality

uses the resolution of identity (1.42). Finally, the third equality uses the complex conjugate of the

plane wave in position representation (1.44) and the position representation expression (1.34).

II. EXACT METHODS TO SOLVE THE TDSE

Now we are ready to present the first exact methods of solution of the TDSE.

A. Basis set solution of the TDSE: Time-independent H

First, we will describe the basis set solution of the TDSE with the time-independent Hamiltonian

H.

Claim 4 The general solution of the TDSE with a time-independent Hamiltonian H satisfying the

initial condition ψ(q, 0) = ψ0(q) is

ψ (q, t) =
∑
n

cnϕn(q)e−iEnt/~, (2.1)

where ϕn(q) is the eigenfunction of H with eigenvalue En and the constant coeffi cient cn is given

by

cn = 〈n|ψ0〉 =

∫
ϕ∗n(q)ψ0(q)dq. (2.2)

Proof.

1. Particular solution by separation of variables

First, we consider particular solutions that can be written as a product

ψ(q, t) = ϕ(q)f(t) (2.3)
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of a function ϕ(q) of position and a function f(t) of time. We shall solve for ϕ(q) and f(t) by the

method of separation of variables. The substitution of the product ansatz (2.3) into the TDSE

(1.28) gives

i~ϕ(q)
d

dt
f(t) = f(t)Hϕ(q), (2.4)

i~df(t)/dt

f(t)
=
Hϕ(q)

ϕ(q)
, (2.5)

where the second equation was obtained by dividing the first one by ψ(q, t). Note that the left-

hand side (LHS) of Eq. (2.5) is a function of time only whereas the right-hand side (RHS) is a

function of position only. The only way that a function of t can equal a function of q is if both

functions are constant, i.e., independent of t and independent of q. With a bit of foresight, we

denote this “separation”constant E and conclude that the two functions f(t) and ϕ(q) must satisfy

the equations

Hϕ(q) = Eϕ(q), (2.6)

i~
df(t)

dt
= Ef(t). (2.7)

The first equation (2.6) above is nothing but the time-independent Schrödinger equation (1.1) in

the position representation. Its general solutions are the eigenfunctions ϕn(q) with eigenvalues

called eigenenergies En. As the Hamiltonian is a Hermitian operator, the eigenenergies are real

and the eigenfunctions can be taken to be orthonormal as in Eq. (1.38). In fact, if the eigenfunctions

ϕn are normalized, they form an orthonormal basis of the Hilbert space.

2. General solution

As the TDSE in position representation is a linear partial differential equation (PDE), its

general solution can be obtained as a superposition of the particular solutions (2.1). The coeffi cients

cn can be found from the initial conditions. At time t = 0, we must have

ψ(q, 0) =
∑
n

cnϕn(q) = ψ0(q). (2.8)

Multiplying on the left by ϕm(q)∗, integrating over q yields

∑
n

cn

∫
ϕm(q)∗ϕn(q)dq =

∫
ϕm(q)∗ψ0(q)dq. (2.9)

Recalling the orthonormality 〈m|n〉 = δmn on the LHS gives the result (2.2), completing the proof.�
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Strictly speaking, one typically needs an infinite basis |n〉 of the Hilbert space for the claim to

be true. In practice, the full basis is replaced with a truncated, finite basis set. The claim then

provides an optimal solution of the TDSE within the subspace of the full Hilbert space spanned

by the finite basis set. This method is know in mathematics as the Galerkin method.

The solution (2.1) is expressed as a linear combination of stationary states, each of which has

a time dependence of different frequency. As we shall see later, this difference between frequencies

is precisely what gives rise to time dependence in quantum dynamics.

B. Basis set solution of the TDSE: Time-dependent H

Now we assume that the Hamiltonian is time-dependent. In general, a time-dependent Hamil-

tonian H(t) can be written as a sum

H(t) = H0 + V (t), (2.10)

where H0 is a time-independent component and V (t) is the time-dependent component. This

splitting is very useful in describing interaction of atoms or molecules with the electromagnetic

field, where H0 is the time-independent molecular Hamiltonian and V (t) the interaction of

the molecule with the field (e.g., the field of a laser).

Claim 5 The general solution of the TDSE with the time-dependent Hamiltonian (2.10) and initial

condition ψ(q, 0) = ψ0(q) is

ψ (q, t) =
∑
n

cn(t)ϕn(q)e−iEnt/~, (2.11)

where ϕn and En are the eigenfunctions and eigenenergies of H0. The time-dependent expansion

coeffi cients are the solutions of the system of ordinary diff erential equations (ODEs)

ċm(t) = − i
~
∑
n

eiωmntVmn(t)cn(t) (2.12)

with initial conditions cn(0) = 〈n|ψ0〉 . In Eq. (2.12), the transition frequency ωmn is defined as

ωmn :=
Em − En

~
, (2.13)

and Vmn is the matrix element

Vmn(t) = 〈m|V (t)|n〉 . (2.14)
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Proof: Expression (2.11) is an ansatz to be substituted into the TDSE (1.28), which is justified

by the fact that ϕn(q) forms a complete set in the Hilbert space and so any permissible function

ψ(q, t) can be written in the form (2.11). Upon substitution, one obtains

i~
∑
n

(
ċn(t)− i

~
Encn(t)

)
ϕn(q)e−iEnt/~ =

∑
n

cn(t) (En + V (q, t))ϕn(q)e−iEnt/~, (2.15)

i~
∑
n

ċn(t)ϕn(q)e−iEnt/~ =
∑
n

cn(t)V (q, t)ϕn(q)e−iEnt/~,

where the terms containing a factor En have cancelled between the left- and right-hand sides.

Multiplication by ϕm(q)∗ and integration over q yield

i~
∑
n

ċn(t)e−iEnt/~ 〈m|n〉 =
∑
n

cn(t)Vmn(t)e−iEnt/~. (2.16)

Since 〈m|n〉 = δmn, multiplication by exp(iEmt/~) gives the ODE (2.12). The initial conditions

are obtained in the same way as in the previous case, completing the proof.�

We have converted the TDSE into a system of linear ODEs for the expansion coeffi cients cn.

This system can be solved numerically and sometimes even analytically. In general, it is a much

simpler problem, especially if only few eigenstates are coupled by the time-dependent potential. In

practice, the initial state is often an eigenstate |m〉 of H0, so cn(0) = δnm. E.g., in spectroscopy it

is often the vibrational eigenstate of the electronic ground state of a molecule. The time-dependent

electromagnetic field induces transitions to other vibrational states (in infrared spectroscopy)

or even to other electronic states (in electronic spectroscopy).

C. Nonorthogonal, time-dependent basis set solution of the TDSE with a time-dependent

Hamiltonian

Let us generalize the previous two methods as much as possible. The goal is to find the quantum

state |ψ(t)〉 that solves the TDSE

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 (2.17)

with the initial condition

|ψ(0)〉 = |ψ0〉. (2.18)

In this section, both the Hamiltonian and the basis can be time-dependent. Moreover, the basis

may be nonorthogonal. Most cases in the literature can be obtained as special cases of the general

result that we derive below.
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We seek a solution in the form

|ψ (t)〉 =
∑
n

cn(t)|n(t)〉, (2.19)

where |n(t)〉 is a possibly nonorthogonal, time-dependent basis with the overlap matrix

Skn(t) := 〈k(t)|n(t)〉. (2.20)

One usually assumes that the basis states are normalized, i.e.,

Snn(t) = 1,

but this assumption is not needed for what follows.

In order that |ψ(t)〉 satisfy the initial condition (2.18), the coeffi cients cn(t) must satisfy the

coupled initial conditions

∑
n

Skn(0)cn(0) = 〈k(0)|ψ0〉 , (2.21)

which can be shown by projecting the ansatz (2.19) onto a bra vector 〈k(0)|.

Inserting the ansatz (2.19) into the TDSE (2.17) and projecting onto the bra vector 〈k| yield

an equivalent system of linear ODEs for the coeffi cients cn(t):

i~
∑
n

Skn(t)ċn(t) =
∑
n

(Hkn(t)− i~Dkn(t)) cn(t), (2.22)

where

Hkn(t) = 〈k(t)|Ĥ(t)|n(t)〉 (2.23)

is the time-dependent Hamiltonian matrix element in our time-dependent basis and

Dkn(t) := 〈k(t)|ṅ(t)〉 (2.24)

is the nonadiabatic coupling matrix. This matrix describes the coupling between states |k(t)〉

and |n(t)〉 due to the time dependence of the basis.

In matrix notation, equation (2.22) becomes

i~S(t)ċ(t) = (H(t)− i~D(t)) c(t). (2.25)

This very general result contains seven special cases, which are obtained by all possible combina-

tions of the following three assumptions:
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1) A time-independent basis satisfies

|ṅ(t)〉 = 0, (2.26)

implying that the nonadiabatic coupling matrix vanishes and that the overlap matrix is time-

independent, i.e.,

D(t) = 0 and S(t) = S. (2.27)

2) An orthonormal basis is defined by

S(t) = 1. (2.28)

3) A time-independent Hamiltonian means that

Ĥ(t) = Ĥ. (2.29)

In the case of time-dependent Hamiltonians Ĥ(t), two special orthonormal bases are useful:

i) If Ĥ(t) = Ĥ0 + V̂ (t), where Ĥ0 is a time-independent component, it is often useful to solve the

problem using the time-independent eigenbasis of Ĥ0. In fact, this is what we did in the previous

section.

ii) The time-dependent instantaneous eigenbasis of a time-dependent Hamiltonian Ĥ(t), i.e., a

basis defined by the eigenvalue equation

Ĥ(t)|n(t)〉 = En(t)|n(t)〉 (2.30)

and depending continuously on time t. This basis is called the adiabatic basis.

D. Time-dependence in QM (See Tannor)

Stationary state, wave packet, expectation value

E. Free-particle wave packet (See Tannor)

particular solution

ψ(q, t) = ei(kq−ωt)

p = ~k, E = ~ω, ω(k) =
~k2

2m
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de Broglie relation, Einstein relation, dispersion relation, phase velocity, group velocity

general solution

ψ(q, t) =
1√
2π

∫
a(k)ei(kq−~k

2t/2m)dk

How to find a(k)?

center of the wavepacket, dispersion of the wavepacket

III. GAUSSIAN WAVE PACKET

Note that I use a different convention for α than Tannor, in order to simplify various equations

and to extract dependence on ~, and– if necessary– include the normalization factor in γ.

A Gaussian wavepacket is a wavefunction whose position dependence is a complex Gaussian

function

ψ(x) = exp

{
i

~

[
1

2
α (x− q)2 + p(x− q) + γ

]}
(3.1)

with real parameters q and p and complex parameters α and γ. As we shall see below, q and

p specify the position and momentum of the center of the wavepacket, α controls the width and

position-momentum correlation, and γ determines the phase and normalization of the wavepacket.

In order that the wavefunction be normalizable, it is necessary that Imα > 0. The norm of the

Gaussian (3.1) is then

‖ψ‖ = e− Im γ/~ (π~/ Imα)1/4 , (3.2)

which follows from the simple calculation

‖ψ‖2 = 〈ψ|ψ〉 =

∫ ∞
−∞
|ψ (x)|2 dx =

∫ ∞
−∞

exp

{
−1

~

[
Imα (x− q)2 + 2 Im γ

]}
dx

=

(
π~

Imα

)1/2

e−2 Im γ/~. (3.3)

where we have used the standard Gaussian integral∫ ∞
−∞

exp
(
−ax2 + bx+ c

)
dx =

√
π

a
exp

(
b2

4a
+ c

)
, (3.4)

valid for complex numbers a, b, c with Re a > 0. Equation (3.2) implies that the Gaussian

wavepacket (3.1) is normalized if

γ = Re γ + i
~
4

ln (π~/ Imα) , (3.5)
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where Re γ is arbitrary.

Gaussian wavepackets play a very special role in quantum mechanics for the following reason:

if the potential energy function is at most quadratic, i.e., if

V (x) = ax2 + bx+ c, (3.6)

then a Gaussian wavepacket retains the Gaussian form (3.1) for all times. Moreover, a Gaussian

wavefunction is localized both in position and momentum, so it is as close as it gets to the classical

situation, where one can determine position and momentum simultaneously.

A. General properties of a Gaussian wavepacket

In the lecture, I showed that the center of the Gaussian wavepacket, defined as the expectation

value of position and momentum operators, was simply given as

〈x̂〉 = q and 〈p̂〉 = p. (3.7)

The width of a wavepacket is measured by the uncertainties ∆x and ∆p of the position and

momentum. The uncertainty ∆A for a general Hermitian operator Â is defined as the root mean

squared

∆A := 〈(Â− 〈Â〉)2〉1/2 = (〈Â2〉 − 〈Â〉2)1/2. (3.8)

For a Gaussian wavepacket, the position and momentum uncertainties are

∆x =

√
~

2 Imα
and ∆p = |α|

√
~

2 Imα
. (3.9)

Note that these satisfy

∆x∆p =
~
2

|α|
Imα

≥ ~
2

(3.10)

because |α| ≥ Imα. This proves the Heisenberg uncertainty relation ∆x∆p ≥ ~/2 for the spe-

cial case of Gaussian wavepackets. Moreover, since |α| = Imα if and only if α is purely imaginary,

we can conclude that the inequality becomes equality ∆x∆p = ~/2 for Gaussian wavepackets with

purely imaginary α, which are, therefore, called minimum uncertainty wavepackets.

B. Gaussian free particle (V = 0)

Let the initial wavefunction at t = 0 have zero position and momentum (q0 = p0 = 0), i.e.,

ψ(x, 0) = exp

[
i

~

(
1

2
α0x

2 + γ0

)]
. (3.11)
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As I have shown in the lecture, the wavefunction at time t will be

ψ(x, t) =

√
αt
α0

exp

[
i

~

(
1

2
αtx

2 + γ0

)]
= exp

[
i

~

(
1

2
αtx

2 + γt

)]
, (3.12)

where

αt =
α0

1 + tα0/m
, (3.13)

γt = γ0 + i
~
2

ln(1 + α0t/m), (3.14)

and where in the last step of Eq. (3.12), we have absorbed the prefactor
√
αt/α0 into γt. This

shows that the free particle Gaussian wavepacket indeed remains a Gaussian of the form (3.1). In

contrast to classical mechanics, where a free particle with zero initial momentum simply remains

at the initial position, in quantum mechanics the uncertainty in position changes with time. For

purely imaginary α0, the wavepacket spreads with increasing time– the expectation value of

position remains constant, but the uncertainty ∆x of position increases with time.

C. Gaussian wavepacket in a harmonic oscillator

Now let us turn to the Gaussian wavepacket (3.1) in a simple harmonic oscillator potential

V (x) =
1

2
mω2x2. (3.15)

We will show that the ansatz

ψ(x, t) = exp

{
i

~

[
1

2
αt (x− qt)2 + pt(x− qt) + γt

]}
(3.16)

solves the time-dependent Schrödinger equation

i~
∂

∂t
ψ = − ~

2

2m

∂2

∂x2
ψ +

1

2
mω2x2ψ (3.17)

for the simple harmonic oscillator exactly.

We start by evaluating the partial derivatives of ψ(x, t):

∂ψ

∂x
=
i

~
[αt (x− qt) + pt]ψ, (3.18)

∂2ψ

∂x2
=

{(
i

~

)2

[αt (x− qt) + pt]
2 +

i

~
αt

}
ψ, (3.19)

∂ψ

∂t
=
i

~

{
1

2
α̇t (x− qt)2 − q̇t [αt (x− qt) + pt] + ṗt(x− qt) + γ̇t

}
ψ. (3.20)
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Next, we substitute these derivatives into the TDSE (3.17). Because this partial differential equa-

tion must hold at all values of x, we separately look at different powers of (x−qt) and the prefactor

of each power will give us a separate equation for the parameters of the Gaussian. Since there

are only three powers appearing, namely (x− qt)0, (x− qt)1, and (x− qt)2, we find three complex

ordinary differential equations for the parameters. The zeroth power gives an equation for γ̇t,

whereas the second power gives an equation for α̇t. The first power mixes equations for q̇t and ṗt,

but because qt and pt are real, by taking real and imaginary part of the equation we can obtain

two real ordinary differential equations. In summary, we find that the partial differential TDSE

is equivalent to the system of four ordinary differential equations (of which the first and last are

complex, while the second and third are real):

α̇t = −α2
t /m−mω2, (3.21)

ṗt = −mω2qt, (3.22)

q̇t = pt/m, (3.23)

γ̇t =
p2
t

2m
− 1

2
mω2q2

t +
i~
2m

αt. (3.24)

Before solving these equations analytically, let us discuss their meaning: While the equation

for q̇t is the relation between classical velocity (q̇t) and momentum (pt), the equation for ṗt can be

rewritten as Newton’s equation of motion

ṗt = −V ′ (qt) (3.25)

for the simple harmonic oscillator potential (3.15). This implies that in the simple harmonic

oscillator, the center (qt, pt) of a Gaussian wavepacket follows classical equations of motion! Those

familiar with Lagrangian mechanics (which will be covered in the next lecture) will recognize

that the first two terms in Eq. (3.24) for γ̇t are nothing but the Lagrangian L (qt, q̇t) itself! Recall

that the Lagrangian is defined as the difference between kinetic and potential energies,

L (q, q̇) = T (q̇)− V (q) , (3.26)

where

T (q̇) =
1

2
mq̇2 (3.27)

is the kinetic energy written as a function of velocity [we used the relation (3.23) between pt and

q̇t]. Those familiar with Hamiltonian mechanics (which will be covered in the next lecture) will
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recognize that the equations for q̇t and ṗt are also Hamilton’s equation of motion

ṗt = −∂H
∂q

(qt, pt) , (3.28)

q̇t =
∂H

∂p
(qt, pt) (3.29)

for the simple harmonic oscillator Hamiltonian

H (q, p) = T (p) + V (q), (3.30)

where the kinetic energy T (p) = p2/2m is expressed in terms of momentum instead of velocity.

Claim. Equations of motion (3.21)-(3.24) for the parameters of a Gaussian wavepacket in a

simple harmonic oscillator have the analytical solution

qt = q0 cosωt+
p0

a
sinωt, (3.31)

pt = p0 cosωt− aq0 sinωt, (3.32)

αt = a
α0 cosωt− a sinωt

a cosωt+ α0 sinωt
, (3.33)

γt = γ0 +
1

2

(
ptqt − p0q0 + i~ ln

zt
a

)
, (3.34)

where

a := mω, (3.35)

zt := α0 sinωt+ a cosωt. (3.36)

Proof. Equations (3.31) and (3.32) can be obtained from the system of linear ordinary dif-

ferential Eqs. (3.22) and (3.23) by any standard method of solution. One can easily verify the

result by differentiation and checking the initial conditions at t = 0. In fact, one can prove the

claim for αt and γt also by “verification”but let us show in detail how we would obtain the result

constructively, if we were not given the answer.

The ordinary differential equation (3.21) can be solved by separation of variables:

dα

α2 + a2
= − 1

m
dt.

Integrating both sides from time 0 to t gives∫ αt

α0

dα

α2 + a2
= − 1

m

∫ t

0
dt′

1

a
arctan

α

a

∣∣∣∣αt
α0

= − t

m
.
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Now we need to invert this equation to obtain αt explicitly. We do it by first defining β := α/a:

arctanβt − arctanβ0 = −ωt.

Now let us use an identity for the difference of two arctan functions:

arctan
βt − β0

1 + βtβ0
= −ωt

βt − β0

1 + βtβ0
= − tanωt.

Now it is straightforward to obtain βt in terms of β0:

βt =
β0 − tanωt

1 + β0 tanωt
,

which implies directly Eq. (3.33).

To solve Eq. (3.24) for γ̇t, we first note that Eq. (3.33) for αt can be written as

αt =
a

ω

żt
zt
,

where zt is defined in Eq. (3.36). Also using pt = mq̇t and ṗt = −mω2qt [Eqs. (3.23) and (3.22)],

we can rewrite Eq. (3.24) as

γ̇t =
1

2
(ptq̇t + ṗtqt) +

i~
2

żt
zt

=
1

2

d

dt
(ptqt + i~ ln zt) ,

which directly implies the final Eq. (3.34) for γt and completes the proof.

Exercise 6 Analyze the quantum-mechanical motion of a Gaussian wavepacket (3.1) in a linear

potential V (x) = ax. Obtain and solve the equations of motion for parameters qt, pt, αt, and γt by

following the procedure used above for the harmonic oscillator.

D. Thawed Gaussian approximation (Heller 1975)

Now imagine that the potential V (x) is not harmonic. Solving the TDSE is very diffi cult in

general, but if the initial state is a Gaussian, it is localized and so one may try to approximate the

potential energy by the local harmonic approximation about the center of the wavepacket:

V (x, t) ≈ VLHA(x, qt) := V (qt) + V ′ (qt) (x− qt) +
1

2
V ′′ (qt) (x− qt)2 .
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This is a time-dependent harmonic potential, which depends on time implicitly via the time-

dependent center qt of the Gaussian. So, using our results for the harmonic oscillator, we get

immediately (after shifting the minimum):

α̇t = −α2
t /m− V ′′(qt), (3.37)

ṗt = −V ′(qt), (3.38)

q̇t = pt/m, (3.39)

γ̇t =
p2
t

2m
− V (qt) +

i~
2m

αt. (3.40)

These equations express the thawed Gaussian approximation, proposed by Heller in 1975.

(The name “thawed”was motivated by the flexible width of the Gaussian, in contrast to the fixed

width of a frozen Gaussian discussed below.)

In the simple harmonic oscillator potential (3.15), i.e., V (x) = mω2x2/2, these equations im-

mediately reduce to the exact Eqs. (3.21)-(3.24) derived in the previous section for the Gaussian

wavepacket in harmonic potential, showing that the thawed Gaussian approximation is exact in

globally harmonic potentials. For short times, the approximation is accurate in general potentials,

but it breaks down at longer times, when anharmonicity becomes more important and can even

lead to wavepacket splitting, which, of course, cannot be captured by a single Gaussian ansatz

for the wavefunction.

E. Coherent state of a harmonic oscillator

Consider again a Gaussian in a simple harmonic oscillator. Now imagine that the initial width

parameter α0 satisfies

α0 = ia = imω.

Quick inspection of Eq. (3.33) for αt shows that, due to a cancellation between the numerator and

denominator,

αt = α0 = ia.

In other words, the width parameter remains constant. Such a special Gaussian wavepacket is called

a coherent state of the simple harmonic oscillator. It is sometimes called a frozen Gaussian, be-

cause its width parameter is “frozen”. Equations for q̇t and ṗt remain the same classical equations,
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but the equation (3.24) for γ̇t simplifies to

γ̇t =
p2
t

2m
− 1

2
mω2q2

t −
1

2
~ω = ptq̇t −H (qt, pt)−

1

2
~ω. (3.41)

F. Frozen Gaussian approximation (Heller 1981)

Now assume that the potential is arbitrary and, in particular, not harmonic.

First imagine that you would like to make an even more drastic approximation than the thawed

Gaussian approximation and approximate the wavefunction by a “frozen Gaussian”, i.e., a Gaussian

of a fixed width. Assuming again that the center of the Gaussian is moving classically and inspired

by the last form of Eq. (3.41) for γ̇t for a coherent state in a harmonic oscillator, Heller proposed

the following equations of motion for the Gaussian parameters:

αt = α0, (3.42)

ṗt = −V ′(qt), (3.43)

q̇t = pt/m, (3.44)

γ̇t = ptq̇t − 〈ψ(t)|Ĥ|ψ (t)〉, (3.45)

where ψ (t) is the frozen Gaussian parametrized by αt = α0, qt, pt, and γt.

In fact, Heller was not interested in making such a drastic approximation, but rather in improv-

ing upon the thawed Gaussian approximation. He decided to approximate the wavefunction by a

superposition of several frozen Gaussians:

ψ (x, t) :=
∑
n

cnψn (x, t) . (3.46)

Because the thawed Gaussian approximation used only a single Gaussian, it required a flexible

width to describe the spreading of the wavepacket. In contrast, the superposition (3.46) of sev-

eral frozen Gaussians can describe spreading of the wavepacket without needing a flexible width

parameter. Indeed, it can describe not only the linear spreading as in the thawed Gaussian ap-

proximation, but also the nonlinear spreading and even wavepacket splitting because each frozen

Gaussian evolves along its own classical trajectory according to Eqs. (3.42)-(3.45), where each of

the parameters αt, qt, pt, γt, and ψ (t) should now also have an index n. This describes the essence

of the frozen Gaussian approximation proposed by Heller in 1981. [!!! Add a figure.]
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IV. REVIEW OF CLASSICAL MOLECULAR DYNAMICS

We have seen that the exact solution of the quantum dynamics of a GWP in a harmonic, linear,

or constant potential leads to the equations of motion for the center of the wave packet that are

the same as the classical equations of motion. A similar analogy between quantum and classical

dynamics appears in many situations. At this point, it is, therefore, useful to review various

formulations of classical dynamics.

A. Newtonian mechanics

The oldest formulation of classical dynamics is the Newtonian mechanics, which is based on

Newton’s equation of motion (also known as Newton’s second law),

m
d2

dt2
q = −∇V (q). (4.1)

In a more general form useful in relativistic classical dynamics or in other situations where the

mass is not constant, the equation is written as

dp

dt
= F(q), (4.2)

where F is the force.

In Molecular Dynamics, Newton’s equation describes the motion of nuclei. In the simplest case,

V (q) gives the so-called “molecular mechanics force field.”Note that this is a misnomer since V (q)

is not a force, but a potential. In ab initio molecular dynamics, V (q) is a more sophisticated

function of coordinates. E.g., in Born-Oppenheimer molecular dynamics, V (q) is given by

the expectation value

V (q) = 〈Ψel,g(q)|Ĥel(q)|Ψel,g(q)〉,

where |Ψel,g(q)〉 is the ground state of the electronic Hamiltonian (including the nuclear repulsion)

Ĥel(q) at nuclear positions q. In other words, |Ψel,g(q)〉 is the ground-state solution of the electronic

TISE. In Ehrenfest dynamics, on the other hand,

V (q, t) = 〈Ψel(q, t)|Ĥel(q)|Ψel(q, t)〉,

where |Ψel(q, t)〉 is the solution of the TDSE for electrons.
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B. Lagrangian mechanics

Lagrangian mechanics is a more general formulation of classical mechanics based on a varia-

tional principle called the

Principle of Stationary Action (or sometimes the principle of least action because for

short times, the action is minimized): Classical trajectory follows a path of stationary action.

Recall other variational principles such as Fermat’s principle of least time in geometric

optics that can be used to derive, e.g., Snell’s law of refraction, or the quantum-mechanical

variational principle for energy,

E [Ψ] := 〈Ψ|Ĥ|Ψ〉 ≥ Eg,

that can be used to find, e.g., the Hartree-Fock electronic ground state. We need

Definition 7 Lagrangian is defined as the difference of kinetic and potential energies of a given

system expressed in terms of generalized coordinates q and corresponding velocities q̇,

L (q, q̇, t) := T (q, q̇)− V (q, t). (4.3)

Action is defined as the time integral of the Lagrangian along a trajectory,

S [q(t)] :=

∫ t

0
L(q, q̇, τ) dτ. (4.4)

Theorem 8 (the Euler-Lagrange equation of motion) A classical trajectory that satisfies the

principle of stationary action also satisfies the equation

∂L

∂q
− d

dt

∂L

∂q̇
= 0. (4.5)

Proof: Consider two paths, q(τ) and q(τ)+δq(τ) with the same end points, i.e., δq(0) = δq(t) =

0. The first variation of the action is

δS = S [q + δq]− S [q] =

∫ t

0

(
∂L

∂q
δq +

∂L

∂q̇
δq̇

)
dτ. (4.6)

Note that the above equation for δS holds even for a time-dependent Lagrangian because ∂L/∂t

does not appear in the variation. Using δq̇ = d(δq)/dt and integrating by parts leads to

δS =

∫ t

0

(
∂L

∂q
δq +

∂L

∂q̇

d

dτ
δq

)
dτ =

(
∂L

∂q̇
δq

)∣∣∣∣t
0

+

∫ t

0

(
∂L

∂q
− d

dτ

∂L

∂q̇

)
δqdτ. (4.7)

The first term on the RHS is zero by the boundary conditions. The action will be stationary if its

first variation is zero and, therefore, if the integral on the RHS is zero for any variation of the path

δq. This can only be satisfied if the Euler-Lagrange (EL) equation (4.5) is satisfied.�

29



Note that the same Euler—Lagrange equation holds whether or not L depends on time explicitly

because ∂L/∂t does not appear in the variation of δS due to varying δq.

Proposition 9 For the kinetic energy T = 1
2mq̇

2 and potential energy V (q), the Euler-Lagrange

equation is equivalent to Newton’s equation.

Proof: This so-called standard Lagrangian is

L(q, q̇) =
1

2
mq̇2 − V (q). (4.8)

The appropriate derivatives are

∂L

∂q
= −∇V (q),

∂L

∂q̇
= mq̇,

d

dt

∂L

∂q̇
= mq̈,

and so the Euler-Lagrange equation becomes

−∇V (q)−mq̈ = 0, (4.9)

which is precisely Newton’s equation of motion (4.1).�

C. Hamiltonian mechanics

Another generalization of Newtonian mechanics is the Hamiltonian mechanics. In modern

chemistry curricula, students often encounter the Hamiltonian only in the quantum setting, which

is a pity as this quantity plays an important role already in classical mechanics. We will not develop

the formalism in detail but instead show several main results, in particular that Newton’s equation

emerges again as a special case.

One starts by defining the canonical momentum,

p :=
∂L(q, q̇, t)

∂q̇
. (4.10)

The Hamiltonian function (or the energy) is the Legendre transform of the Lagrangian,

expressed as a function of q and p,

H(q, p, t) := q̇p− L(q, q̇, t). (4.11)

A technical but important detail is that in order for the Legendre transform to exist, one must

have det( ∂2L
∂q̇i∂q̇j

) 6= 0.
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Proposition 10 (Hamilton’s equations of motion) The coordinates and momenta satisfy the

following equations of motion:

q̇ =
∂H

∂p
and ṗ = −∂H

∂q
. (4.12)

Moreover, ∂H/∂t = −∂L/∂t.

Proof. The differential of the Hamiltonian is

dH = d(q̇p− L) = q̇dp+ pdq̇ − ∂L

∂q
dq − ∂L

∂q̇
dq̇ − ∂L

∂t
dt

= q̇dp− ∂L

∂q
dq − ∂L

∂t
dt, (4.13)

where the second and fourth terms in the last expression on the first line cancel due to the definition

(4.10) of a canonical momentum. The differential of the Hamiltonian, considered as a general

function of three variables q, p, and t, can be also written as

dH =
∂H

∂q
dq +

∂H

∂p
dp+

∂H

∂t
dt. (4.14)

Equating the corresponding terms of Eqs. (4.13) and (4.14), associated, respectively, with dq, dp,

and dt, yields Hamilton’s equations

∂H

∂q
= −∂L

∂q
= − d

dt

∂L

∂q̇
= −ṗ, (4.15)

∂H

∂p
= q̇ (4.16)

as well as an expression for ∂H/∂t:

∂H

∂t
= −∂L

∂t
.

In the proof (4.15) of Hamilton’s equation for ṗ, we also used the Euler-Lagrange equation and the

definition of canonical momentum.�

A general dynamical system that satisfies Hamilton’s equations is called a Hamiltonian sys-

tem. The importance of the Hamiltonian function goes far beyond determining the equations of

motion: the value of the Hamiltonian gives the energy of the system. Let us, therefore, prove

the law of conservation of energy.

Proposition 11 (Conservation of energy) An autonomous Hamiltonian system (i.e., a

Hamiltonian system whose Hamiltonian does not explicitly depend on time) conserves energy along

each trajectory.
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Proof. This is a simple calculation:

dH(q(t), p(t))

dt
=
∂H

∂q
q̇ +

∂H

∂p
ṗ =

∂H

∂q

∂H

∂p
− ∂H

∂p

∂H

∂q
= 0.�

As an example, let us consider the standard Lagrangian (4.8),

L(q, q̇) =
1

2
mq̇2 − V (q).

The canonical momentum (4.10) and Hamiltonian (4.11) are

p =
∂

∂q̇

(
1

2
mq̇2

)
= mq̇,

H(q,p) = mq̇2 − 1

2
mq̇2 + V (q) =

1

2
mq̇2 + V (q)

=
1

2m
p2 + V (q).

The first result is Newton’s definition of momentum and the second is the standard Hamiltonian.

Finally, Hamilton’s equations (4.12) become

q̇ =
p

m
and ṗ = −∂V (q)

∂q
.

The first equation is again Newton’s definition of momentum, while the second equation is Newton’s

law. Substituting the definition of p into the second equation yields the Euler-Lagrange equation

(4.9) for the standard Lagrangian:

mq̈ = −∂V (q)

∂q
.

D. Application: Lagrangian and Hamiltonian in a central field

Chemical examples of systems with a central field include two famous two-body problems: a

diatomic molecule, where the two bodies are the two atoms, and a hydrogen atom, where the

two bodies are a proton and an electron. When analyzing the hydrogen atom, the mass of the

proton is often assumed to be infinite in comparison with the mass of the electron. Below, we

present a more accurate solution, which does not assume that one mass is much larger than the

other. What we must do first is removing the center-of-mass (COM) motion in both cases (see the

Exercise below).

After removing the COM motion, the kinetic and potential energies are

T =
1

2
µṙ2 and V = V (r) (4.17)
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where

µ :=
m1m2

m1 +m2
(4.18)

is the reduced mass, r is the radius vector from one atom to the other (or from proton to the

electron in the H atom, see Fig. [!!! Add figure.]) and r = ‖r‖ is the bond length. In an arbitrary

central field, angular momentum is conserved, and so the motion occurs in a plane, which is proven

in most classical mechanics textbooks. Hence r is a two-dimensional vector that can be written as

the product of its length r = |r| and a unit vector r̂ with the same direction:

r = rr̂. (4.19)

Differentiating r with respect to time yields

ṙ = ṙr̂+ r
d

dt
r̂ = ṙr̂+ rϕ̇ϕ̂, and (4.20)

ṙ2 = ṙ2 + r2ϕ̇2, (4.21)

where ϕ is the polar angle, ϕ̂ is a unit vector pointing in the direction of increasing ϕ, and where

we used the following relations:

d

dt
r̂ = ϕ̇ϕ̂, r̂ · r̂ = ϕ̂ · ϕ̂ = 1, and r̂ · ϕ̂ = 0. (4.22)

In particular, r̂ and ϕ̂ are orthonormal vectors. Remember that the hat ^ here denotes unit vectors

and not operators.

Now we can find the Lagrangian,

L(r, ϕ, ṙ, ϕ̇) = T − V =
1

2
µ(ṙ2 + r2ϕ̇2)− V (r), (4.23)

and the Euler-Lagrange equations of motion,

d

dt

∂L

∂ṙ
=
∂L

∂r
⇒ µr̈ = µrϕ̇2 − V ′(r), (4.24)

d

dt

∂L

∂ϕ̇
=
∂L

∂ϕ
⇒ d

dt

(
µr2ϕ̇

)
= 0. (4.25)

The second equation is nothing else but the conservation of the magnitude of angular momentum

L = Iω = µr2ϕ̇ = const . (4.26)

Using this result, we can rewrite the first Euler-Lagrange equation as

µr̈ = −V ′eff(r), (4.27)
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where the effective potential

Veff(r) := V (r) + Vcentr(r) (4.28)

also includes the centrifugal potential

Vcentr(r) :=
L2

2µr2
. (4.29)

The canonical momenta are

pr :=
∂L

∂ṙ
= µṙ, (4.30)

pϕ :=
∂L

∂ϕ̇
= µr2ϕ̇. (4.31)

Note that pϕ, the canonical momentum conjugate to the angle ϕ, is nothing else but the angular

momentum L!

Now we can find the Hamiltonian in polar coordinates,

H(r, ϕ, pr, pϕ) = prṙ + pϕϕ̇− L =
1

2
µ(ṙ2 + r2ϕ̇2) + V (r)

=
p2
r

2µ
+

p2
ϕ

2µr2
+ V (r) =

p2
r

2µ
+ Veff(r), (4.32)

and associated Hamilton’s equations:

ṙ =
pr
µ
, (4.33)

ṗr =
p2
ϕ

µr3
− V ′(r), (4.34)

ϕ̇ =
pϕ
µr2

, (4.35)

ṗϕ = 0. (4.36)

Note that the third equation is the definition of angular momentum pϕ, the last equation represents

the conservation of the angular momentum, pϕ = const = L, and we can use this constant value in

the second and third equations. The first and second equations together give the Euler-Lagrange

equation for the radial motion.

The above example showed the straightforward nature of the Lagrangian or Hamiltonian for-

malism. The angle and angular momentum are a pair of conjugate variables in the same way

as position and momentum. In Lagrangian and Hamiltonian formalisms, one does not care which

generalized coordinates are used. In contrast, in Newtonian mechanics, angles and angular

momenta must be treated very differently than position and momentum and one must be much

more careful not to make a mistake, especially if the system becomes more complicated.
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[!!! To add:]

nondiagonal Hamiltonian for photodissociation of CO2 (bond lengths coordinates)

R1 = x3 − x2 and R2 = x2 − x3

Jacobi coordinates: How are they defined for atoms A, B, C?

E. *Hamilton-Jacobi theory (not required)

First, let us allow the endpoints of the trajectory to vary, i.e., δq (0) 6= 0 and δq (t) 6= 0. Recall

that in the derivation (4.7) of the Euler-Lagrange equations, we used an integration by parts, in

which the boundary term was zero because we assumed that the endpoints were fixed. For a more

general variation of the trajectory, where the endpoints can vary, the action can be stationary only

if the Euler-Lagrange equations hold and, in addition, the boundary term is zero,(
∂L

∂q̇
δq

)∣∣∣∣t
0

= 0. (4.37)

Assuming that the Euler-Lagrange equations hold, the variation of the action is

δS =

(
∂L

∂q̇
· δq

)∣∣∣∣t
0

= p (t) · δq (t)− p (0) · δq (0) . (4.38)

If the action is considered as the function of the the initial coordinate q0 = q(0), final coordinate

q = q(t), and time t, then the above equation implies that

∂S

∂q
= p and

∂S

∂q0
= −p0, (4.39)

where p = p(t) and p0 = p(0). Now recall that the Lagrangian is the total time derivative of the

action,

L =
dS

dt
=
∂S

∂t
+
∂S

∂q
· q̇ =

∂S

∂t
+ p · q̇, (4.40)

and that the Hamiltonian is the Legendre transform of the Lagrangian,

H = p · q̇− L. (4.41)

Hence

H = −∂S
∂t
. (4.42)

Because H ≡ H (q,p, t), we obtain a partial differential equation (PDE) for S(q,q0, t):

H

(
q,
∂S

∂q
, t

)
= −∂S

∂t
. (4.43)

This is the Hamilton-Jacobi equation, which is equivalent to Hamilton’s equations and forms

the basis of Hamilton-Jacobi theory.
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F. *Derivation of Hamilton’s equations from the variational principle (not required)

Hamilton’s equations can be derived directly from the variational principle, if the Lagrangian

is considered as a function of q, p, q̇, and ṗ. Because the Hamiltonian is the Legendre transform of

the Lagrangian, the Lagrangian is also the Legendre transform of the Hamiltonian:

L ≡ L (q, p, q̇, ṗ) = p · q̇ −H (q, p) . (4.44)

Now let us consider the variation of the action integral

S =

∫ t

0
L (q, p, q̇, ṗ) dτ . (4.45)

Because L(q, p, q̇, ṗ) from Eq. (4.44) does not depend on ṗ, the first variation of action is

δS =

∫ t

0

(
∂L

∂q
δq +

∂L

∂q̇
δq̇ +

∂L

∂p
δp

)
dτ

=

∫ t

0

[
−∂H
∂q

δq + pδq̇ +

(
q̇ − ∂H

∂p

)
δp

]
dτ

=

∫ t

0

[(
−∂H
∂q
− ṗ
)
δq(τ) +

(
q̇ − ∂H

∂p

)
δp(τ)

]
dτ, (4.46)

where, in the last row, we used again the fact that δq̇ = d (δq) /dt and that the boundary term in

the integration by parts was zero because the endpoints were assumed to be fixed [δq(0) = δq(t) =

δp(0) = δp(t) = 0].

Because the action must be stationary for arbitrary variations δq(τ) and δp (τ), the prefactors

of these variations in the integrand must be zero. These are exactly Hamilton’s equations

ṗ = −∂H
∂q

and q̇ =
∂H

∂p
. (4.47)

G. Phase space, phase portrait, and Liouville’s theorem

Imagine that you are given the coordinates r0 = (x0, y0, z0) of a particle at time t = 0 and that

you know exactly the force F(r) that acts on the particle at any position r in space. Can you

predict the position of the particle at all times t > 0? No, because you do not know its initial

velocity or momentum. This is intuitively obvious and mathematically it follows because Lagrange

equations of motion are second-order differential equations, so their solution requires initial values

of both positions q (0) and their first derivatives (velocities) q̇ (0). As for Hamilton’s equations

of motion, which are only first-order, you only need initial values of the variables, but now the

variables include not only the positions q but also momenta p. To sum up, if there are D degrees of

freedom, you need 2D initial data in both cases: D positions and either D velocities or D momenta.
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From now on, let us focus on Hamiltonian mechanics, where the trajectory at time t is specified

by a D-dimensional coordinate vector q (t) in the D-dimensional coordinate space and a D-

dimensional momentum vector p (t). Together q and p form a 2D-dimensional vector in a 2D-

dimensional phase space (see Fig. 9 for D = 1 and D = 3).

Coordinate space

Phase space

FIG. 9. Coordinate space and phase space for systems with one and three degrees of freedom.

In contrast to initial “coordinate-space coordinates” q, initial phase-space coordinates (q,p)

specify the trajectory (qt,pt) ≡ (q (t) ,p (t)) completely. Different initial conditions lead to differ-

ent types of trajectories and a phase portrait of all topologically different trajectories provides

useful information about the dynamics of a system. Let us look at several one-dimensional exam-

ples:

For a free particle, V (q) = 0, the momentum is conserved, pt = p0, and there are three types

of trajectories (see Fig. 10). Those with positive momenta are depicted as horizontal, right-pointing

lines (qt, pt) = (q0 + p0t/m, p0) in the phase portrait. Those with zero momentum correspond to

separate points (qt, pt) = (q0, 0) and those with negative momenta are depicted as horizontal, left-

pointing lines. In the theories of elasticity and dynamical systems, the phase portrait just described

is referred to as a shear. In chemical physics, examples of a free particle are the translational

motion of a molecule of an ideal gas between collisions or a rotation of a rigid molecule (here

q := φ and p := L, where L is the angular momentum).

In a harmonic oscillator, V (q) = 1
2kq

2. Because the energy is conserved along a classical
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FIG. 10. Phase portrait of a free particle.

trajectory, i.e.,

1

2m
p2
t +

1

2
kq2
t = const = E,

almost every trajectory moves clockwise along an ellipse in phase space (see Fig. 11). The only

exception is the fixed point at q = p = 0, for which qt = pt = 0. (Such a trajectory is called

a fixed point because neither the position nor momentum changes with time.) As you know, in

chemical physics the harmonic oscillator arises as a model of molecular vibrations for small

displacements from the equilibrium.

Finally, let us find the phase portrait of a mathematical pendulum, which describes approx-

imately hindered rotation in molecules, such as the rotation of a methyl group about the C-C

axis in ethane. Potential energy of a pendulum of mass m and length l displaced by an angle φ

from the vertical axis is

V (φ) = −mgl cosφ.

Now more types of trajectories appear (see Fig. 12): First, as in the harmonic oscillator, for E = 0

there are stable fixed points at the minimum of the potential at (φ = 2nπ,L = 0), n ∈ Z. (A

fixed point is said to be “stable”if, for suffi ciently small displacements, the motion remains in the

vicinity of the fixed point for all times.) For 0 < E < mgl, the pendulum performs oscillations with

amplitude |φmax| < π, exactly as in a pendulum clock; in phase space, these oscillations appear as

periodic orbits (i.e., trajectories, for which there is a time T such that φT = φ0 and LT = L0),
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FIG. 11. Phase portrait of a harmonic oscillator.

traversed clockwise. Because they are similar to but not quite the same as vibrations in a harmonic

oscillator, such trajectories are called librations. For E > mgl, the pendulum does not stop at

its highest point, but keeps winding about its support so that the angle φ either increases to ∞

(if L > 0) or decreases to −∞ (if L < 0). Such motions are called hindered rotations because

they are similar to free rotations but are hindered by the gravitational potential energy. Finally,

if the energy is exactly E = mgl, there are two types of trajectories: unstable fixed points at

(φ = (2n+ 1)π,L = 0), n ∈ Z, and trajectories that connect different unstable fixed points to each

other. These trajectories are called separatrices because they separate two topologically different

families of motion (here hindered rotations and librations). In the pendulum, each separatrix

corresponds to a special infinitesimal displacement from an unstable fixed point that results in a

very slow but accelerating fall to the minimum of the potential, followed by a decelerated rise to

the top of the pendulum; the whole process takes an infinite time.

So far, we have considered individual trajectories. Let us consider what happens to a region

of phase space corresponding to the initial conditions of a whole ensemble of classical trajectories.

The phase space volume, i.e., a volume of a bounded region R of phase space, is measured by

the integral

V :=

∫
R
d2DV,
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Libration
Stable 
fixed point

Unstable 
fixed point

Hindered 
rotation

FIG. 12. Phase portrait of a pendulum.

where the volume element d2DV is the product of 2D position and momentum factors:

d2DV = dq1dp1 · · · dqDdpD.

Theorem 12 (Liouville’s theorem) The volume of a phase-space region evolved with Hamilton’s

equations is conserved.

Proof. Let us define a 2D-component phase-space vector x by

x ≡ (x1, x2, . . . , x2D) := (q1, p1, . . . , qD, pD) .

Using this notation, Hamilton’s equations can be rewritten as a nonlinear ordinary differential

equation

dx

dt
= F(x) (4.48)

whose solutions are trajectories tangent to a 2D-component vector field

F :=

(
∂H

∂p1
,−∂H

∂q1
, . . . ,

∂H

∂pD
,− ∂H

∂qD

)
.

Recall that a divergence of a general vector A is defined as the following sum of the partial

derivatives of its components:

divA := ∇ ·A =
2D∑
j=1

∂Aj
∂xj

.
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The proof of Liouville’s theorem is completed by noticing that the vector field F has zero divergence,

divF =
∂

∂q1

∂H

∂p1
+

∂

∂p1

(
−∂H
∂q1

)
+ · · ·+ ∂

∂qD

∂H

∂pD
+

∂

∂pD

(
− ∂H
∂qD

)
=

(
∂2H

∂q1∂p1
− ∂2H

∂p1∂q1

)
+ · · ·+

(
∂2H

∂qD∂pD
− ∂2H

∂pD∂qD

)
= 0 + · · ·+ 0 = 0,

and by invoking a general theorem from the real analysis of several variables stating that the

solution of the vector nonlinear differential equation (4.48) conserves volume if the divergence of

F is zero. �

FIG. 13. Conservation of phase-space volume implied by Liouville’s theorem. While the coordinate-space

and momentum-space volumes change, the phase-space volume is constant– here reflected in the equal areas

of the shaded phase-space regions at times t0, t1, and t2.

V. CONNECTIONS BETWEEN QUANTUM AND CLASSICAL MECHANICS

A. Commutator

The commutator [Â, B̂] := ÂB̂ − B̂Â of two quantum-mechanical operators is an important

concept in quantum mechanics. Let Â, B̂, Ĉ be operators, and λ a complex number.

Exercise 13 Show that the commutator is

1) skew-symmetric:

[B̂, Â] = −[Â, B̂], (5.1)

2) bilinear:

[λÂ, B̂] = λ[Â, B̂], (5.2)

[Â, B̂ + Ĉ] = [Â, B̂] + [Â, Ĉ], (5.3)

41



3) and satisfies the Jacobi identity:

[Â, [B̂, Ĉ]] + [B̂, [Ĉ, Â]] + [Ĉ, [Â, B̂]] = 0. (5.4)

These three conditions express that the set of operators together with addition and commutator

form a Lie algebra.

Exercise 14 Show that a commutator [Â, ·] with a fixed operator Â (i.e., the mapping [Â, ·] : B̂ 7→

[Â, B̂]) satisfies the Leibniz rule

[Â, B̂Ĉ] = B̂[Â, Ĉ] + [Â, B̂]Ĉ. (5.5)

The name comes from an analogy with the Leibniz rule for a derivative of a product, where the

linear mapping is d(·)/dx : f 7→ df/dx:

d

dx
(fg) = f

dg

dx
+
df

dx
g.

Mathematicians, therefore, call a linear mapping that satisfies the Leibniz rule a derivation on the

associative algebra of operators with the usual multiplication of operators, ÂB̂. (In an associative

algebra, the product ÂB̂ must be again bilinear, but the associative law replaces the Jacobi identity

of the Lie algebra. The product does not have to be symmetric or skew-symmetric.) A set that

is both an associative algebra (with respect to · operation) and Lie algebra (with respect to [·, ·]),

and, in addition, satisfies the Leibniz rule, is called a Poisson algebra.

One of the pillars of quantum mechanics is the expression for the commutator of the position

and momentum operators:

[q̂, p̂] = i~. (5.6)

Exercise 15 Using the Leibniz rule, show that if functions f(q) and g(p) can be expanded in power

series of their arguments, then

[q̂, f(q̂)] = 0 and [q̂, g(p̂)] = i~
d

dp
g(p̂), (5.7)

[p̂, g(p̂)] = 0 and [p̂, f(q̂)] = −i~ d
dq
f(q̂). (5.8)

B. Ehrenfest theorem

Recall that the expectation value 〈A〉 of operator Â in the state |ψ〉 is defined as

〈A〉 := 〈ψ|Â|ψ〉.
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If it is useful to keep the information about the state, in which the expectation value is evaluated,

we use the more detailed notation 〈A〉ψ. Sometimes, if the operator in the brackets is a more

complicated expression, it is also useful to keep the hat on the operator. To sum up, the following

four expressions are equivalent:

〈A〉 = 〈A〉ψ = 〈Â〉 = 〈Â〉ψ.

Theorem 16 (Ehrenfest) If the quantum state |ψ(t)〉 evolves according to the TDSE with a

Hamiltonian operator

Ĥ =
p̂2

2m
+ V (q̂),

then the expectation values of position and momentum evolve according to the following equations:

d 〈q〉
dt

=
〈p〉
m
, (5.9)

d 〈p〉
dt

= −
〈
∂V

∂q

〉
. (5.10)

Note that equations for 〈q〉 and 〈p〉 are very similar to Hamilton’s equations of motion, except

that, in general, 〈−∂V/∂q〉 6= −∂V (〈q〉)/∂q. To prove the Ehrenfest theorem, we will employ the

following

Lemma 17 Expectation value of a general operator Â evolves as

d〈Â〉
dt

= 〈∂Â/∂t〉+
1

i~
〈[Â, Ĥ]〉. (5.11)

In particular, if the operator Â does not explicitly depend on time (i.e., ∂Â/∂t = 0), then

d〈Â〉
dt

=
1

i~
〈[Â, Ĥ]〉. (5.12)

Proof of lemma. Using the Leibniz rule and the fact that |ψ〉 satisfies the TDSE (i.e.,

i~|ψ̇〉 = Ĥ|ψ〉 as well as −i~〈ψ̇| = 〈ψ|Ĥ|), the time derivative of the expectation value 〈Â〉 =

〈ψ(t)|Â(t)|ψ(t)〉 is expanded as

d〈Â〉
dt

= 〈ψ̇|Â|ψ〉+ 〈ψ|∂Â/∂t|ψ〉+ 〈ψ|Â|ψ̇〉

= − 1

i~
〈ψ|ĤÂ|ψ〉+ 〈∂Â/∂t〉+

1

i~
〈ψ|ÂĤ|ψ〉

= 〈∂Â/∂t〉+
1

i~
〈ψ|(ÂĤ − ĤÂ)|ψ〉.� (5.13)
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Proof of theorem. To prove Eqs. (5.9) and (5.10), we apply the lemma to the position

and momentum operators. For Â = q̂, we need to evaluate the commutator of position with

Hamiltonian:

[q̂, Ĥ] =
1

2m
[q̂, p̂2] =

1

2m
([q̂, p̂]p̂+ p̂[q̂, p̂]) =

1

2m
(i~p̂+ p̂i~) = i~

p̂

m
, (5.14)

where we have used the fact that q̂ commutes with V (q̂) [this is relation (5.7) applied to f(q) =

V (q)], together with properties (5.5) and (5.6). The lemma then yields Eq. (5.9). Likewise, for

Â = p̂, we need the commutator of momentum with Hamiltonian,

[p̂, Ĥ] = [p̂, V (q̂)] = −i~ ∂
∂q
V (q̂), (5.15)

which follows from property (5.8) applied to f(q) = V (q) and g(p) = p2/(2m). The lemma then

yields Eq. (5.10).�

Note that the equations of the Ehrenfest theorem would be simpler to solve if Eq. (5.10) were

replaced with d〈p〉/dt = −∂V (〈q〉)/∂q. Then the expectation values of q and p would follow

classical trajectories. To see when this would happen, let us expand V ′(q) about 〈q〉:

V ′(q) = V ′(〈q〉) + (q − 〈q〉)V ′′(〈q〉) +
1

2
(q − 〈q〉)2V ′′′(〈q〉) + · · · . (5.16)

Taking the expectation value yields

〈V ′(q)〉 = V ′(〈q〉) +
1

2
〈(q − 〈q〉)2〉V ′′′(〈q〉) + · · · . (5.17)

Now if V (q) = aq2 + bq + c, i.e., if the potential is at most quadratic, then V (n) = 0 for n ≥ 3, so

〈V ′(q)〉 = V ′(〈q〉). In this case, Eq. (5.10) becomes Hamilton’s equation

d 〈p〉
dt

= −∂V (〈q〉)
∂q

(V at most quadratic), (5.18)

and 〈q〉 and 〈p〉 evolve classically. We saw this simplification when we studied the Gaussian

wavepacket in the free space [V (q) = c], in a harmonic oscillator [V (q) = aq2], or in a linear

potential [V (q) = bq]– in all these situations the potential energy was a special case of the general

quadratic polynomial V (q) = aq2 + bq + c.

C. Poisson bracket

Let us explore the analogy between classical and quantum evolution further and consider the

time dependence of a classical quantity f(q, p, t), which depends both on phase space coordinates

and time.
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Proposition 18 If q (t) and p (t) denote the phase space coordinates of a classical trajectory of

a Hamiltonian H (q, p), then the change of the quantity f(q, p, t) along this trajectory satisfies the

equation

df

dt
=
∂f

∂t
+ {f,H}, (5.19)

where the symbol {f, g} is called the Poisson bracket of quantities f and g and is defined as

{f, g} :=
∂f

∂q

∂g

∂p
− ∂f

∂p

∂g

∂q
. (5.20)

Proof. The change of f along a classical trajectory is found by taking the total derivative with

respect to time,

df

dt
=
∂f

∂t
+
∂f

∂q

dq

dt
+
∂f

∂p

dp

dt
=
∂f

∂t
+
∂f

∂q

∂H

∂p
− ∂f

∂p

∂H

∂q
=
∂f

∂t
+ {f,H}, (5.21)

where we have used Hamilton’s equations (4.12) in the second equality and the definition of the

Poisson bracket in the third equality.�

Because the proposition holds for any function f (q, p, t), it can be applied, in particular, to

position [f (q, p, t) = q] and momentum [f (q, p, t) = p], resulting in a simpler and more symmetric

form of Hamilton’s equations of motion:

dq

dt
= {q,H} and

dp

dt
= {p,H}. (5.22)

To verify explicitly that the new form agrees with the standard form (4.12) of Hamilton’s equations,

note that

{q,H} =
∂q

∂q

∂H

∂p
− ∂q

∂p

∂H

∂q
= 1 · ∂H

∂p
− 0 · ∂H

∂q
=
∂H

∂p
, (5.23)

{p,H} =
∂p

∂q

∂H

∂p
− ∂p

∂p

∂H

∂q
= 0 · ∂H

∂p
− 1 · ∂H

∂q
= −∂H

∂q
. (5.24)

The Poisson bracket has many other intriguing properties, most of which are analogous to the

properties of the quantum-mechanical commutator. Remarkably, classical quantities together with

the Poisson bracket also form a Lie algebra, and together with both multiplication and Poisson

bracket, they form a Poisson algebra. Indeed, this feature of the Poisson bracket gave the Poisson

algebra its name! There is, nevertheless, a crucial difference between the commutator [Â, B̂] =

ÂB̂ − B̂Â, which is defined directly from multiplication of operators, and the Poisson bracket

{f, g}, which requires differentiation– because the multiplication of functions is commutative, a

simple commutator fg − gf is always zero and would not yield anything interesting.
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Exercise 19 Show that the Poisson bracket is skew-symmetric, bilinear, and satisfies both the

Jacobi identity and the Leibniz rule. In other words, if f, g, h are real functions and λ a real

number, show that:

{f, g} = −{g, f} (skew-symmetry) (5.25)

{λf, g} = λ{f, g} (bilinearity 1: homogeneity) (5.26)

{f, g + h} = {f, g}+ {f, h} (bilinearity 2: additivity) (5.27)

{f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0 (Jacobi identity) (5.28)

{f, gh} = {f, g}h+ g{f, h} (Leibniz rule) (5.29)

The skew-symmetry of the Poisson bracket implies immediately that {f, f} = 0 for any f (q, p, t).

Applying this property and the proposition to f (q, p, t) = H (q, p) provides an alternative, trivial

proof of the law of conservation of energy for autonomous systems, i.e., systems with ∂H/∂t =

0:

dH

dt
= {H,H} = 0. (5.30)

Exercise 20 If f ≡ f(q, p, t), show that Poisson brackets with position and momentum satisfy

{q, p} = 1, (5.31)

{p, f} = −∂f
∂q
, (5.32)

{q, f} =
∂f

∂p
. (5.33)

A quantity f is said to be a constant of motion or an integral of motion if f = const along

the trajectory (q (t), p (t)). Because this is equivalent to the requirement that df/dt = 0 along the

trajectory, f is a constant of motion if and only if

0 =
∂f

∂t
+ {f,H} (f an integral of motion). (5.34)

In particular, if f does not depend on time explicitly (∂f/∂t = 0), then f is a constant of motion

if and only if {f,H} = 0.

If we have two constants of motion, there is an interesting recipe for constructing other, some-

times independent constants of motion:

Proposition 21 If both f and g are integrals of motion, then so is their Poisson bracket:

df

dt
=
dg

dt
= 0⇒ d{f, g}

dt
= 0. (5.35)
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Proof.

d

dt
{f, g} (5.19)=

∂

∂t
{f, g}+ {{f, g}, H} (5.28)=

{
∂f

∂t
, g

}
+

{
f,
∂g

∂t

}
− {{g,H}, f} − {{H, f}, g}

(5.27), (5.25)
=

{
∂f

∂t
+ {f,H}, g

}
+

{
f,
∂g

∂t
+ {g,H}

}
(5.19)

=

{
df

dt
, g

}
+

{
f,
dg

dt

}
= {0, g}+ {f, 0} (5.26)= 0. (5.36)

D. Conservation of probability and energy in quantum mechanics

The lemma [see Eq. (5.12)] employed to prove the Ehrenfest theorem has other important

consequences. In particular, this lemma implies that the time-dependent Schrödinger equation

conserves the norm of a quantum state as well as its energy:

Proposition 22 Let |ψ (t)〉 solve the TDSE with a possibly time-dependent Hamiltonian Ĥ (t).

1) (Conservation of norm) The norm of a quantum state is independent of time:

‖ψ (t)‖ = ‖ψ (0)‖ . (5.37)

In other words, probability is conserved by the TDSE.

2) (Conservation of energy) If the Hamiltonian is time-independent (i.e., if ∂H/∂t = 0)

then the expectation value of energy is conserved:

〈Ĥ〉ψ(t) = 〈Ĥ〉ψ(0). (5.38)

Proof. From the definition of the norm of the state ψ we have

‖ψ (t)‖2 = 〈ψ (t) |ψ (t)〉 = 〈ψ (t) |1̂|ψ (t)〉,

where we have inserted the identity operator 1̂, which is, obviously, time-independent and commutes

with the Hamiltonian Ĥ(t). Using the lemma for Â = 1̂, we have

d

dt
‖ψ (t)‖2 =

d

dt
〈1̂〉 =

1

i~
〈[1̂, Ĥ (t)]〉 = 0.

Conservation of energy for time-independent Hamiltonians follows from the same lemma applied

to Â = Ĥ:

d

dt
〈Ĥ〉 =

1

i~
〈[Ĥ, Ĥ]〉 = 0 (5.39)

because the Hamiltonian commutes with itself.�
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It is important to point out the analogy between the conservation of probability and Liouville’s

theorem, which asserts the conservation of phase-space volume, and the analogy between the laws

of conservation of energy in quantum and classical mechanics– notice the similarity of the proofs

using the Poisson bracket [Eq. (5.30)] and the commutator [Eq. (5.39)].

E. Bohr-Sommerfeld quantization rules

Let us put what we have learned about phase space to use in quantum mechanics. Indeed, the

approach that we shall use to “quantize”the harmonic oscillator was the approach used in “old

quantum theory”to quantize the hydrogen atom before Erwin Schrödinger derived his equation.

FIG. 14. Potential energy and phase portrait of a one-dimensional bound system. Bohr-Sommerfeld quan-

tization rules state that the only allowed states are those represented by periodic orbits encircling an area

that is an integer multiple of the Planck constant.

Let us consider a one-dimensional system with a two-dimensional phase space. We assume

that the system is bound, i.e., that its trajectories do not escape to infinity. In one spatial

dimension, this implies that each trajectory bounces back and forth between two turning points

(see Fig. 14). In phase space, such trajectories will form periodic orbits, i.e., loops topologically

equivalent to a circle. According to Bohr-Sommerfeld quantization rules, the only quantum-

mechanically allowed states of the system are those described by a periodic orbit encircling a phase-

space region whose area is an integer multiple of Planck’s constant h (not ~). These rules were the

basis of the above-mentioned “old quantum theory,”which is now recognized as a semiclassical

approximation to quantum mechanics. The phase-space area I encircled by the periodic orbit is

computed as

I :=

∮
pdq
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and called an action.

[Remark: Action I has the same physical dimension as the action S defined in the principle

of least action, but it is a somewhat different quantity, which is easy to see from the following

calculation. The action S along a trajectory that loops once about a periodic orbit is

S(T ) =

∫ T

0
L (qt, q̇t) dt =

∫ T

0
[ptq̇t −H (qt, pt)] dt =

∫ T

0
(ptq̇t − E) dt =

∮
pdq − ET = I − ET,

(5.40)

where T is the period of the periodic orbit and where we have used the conservation of energy along

the trajectory [H(qt, pt) = E], definition of velocity (q̇ = dq/dt), and the periodic-orbit property

q(T ) = q(0). Note that it does not matter where on the periodic orbit the trajectory starts as long

as the trajectory loops once but fully about the orbit.]

FIG. 15. Phase portrait of a harmonic oscillator. Bohr-Sommerfeld quantization rules state that the red-

shaded area of the ellipse with semiaxes qmax and pmax must be an integer multiple of the Planck constant:

πqmaxpmax = nh.

Let us apply the Bohr-Sommerfeld quantization rule, which states that

I = nh, n ∈ N, (5.41)

to the harmonic oscillator, in which each trajectory forms an ellipse (see Fig. 15)

E =
p2

2m
+

1

2
kq2

in phase space. By considering p = 0 and q = 0, respectively, we find that this ellipse has semiaxes

qmax =
√

2E/k and pmax =
√

2mE. (5.42)

Because an ellipse with semiaxes a and b has an area πab, the action of our trajectory is

I = πqmaxpmax = 2πE
√
m/k = 2π

E

ω
= TE,
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where ω =
√
k/m is the angular frequency and T = 2π/ω is the period, which– in a harmonic

oscillator– does not depend on the amplitude qmax. Applying the Bohr-Sommerfeld rule tells us

that

I = 2π
E

ω
= nh,

and therefore, the only allowed energies should be

En = n
h

2π
ω = n~ω.

Comparing this result with the well-known exact quantum energies En = (n+ 1/2) ~ω of a har-

monic oscillator, we realize that there is a shift of ~ω/2 due to the zero-point vibrational energy.

Still, the result of Bohr-Sommerfeld quantization rules is rather impressive because it completely

avoids an explicit solution of the Schrödinger equation. I should mention that the Bohr-Sommerfeld

rules yield the exact quantum-mechanical energies of the hydrogen atom (without the fine structure,

of course), which we have seen indirectly in the first chapter, and that, since the original statement

by Bohr and Sommerfeld, their rules have been refined so that one can predict the correction of

1/2 that must be added to n even in the harmonic oscillator.

[Historical note: The reason why these refined rules give exact results for both the harmonic

oscillator and the Coulomb problem are rather deep and are connected to the exceptional nature

of the potentials r2 and r−1. In three dimensions (D = 3), both of these systems are super-

integrable, which means that they have 2D − 1 independent constants of motion. In celestial

mechanics, Newton’s gravitational law is also described by the r−1 potential and is the reason

why the perihelion (i.e., the point along the orbit at which a planet approaches the Sun the most)

does not change over time. A tiny deviation from this, reflected in the observed precession of the

perihelion of Mercury puzzled astronomers for a long time and was one of the first confirmations

of Einstein’s general theory of relativity, which explained this deviation quantitatively.]

F. Wigner representation of a wave function

1. Classical probability density

In classical statistical mechanics, an average value of an observable A(q, p) depending both

on positions and momenta can be evaluated as the average

〈A〉cl =

∫
dq

∫
dpA (q, p) ρ (q, p) , (5.43)
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where ρ (q, p) is the probability density of the system being located at the phase space point

(q, p). In thermal equilibrium, e.g., ρ (q, p) is the classical Boltzmann distribution

ρB (q, p) := e−βH(q,p)/Zcl, (5.44)

where β := 1/ (kBT ) and the division by the classical partition function

Zcl :=

∫
dq

∫
dp e−βH(q,p) (5.45)

guarantees normalization. Being a probability density, the function ρ (q, p) in general satisfies the

following conditions:

ρ (q, p) ∈ R, (5.46)

ρ (q, p) ≥ 0, (5.47)∫
dq

∫
dp ρ (q, p) = 1, (5.48)∫
dq ρ (q, p) = ρp (p) , (5.49)∫
dp ρ (q, p) = ρq (q) . (5.50)

In other words, ρ is a normalized nonnegative real-valued function on phase space with a unit phase-

space integral. The last two relations express that the integral of ρ over q gives the marginal

probability density ρp(p) for momentum (i.e., probability density for a momentum being p

regardless of the position q) and that the integral of ρ over p yields the marginal probability

density ρq (q) for position.

2. Wigner function

In quantum mechanics, because of the Heisenberg uncertainty principle, it seems impossible to

represent a quantum state as a simultaneous function of q and p. Instead, it seems obligatory to

use either the position or momentum representation of the wavefunction. Yet, wouldn’t it be great

if we could define a quantity ρW analogous to the classical probability density ρ, which would allow

us to compute expectation values of observables by evaluating a phase space integral

〈A〉ψ =

∫
dq

∫
dpAW (q, p) ρW (q, p) , (5.51)

where AW is some kind of phase-space representation of the observable A? Indeed, Eugene Wigner

invented such a quantity, now called theWigner function (hence the subscript W) and defined
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it using the integral

ρW (q, p) :=
1

2π~

∫ ∞
−∞

ψ(q − s/2)ψ(q + s/2)∗eips/~ds. (5.52)

Alternatively, in Dirac notation,

ρW (q, p) =
1

2π~

∫ ∞
−∞
〈q − s/2|ψ〉〈ψ|q + s/2〉eips/~ds. (5.53)

Proposition 23 (Properties of the Wigner function) The Wigner function (5.52) satisfies:

ρW (q, p) ∈ R, (5.54)∫
dq

∫
dp ρW (q, p) = 1, (5.55)∫
dq ρW (q, p) =

∣∣∣ψ̃(p)
∣∣∣2 , (5.56)∫

dp ρW (q, p) = |ψ(q)|2 . (5.57)

In particular, ρW is not a probability density because it may be negative. It is, instead, called

a quasiprobability density function. In contrast, both marginal distributions yield positive

probability density functions |ψ̃(p)|2 and |ψ(q)|2.

Proof. To show that ρW is real [Eq. (5.54)], we show that it is equal to its complex conjugate:

ρW (q, p)∗ =
1

2π~

∫ ∞
−∞

ψ(q − s/2)∗ψ(q + s/2)e−ips/~ds

=
1

2π~

∫ ∞
−∞

ψ(q + r/2)∗ψ(q − r/2)eipr/~dr = ρW (q, p) ,

where we have changed variables from s to r := −s. The normalization (5.55) of the Wigner

function follows from Eq. (5.57) because ψ(q) is normalized:∫
dq

∫
dp ρW (q, p)

(5.57)
=

∫
dq |ψ(q)|2 = 1

Proofs of properties (5.56) and (5.57) are left as an exercise.�

3. Wigner function of a Gaussian wavepacket

Because a Gaussian wavepacket describes “the most classical” among all possible quantum

states and because the Wigner function provides an analogue of the classical probability density,

one should have high expectations from the Wigner function of a Gaussian wavepacket (see Fig. 16).
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FIG. 16. Contour plot of the Wigner function of a Gaussian wavepacket (here with a purely imaginary αt).

Also shown are the marginal probability densities of position and momentum.

Proposition 24 The Wigner function of the Gaussian wavepacket (3.16)

ψ(q, t) = exp

{
i

~

[
1

2
αt (q − qt)2 + pt(q − qt) + γt

]}
, (5.58)

e− Im γt/~ = (Imαt/π~)1/4 , (5.59)

is a phase-space Gaussian

ρW (q, p, t) =
1

π~
exp

{
−1

~

[
Imαt (q − qt)2 + (p− pt − Reαt (q − qt))2 / Imαt

]}
. (5.60)

In particular, if the width parameter αt is purely imaginary, there is no correlation between

position and momentum, and the Wigner function can be factorized as

ρW (q, p, t) = |ψ (q, t)|2 |ψ̃ (p, t) |2, (5.61)

where

|ψ (q, t)|2 =

(
Imαt
π~

)1/2

exp

[
−1

~
Imαt (q − qt)2

]
and

|ψ̃ (p, t) |2 = (π~ Imαt)
−1/2 exp

[
−1

~
(p− pt)2 / Imαt

]
.

are the probability densities in position and momentum, respectively. In the special case of a

coherent state of a harmonic oscillator, αt = imω is a constant imaginary number and

ρW (q, p, t) =
1

π~
exp

{
−1

~

[
mω (q − qt)2 +

(p− pt)2

mω

]}
. (5.62)

Proof. From the definition of the Wigner function, it follows that

ρW (q, p, t) =
1

2π~
(Imαt/π~)1/2

∫ ∞
−∞

eiF/~ds, (5.63)
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where

F = i Imαt[(q − qt)2 + (s/2)2] + [p− pt − Reαt (q − qt)] s. (5.64)

The integral over s is a Gaussian integral with an analytical solution∫ ∞
−∞

eiF/~ds =

∫ ∞
−∞

exp
(
−As2 + iBs+ C

)
ds =

√
π

A
eC−B

2/(4A), (5.65)

where

A :=
Imαt

4~
, B := [p− pt − Reαt (q − qt)] /~, and C := − Imαt

~
(q − qt)2 . (5.66)

Inserting the result (5.65) of the integral over s into Eq. (5.63) and using the definitions (5.66) of

A, B, C yields the assertion (5.60).�

4. Time evolution of the Wigner functions of coherent and squeezed states of a harmonic oscillator

Because it provides simultaneous information about position and momentum, the Wigner func-

tion yields a more intuitive picture of the time evolution of a quantum state. Figures 17 and

18 contrast the time evolutions of the Wigner function ρW (q) and of the position-space density

|ψ (q)|2 for a Gaussian wavepacket moving in a harmonic oscillator.

The coherent state has a constant width and, in the q-representation, the density simply moves

back and forth between two turning points (see Fig. 17). The contour plot of the Gaussian Wigner

function is a circle moving along the trajectory of the wavepacket’s center. The position-space

density is a marginal probability density obtained from the Wigner function by projecting onto the

q-axis; because the Wigner function is a circle of constant radius, the q-spread of the wavepacket

is also constant. While both pictures are consistent, the Wigner function visualizes information

about q and p simultaneously.

The situation becomes even more interesting for the squeezed state (see Fig. 18). Here the

plot of |ψ (q)|2 seems mysterious: not only does the wavepacket move back and forth between the

turning points, but, in addition, its width changes magically. In phase space, the change of the

width is not magic at all: the contour plot of the Wigner function is now an ellipse, rather than

a circle, which again follows rigidly the trajectory of the wavepacket’s center. This implies that

the ellipse rotates in phase space and that the projection of ρW onto the q-axis, giving |ψ (q)|2,

changes accordingly, resulting either in narrow but high peaks at t = T/4 and t = 3T/4 or in wide

but small peaks at t = 0 and t = T/2. You probably heard about the four-dimensional space-time,
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in which Einstein’s theory of relativity becomes simpler than if it is presented in the usual space

and time separately. Likewise, many theoretical physicists believe that we live in ten space-time

dimensions because the laws of nature become more natural there. Here, we are less ambitious by

moving from one spatial dimension to two phase-space dimensions. Still, what seemed magical in

position space becomes completely clear in the higher-dimensional phase space: the spread of q is

explained by projecting the rotating Wigner function onto the q axis.

FIG. 17. Time evolution of the Wigner function (left) and corresponding position density (right) of a

coherent state of a harmonic oscillator.

FIG. 18. Time evolution of the Wigner function (left) and corresponding position density (right) of a

squeezed state of a harmonic oscillator.

5. Calculation of expectation values of observables using the Wigner function

The original motivation for introducing the Wigner function was having a phase space analogue

(5.51) of the expression (5.43) for classical expectation values. To reach this goal, one first needs

to define a Wigner transform AW of an operator Â corresponding to a classical observable

A(q, p). Indeed, even the question of associating an operator Â to a classical observable A(q, p) is,

55



in general, nontrivial. The most widely used prescription is calledWeyl quantization. Without

building up the full machinery of the general definition, let us demonstrate the basic issue on

the simplest nontrivial example, i.e., an observable qp to which Weyl quantization associates a

Hermitian operator (q̂p̂+ p̂q̂) /2. In general, the process is “democratic” for all polynomials of q

and p in the sense that it gives an equal weight to all possible orderings of the noncommuting

operators q̂ and p̂. Note that the “obvious”and simpler but wrong prescription would associate

to the classical observable qp the quantum operator q̂p̂, which is not Hermitian, and therefore

can have complex eigenvalues, even though both q̂ and p̂ are Hermitian. The product q̂p̂ is not

Hermitian because q̂ and p̂ do not commute:

(q̂p̂)† = p̂†q̂† = p̂q̂ = q̂p̂− i~ 6= q̂p̂.

For simplicity, we will only consider observables that are sums of observables depending only

on position or only on momentum,

A(q, p) = Q(q) + P (p), (5.67)

and for which the above-mentioned complication does not occur. For such observables, the corre-

sponding operator is the same function of q̂ and p̂ operators,

Â = Q̂+ P̂ = Q (q̂) + P (p̂) ,

whose Wigner transform is equal to the original phase space function:

AW (q, p) = Q(q) + P (p).

Examples of such special observables include the position [qW (q, p) = q], momentum [pW (q, p) = p],

and the standard Hamiltonian [HW (q, p) = H(q, p) = p2/2m+ V (q)].

Proposition 25 For an observable (5.67), equal to a sum of a function of q and a function of p,

the quantum expectation value of the corresponding operator Â in a quantum state ψ described by

a Wigner function ρW can be computed according to the classical-like Eq. (5.51).

Proof.

〈Â〉 = 〈Q̂〉+ 〈P̂ 〉 =

∫
dq Q (q) |ψ (q)|2 +

∫
dpP (p) |ψ̃ (p) |2

=

∫
dq Q (q)

∫
dp ρW (q, p) +

∫
dpP (p)

∫
dq ρW (q, p)

=

∫
dq

∫
dp [Q (q) + P (p)] ρW (q, p) =

∫
dq

∫
dpAW (q, p) ρW (q, p) .�
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VI. APPROXIMATEMETHODS TO SOLVE THE TIME-DEPENDENT SCHRÖDINGER

EQUATION

There exist only very few systems, for which the TDSE (1.4)

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉 (6.1)

with a time-dependent Hamiltonian Ĥ(t) can be solved exactly analytically. When an exact an-

alytical solution does not exist, it is possible to solve the TDSE (6.1) numerically or analytically

but approximately. In this chapter, we shall discuss three approximations, which are valid when

the change of Ĥ(t) is (i) fast, (ii) slow, or (iii) small in some sense. In addition, we will describe

the variational approximation, which finds the optimal solution to Eq. (6.1) among wavefunctions

of a specific form.

A. Sudden approximation

[!!! See also Tannor 1.3: Please do the calculation presented there yourself, as an exercise.]

Sometimes the Hamiltonian Ĥ(t) changes very quickly (see Fig. 19) from an initial time-

independent value Ĥ i to a final time-independent value Ĥf , and the change is so fast that the

quantum state ψ(t) does not have time to adjust (see Fig. 20).

FIG. 19. Fast change of the Hamiltonian required for the validity of the sudden approximation.

For all practical purposes, we can therefore write

Ĥ(t) =

 Ĥ i, t < 0

Ĥf , t > 0
.

The sudden approximation, mathematically expressed by the equation

lim
t→0+

ψ (t) = lim
t→0−

ψ (t) ,
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FIG. 20. Sudden approximation applied to the ground state of a harmonic oscillator.

requires that the state of the system do not change during the rapid change of the Hamiltonian.

Most frequently encountered situation occurs when the initial state for t ≤ 0 is a stationary state

of Ĥ i, i.e.,

|ψ (t)〉 = |ψ (0)〉e−iEint/~ for t < 0.

In such a state, expectation values of observables are independent of time. However, even such

states give rise to interesting dynamics after the change of the Hamiltonian to Ĥf because the

state is now a superposition of the eigenstates of the new Hamiltonian.

The recipe for solving quantum dynamics problems with the sudden approximation is very

simple: All one must do is solve the TDSE with the time-independent new Hamiltonian Ĥf , which

can be done using the basis set method. The solution for t > 0 is

|ψ(t)〉 =
∑
n

cne
−iEfnt/~|ϕn〉,

where Efn are the eigenenergies of Ĥf and the coeffi cients cn are obtained by expanding the initial

state ψ (0) in the eigenstates ϕn of Ĥf :

cn = 〈ϕn|ψ(0)〉 =

∫
ϕn(q)∗ψ(q, 0)dq.

The most prominent example of the sudden approximation in physical chemistry is the

time-dependent description of Franck-Condon transition between two electronic states that
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was already mentioned in the Introduction (compare Figs. 1 and 21). After an absorption of a

visible or UV photon, the molecule undergoes a transition between two electronic states. This

occurs on the electronic time scale (∼ 1 fs), which is much shorter than a typical time scale of

nuclear motion (∼ 10 fs to 100 fs). As a result, the nuclear wavefunction does not have time to

adjust during the short electronic excitation and we can solve the problem by simply promoting

the initial nuclear wavefunction from the ground to the excited electronic potential energy surface

(see Fig. 21).

FIG. 21. Sudden approximation applied to the Franck-Condon transition between two electronic states of a

molecule. The shape of the wavefunction does not change because we assume the Condon approximation:

the transition dipole moment between the ground and excited electronic states is independent of the nuclear

coordinate q.

Note: As we shall learn later, there are two further assumptions that give rise to this simplified

picture: the electromagnetic interaction cannot be too strong (i.e., the time-dependent pertur-

bation theory is valid) and the transition dipole moment µeg (q) between the excited (e) and

ground (g) electronic states should be approximately constant as a function of nuclear coordinates

q (this is called the Condon approximation):

µeg(q) ≈ µeg,CA = const (6.2)

Yet, if the transition dipole moment depends on nuclear coordinates, there is a simple extension

of the sudden approximation: We take for the initial state Ψ(q, 0) on the excited-state surface the

product of the transition dipole moment and the original state ψ(q, 0) on the ground-state surface:

lim
t→0+

Ψ (q, t) = µeg (q) lim
t→0−

ψ (q, t) . (6.3)
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This prescription remains valid even if the Condon approximation breaks down. An extreme exam-

ple is an electronically forbidden transition, in which µeg(qeq) = 0, which typically happens

due to symmetry of the ground and excited electronic states. Here, using the Condon approxima-

tion µeg(q) ≈ µeg,CA = const = µeg(qeq) = 0 would result in no transition and no spectrum. Such

transitions, however, can be weakly “vibronically allowed”due to the coordinate dependence of

the transition dipole moment. The leading coordinate dependence comes from the gradient of µeg

at the equilibrium geometry and gives rise to the Herzberg—Teller approximation, in which

the transition dipole moment is assumed to depend linearly on the nuclear coordinates:

µeg(q) ≈ µeg,HT = µ′eg(qeq) · (q − qeq). (6.4)

An example of an electronically forbidden but vibronically allowed spectrum is the absorption

spectrum of benzene, which is associated to the electronic transition Ã1B2u ← X̃1A1g.

B. Adiabatic approximation

The adiabatic approximation is, in a sense, the opposite of the sudden approximation. Here,

the time-dependent Hamiltonian Ĥ(t) changes so slowly that the initial state ψ(t) has “all the time

it needs to adjust” to the changes in the Hamiltonian. In particular, if ψ(0) is an eigenstate of

Ĥ(0), then the adiabatic theorem shows that the exact state ψ(t) at time t will approximately

remain an eigenstate of Ĥ(t) at all times. The adiabatic approximation consists in assuming

that the ψ(t) remains exactly an eigenstate of Ĥ(t). Figure 22 shows an example in which a

harmonic potential has a slowly changing force constant. In the limit of very slow change of Ĥ(t),

we would find that if the initial state ψ (0) were the Gaussian ground state of Ĥ(0), the state at

time t would be a (Gaussian) ground state of the instantaneous Hamiltonian Ĥ(t). Again, this

behavior is justified rigorously by the quantum adiabatic theorem, which finds estimates on

the probability of transitions for slow changes of the Hamiltonian. Roughly speaking, the theorem

asserts that the probability of transition goes to zero as the energy gap between states increases

and the rate of change of the Hamiltonian decreases. Many textbooks on quantum mechanics claim

to provide proofs, which are not proofs in the mathematical sense. Instead of attempting a diffi cult

mathematical proof, let me show you which terms in the TDSE must be neglected to obtain the

adiabatic approximation.

In Sec. II C, we solved the TDSE with a time-dependent Hamiltonian in a general, nonorthog-

onal, time-dependent basis |n(t)〉. Now we will consider a special case of the adiabatic basis,
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FIG. 22. Adiabatic approximation applied to the ground state of the harmonic oscillator. Assuming that

the potential changes slowly, then if ψ(0) is the ground state of Ĥ(0), ψ (t) will be approximately the ground

state of Ĥ(t) for t > 0.

consisting of the instantaneous eigenstates of Ĥ(t), i.e., a basis |n(t)〉 that depends continuously

on t and is defined by the relation

Ĥ(t)|n(t)〉 = En(t)|n(t)〉. (6.5)

Note that because eigenstates of a Hermitian operator Ĥ(t) corresponding to different eigenval-

ues are orthogonal, we can assume that the basis is in fact orthonormal (if there are degenerate

eigenvalues, you can find such a basis by Gramm-Schmidt orthonormalization within each set of

eigenstates with the same energy): the overlap matrix

Skn(t) := 〈k(t)|n(t)〉 = δkn (6.6)

becomes the identity and the Hamiltonian matrix

Hkn(t) = 〈k(t)|Ĥ(t)|n(t)〉 = En(t)δkn (6.7)

becomes diagonal. Recall that in Sec. II C, we rewrote the general TDSE as [see Eq. (2.25)]

i~S(t)ċ(t) = (H(t)− i~D(t)) c(t), (6.8)

where

Dkn (t) := 〈k(t)|ṅ(t)〉 (6.9)

is the nonadiabatic coupling matrix, depending on the time derivative of the eigenstate |n(t)〉.

In the adiabatic basis, where S(t) = Id and H(t) = E(t) are both diagonal matrices, this equation
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reduces to

i~ċ(t) = (E(t)− i~D(t)) c(t). (6.10)

If the change of the Hamiltonian Ĥ(t) is slow, so will be the change of the eigenstate |n(t)〉

expressed in the time derivative |ṅ(t)〉. This, in turn, will decrease the nonadiabatic couplings

(6.9), which induce transitions between different eigenstates of Ĥ(t) due to the time dependence

of these eigenstates. The adiabatic approximation is then obtained by simply neglecting these

nonadiabatic couplings in Eq. (6.10):

i~ċ(t) = E(t)c(t). (6.11)

Because E(t) is a diagonal matrix, the system of differential equations for cn(t) decouples and

Eq. (6.11) is equivalent to

i~ċn(t) = En(t)cn(t) for each n, (6.12)

with a simple solution

cn(t) = cn (0) e−i
∫ t
0 En(τ)dτ/~ (6.13)

This implies that

|cn(t)| = |cn(0)| . (6.14)

In particular, if ψ(0) is the kth eigenstate of Ĥ(0), expressed by cn(0) = δkn, then ψ(t) will remain

the kth eigenstate of Ĥ(t) for all t: |cn(t)| = δkn.

Born-Oppenheimer approximation provides an example of the adiabatic approximation in

molecular physics. You may well ask: “Where is the time dependence in the molecular Hamil-

tonian?” Indeed, Hmol is time-independent, but if you view it as a Hamiltonian for electrons

depending parametrically on the moving positions of nuclei, you can think of it as a slowly chang-

ing time-dependent Hamiltonian for electrons– remember that the much heavier nuclei move much

more slowly than the lighter electrons.

C. Time-dependent variational approximation

Let us seek an approximate solution of the time-dependent Schrödinger equation only within

a certain subset M of the full Hilbert space H. For example, we could search a solution among
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wavefunctions φα,β, ... ∈M ⊂ H that depend on real or complex parameters α, β, . . .. The Dirac-

Frenkel time-dependent variational principle (TDVP) suggests that an optimal solution

within the manifold M is the one that satisfies the equation

〈δφ|i~ d
dt
− Ĥ|φ(t)〉 = 0, (6.15)

where δφ is a variation of the solution, i.e., an infinitesimal change of φ such that φ+ δφ is still in

the approximation manifold M . More precisely, the variation can be written as δφ = εη, where ε

is an infinitesimal real number and η is an arbitrary tangent vector to the manifold M at the point

φ(t). See Fig. 23. In particular, δφ does not have to be related to the solution φ.

FIG. 23. Schematic representation of the time-dependent variational principle. The exact wavefunction ψ(t)

can lie anywhere in the Hilbert space, here represented by the two-dimensional plane. The approximate

variational state ψvar(t) must, at any time t, be a state representable in terms of a certain set of parameters

and, therefore, lie in the “approximation manifold”.

The application of the TDVP (6.15) to the ansatz φα,β, ... will replace the original time-dependent

Schrödinger equation for φ with a system of coupled differential equations for the parameters α,

β, . . . In analogy to the time-independent variational principle, well-known from basic courses

on quantum mechanics for finding approximately the ground state of Ĥ as the optimal solution

among candidates in a set, the TDVP finds an optimal solution to the TDSE within a manifold of

options. In addition to this, the time-dependent variational approximation has several remarkable

properties that mimic the properties of the exact solution of the TDSE:

Proposition 26 φ (t) obtained by the time-dependent variational principle (6.15) applied to a

TDSE with a time-independent Hamiltonian Ĥ = const conserves the expectation value of energy.
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Proof. For the proof, it is convenient to rewrite the variational principle (6.15) as

〈δφ|i~φ̇(t)〉 = 〈δφ|Ĥ|φ(t)〉 (6.16)

Let φ(t) denote the solution obtained from the time-dependent variational principle. The time

derivative of energy satisfies

d

dt
〈Ĥ〉φ(t) =

d

dt
〈φ (t) |Ĥ|φ (t)〉 = 〈φ̇|Ĥ|φ〉+ 〈φ|Ĥ|φ̇〉 = 2 Re〈φ̇|Ĥ|φ〉

(6.16)
=

with δφ=εφ̇
2 Re〈φ̇|i~φ̇〉 = 2~Re[i‖φ̇‖2] = 0, (6.17)

where we invoked the time independence and Hermitian property of Ĥ, conjugate symmetry of

the scalar product, the TDVP (6.16) with a specific choice of δφ, namely, δφ = εφ̇ (because φ̇ is

certainly a tangent vector to the approximation manifold), linearity of the scalar product in the

second argument, and the real-valuedness of the norm ‖φ̇‖.�

Proposition 27 Let us assume that λφ ∈M for every φ ∈M and every λ > 0. (In other words,

the approximation manifold contains rays.) Then φ (t) obtained by the time-dependent variational

principle (6.15) conserves the norm of the state.

Proof. The assumption implies that δφ = εφ is a possible variation. To see this, just take

λ = 1 + ε. Since both φ and λφ = (1 + ε)φ are in the approximation manifold, their infinitesimal

difference δφ = εφ is a possible variation. The remainder of the proof of norm conservation is

almost identical to the proof of conservation of energy: The square of the norm is time-independent

because

d

dt
‖φ (t)‖2 =

d

dt
〈φ (t) |φ (t)〉 = 〈φ̇|φ〉+ 〈φ|φ̇〉 = 2 Re〈φ|φ̇〉

(6.16)
=

with δφ=εφ
2 Re〈φ|(i~)−1Ĥφ〉 = −2

~
Re[i〈Ĥ〉φ(t)] = 0, (6.18)

where we invoked the TDVP (6.16) now with δφ = εφ and noticed that the expectation value of

energy, 〈Ĥ〉φ(t), is real because Hamiltonian is a Hermitian operator.�

Note that the energy and norm are conserved regardless of how good or bad your variational

solution is. If you have very few and poorly chosen parameters, the variational solution can differ

greatly from the exact solution of the TDSE, yet the energy and norm are conserved exactly by

both solutions.

As for the requirement of the ray property, it is not very restrictive: if the given ansatz, e.g.,

φα,β does not have the ray property, it is easy to augment the set of parameters by a prefactor
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parameter (here to φα,β,γ := γφα,β). The new, augmented ansatz will automatically have the ray

property because φα,β,γ ∈M implies that

λφα,β,γ = λγφα,β = φα,β,λγ ∈M. (6.19)

Therefore, the variational principle applied to the augmented ansatz will automatically conserve

the norm.

Finally, remember that the variational principle can be applied to time-dependent Hamiltonians

Ĥ(t): then, of course, energy will not be conserved.

1. Variational Gaussian approximation

An example of an application of the variational principle is the variational Gaussian approx-

imation, where the solution of the TDSE is sought among wavefunctions of the Gaussian form

(3.16). One can show that the variational solution is equivalent to solving the following system of

ordinary differential equations for the parameters αt, qt, pt, and γt:

α̇t = −α2
t /m− 〈V ′′(q̂)〉, (6.20)

ṗt = −〈V ′(q̂)〉, (6.21)

q̇t = pt/m, (6.22)

γ̇t =
p2
t

2m
− 〈V (q̂)〉+

~〈V ′′(q̂)〉
4 Imαt

+
i~
2m

αt, (6.23)

where, as usual, 〈Â〉 := 〈ψ(t)|Â|ψ(t)〉 denotes the expectation value of operator Â in the state ψ (t).

The derivation is beyond the scope of the course but notice the similarity with Eqs. (3.37)-(3.40)

for the thawed Gaussian approximation. In the first two equations, V ′′(qt) and V ′ (qt) are replaced

with 〈V ′′〉 and 〈V ′〉, respectively. In a harmonic potential V (q) = 1
2kq

2, the two approximations

are equivalent because there

〈V ′′(q̂)〉 = V ′′(qt),

〈V ′(q̂)〉 = V ′(qt),

〈V (q̂)〉 = V (qt) +
~V ′′(qt)
4 Imαt

.

The variational Gaussian approximation uses a variational instead of the classical trajectory, and

typically is more accurate than the thawed Gaussian approximation. In particular, the variational

Gaussian approximation can qualitatively describe tunneling. However, for general potential energy
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functions V (q), it is much more expensive to evaluate expectation values 〈V (q̂)〉, 〈V ′(q̂)〉, and

〈V ′′(q̂)〉 than to evaluate V (qt), V ′(qt), and V ′′(qt) at the center of the Gaussian. As a consequence,

more computational resources are required to evaluate the variational than the thawed Gaussian

approximation.

D. Time-dependent Hartree approximation

The time-dependent Hartree approximation finds the optimal solution of the TDSE for a many-

dimensional system among the direct-product states. Here we consider a system consisting of two

distinguishable particles and seek the variationally optimal solution of the TDSE in the form of

the product

ψ(t) = a(t)ϕ1(t)ϕ2(t), (6.24)

where ϕj(t) describes the state of the jth particle and a(t) is a complex number inserted for

convenience. Note that each of the two “particles”can be many-dimensional and may even consist

of many, possibly indistinguishable, particles. An example is a molecular wavefunction ψ(t), where

one “particle”, described by ϕ1, consists of all nuclei and the other “particle”, described by ϕ2,

consists of all electrons. We assume that all states are normalized, i.e., ‖ψ‖ = 1 and

|a| = ‖ϕ1‖ = ‖ϕ2‖ = 1. (6.25)

Obviously, there remains some gauge freedom in choosing the phases of a, ϕ1, and ϕ2, and therefore

we fix them by a gauge condition (j = 1, 2)

〈ϕj |ϕ̇j〉 = 0. (6.26)

Proposition (Time-dependent Hartree approximation). Applying the time-dependent

variational principle (TDVP) to the ansatz (6.24) yields an approximate solution, in which the

prefactor evolves as

a(t) = a(0)e−iEt/~, (6.27)

where

E := 〈Ĥ〉ψ = const (6.28)

is the conserved total energy of the system, and the states ϕj satisfy the system

i~ϕ̇j = (Ĥj − E)ϕj , (6.29)
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of two coupled nonlinear Schrödinger equations with mean-field Hamiltonian operators

Ĥ1 = 〈ϕ2|Ĥ|ϕ2〉 and Ĥ2 = 〈ϕ1|Ĥ|ϕ1〉, (6.30)

acting, respectively, on the first and second particle.

Proof: The overlap of the state ψ with its time derivative

ψ̇ = ȧϕ1ϕ2 + aϕ̇1ϕ2 + aϕ1ϕ̇2 (6.31)

is

〈ψ|ψ̇〉 = a∗ȧ+ |a|2 (〈ϕ1|ϕ̇1〉+ 〈ϕ2|ϕ̇2〉) = a∗ȧ = a−1ȧ, (6.32)

where we have used the normalization (6.25) and gauge condition (6.26).

Now let us apply the time-dependent variational principle by requiring that the relation

〈δψ|i~ d
dt
− Ĥ|ψ〉 = 0 (6.33)

hold for an arbitrary variation δψ of the solution ψ. First, let us assume that δψ = cψ, where c

is a complex constant, is an allowed variation. (Recall that this assumption is already needed for

norm conservation under the TDVP.) Applying the TDVP (6.33) to this variation and using Eq.

(6.32) gives

〈ψ|Ĥ|ψ〉 = i~ 〈ψ|ψ̇〉 = i~a−1ȧ, (6.34)

ȧ = − i
~
〈Ĥ〉ψa. (6.35)

Now let us consider two particular variations,

δψ1 = a δϕ1 ϕ2 and δψ2 = aϕ1 δϕ2, (6.36)

each of which varies the state of only one of the two particles. We have

〈δψj |ψ̇〉 = a∗ȧ 〈δϕj |ϕj〉+ |a|2 〈δϕj |ϕ̇j〉 (6.37)

= a−1ȧ 〈δϕj |ϕj〉+ 〈δϕj |ϕ̇j〉

On one hand, applying the TDVP to the variation δψj gives

〈δψj |Ĥ|ψ〉 = i~〈δψj |ψ̇〉

= i~a−1ȧ 〈δϕj |ϕj〉+ i~〈δϕj |ϕ̇j〉

= 〈Ĥ〉ψ〈δϕj |ϕj〉+ i~〈δϕj |ϕ̇j〉, (6.38)
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where we have used Eqs. (6.37) and (6.34). On the other hand, recalling the definition (6.36) of

the variation δψj gives

〈δψj |Ĥ|ψ〉 = |a|2 〈δϕj |Ĥj |ϕj〉 = 〈δϕj |Ĥj |ϕj〉, (6.39)

where Ĥj is the effective Hamiltonian (6.30) for particle j in the mean field of the other particle.

Comparing Eqs. (6.38) and (6.39) and noting that their right-hand sides must be equal for an

arbitrary variation δϕj , we get

〈Ĥ〉ψϕj + i~ϕ̇j = Ĥjϕj . (6.40)

Because the TDVP in general conserves the energy [Eq. (6.28)], we can replace 〈Ĥ〉ψ with E in

Eqs. (6.35) and (6.40), and obtain Eqs. (6.27) and (6.29), completing the proof of the proposition.�

Remark: Typically, one uses an alternative parametrization

ã = ae2iEt/~, (6.41)

ϕ̃j = ϕje
−iEt/~. (6.42)

The resulting TDH equations are:

ã(t) = ã(0)eiEt/~, (6.43)

i~
d

dt
ϕ̃j = Ĥjϕ̃j , (6.44)

ψ = ãϕ̃1ϕ̃2. (6.45)

Note that the differential equations for ϕ̃j resemble the standard TDSEs, yet– in contrast to the

standard TDSE– they are (a) coupled and (b) nonlinear, due to the dependence of the mean-field

Hamiltonian Ĥj on the state.

E. Time-dependent perturbation theory (TDPT, see also Schatz & Ratner)

The next approximate method we shall consider does not assume that the Hamiltonian H(t)

changes quickly, as in the sudden approximation, or slowly, as in the adiabatic approximation. In

the time-dependent perturbation theory, we instead assume that the changes in H(t) are

small. We will consider that the Hamiltonian operator

Ĥ(t) = Ĥ0 + V̂ (t) (6.46)
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is a sum of a time-independent Hamiltonian Ĥ0 and a small “perturbation” potential V̂ (t).

In molecular spectroscopy, one would take Ĥ0 to be the molecular Hamiltonian and V̂ (t) the

interaction with the electromagnetic field.

As we know from Sec. II B, the exact solution can be expanded in the basis of eigenstates of Ĥ0

as

|ψ (t)〉 =
∑
n

cn (t) |n〉.

In Sec. II B, we found that the exact solution of the TDSE with Hamiltonian (6.46) was equivalent

to the system (2.12)

ċk(t) = − i
~
∑
n

eiωkntVkn (t) cn (t) , (6.47)

of ordinary differential equations for the coeffi cients cn (t), where ωkn := (Ek − En) /~ are the

transition frequencies and Vkn (t) := 〈k|V̂ (t)|n〉 are the matrix elements of the perturbation. Recall

that the typically infinite basis is, in practice, replaced with a truncated, finite basis set. The same

truncation is usually performed in the time-dependent perturbation theory, although we will not

distinguish between the full basis and finite basis set in the following discussion.

1. First-order TDPT

In time-dependent perturbation theory, the perturbation is assumed to be small. As a result, we

expect that the coeffi cients cn(t) change slowly and that we may replace them, on the right-hand

side of Eq. (6.47) only, by their values cn(0) at time t = 0. In the first-order time-dependent

perturbation theory, the system (6.47) becomes

ċ
(1)
k (t) = − i

~
∑
n

eiωkntVkn (t) cn (0) , (6.48)

which can be solved by integration because the c(1)
n (t) coeffi cients do not appear on the right-hand

side anymore:

c
(1)
k (t) = ck(0)− i

~
∑
n

cn (0)

∫ t

0
eiωknτVkn (τ) dτ. (6.49)

In most interesting applications, the initial state is an eigenstate |m〉 of Ĥ0, and therefore

ck(0) = δkm. (6.50)
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Then the differential equation (6.48) and its solution (6.49) reduce to

ċ
(1)
k (t) = − i

~
eiωkmtVkm (t) , (6.51)

c
(1)
k (t) = ck(0)− i

~

∫ t

0
eiωkmτVkm (τ) dτ. (6.52)

In particular, the transition probability from state m to state k 6= m at time t is

Pm→k(t) = |c(1)
k (t)|2 =

1

~2

∣∣∣∣∫ t

0
Vkm(τ)eiωkmτdτ

∣∣∣∣2 .
2. Higher-order TDPT

This was the first-order perturbation theory, but one can go to higher orders by iterating the

procedure used for the first order. To start, the zeroth-order coeffi cients are time-independent,

given at all times by their initial values:

c
(0)
k (t) = ck(0). (6.53)

The jth-order time-dependent perturbation theory is obtained, for j = 1, 2, 3, . . ., iteratively from

the previous, (j − 1)th-order, by using the jth order coeffi cients c(j)
k (t) on the left-hand side of

Eq. (6.47) and the (j − 1)th-order coeffi cients c(j−1)
n (t) on the right-hand side:

ċ
(j)
k (t) = − i

~
∑
n

eiωkntVkn(t)c(j−1)
n (t). (6.54)

These equations are solved iteratively, either analytically– if it is possible– or numerically, on a

computer. Finally, it is easy to see that for j = 1, Eq. (6.54) for the jth-order TDPT reduces to

Eq. (6.48) obtained above for the first-order TDPT.

3. TDPT for a constant potential V

Let us consider the simplest possible application of TDPT, where the perturbation

V = const

is constant. More precisely, the perturbation is turned on at time t = 0 and turned off at time

t = T at which we evaluate the probability of transition. Switching off the perturbation helps to

define rigorously the probability of transition because the stationary states for t > T are then the

same as stationary states for t < 0.
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Assuming, as in Eq. (6.50), that the initial state is the mth eigenstate of Ĥ0, the first-order

TDPT yields (for k 6= m)

c
(1)
k (T ) = − i

~
Vkm

∫ T

0
eiωkmtdt = −Vkm

eiωkmT − 1

~ωkm
,

where we were able to evaluate the integral analytically because the perturbation is constant.

Hence the probability of transition to level k at time T , when the perturbation is switched off, is

Pm→k(T ) = |c(1)
k (T )|2 = |Vkm|2

2[1− cos(ωkmT )]

(~ωkm)2

= |Vkm|2
sin2(ωkmT/2)

(~ωkm/2)2 =

(
|Vkm|T
~

sinx

x

)2

, (6.55)

where

x :=
ωkmT

2
=

(Ek − Em)T

2~

is a dimensionless quantity. The transition probability is plotted as a function of Ek in Fig. 24. Its

shape is a square of the “sinc”function (sinx)/x, appearing also in diffraction patterns in optics.

FIG. 24. Probability Pm→k(T ) at time T of a transition from a state with energy Em plotted as a function

of the final energy Ek. The probability was obtained by the first-order time-dependent perturbation theory

for a constant perturbation V .

Let us discuss expression (6.55) and Fig. 24 in more detail.

(1) Because the function Pm→k is symmetric about the point Ek = Em, probabilities of transition

to levels Ek = Em+E and Ek = Em−E are the same for any value of E! This is rather remarkable

because this implies that a constant perturbation is equally likely to excite and de-excite the system

by the same energy.

(2) To find the boundaries of the main, central peak in Fig. 24, we set x = ±π, which are

the zeros of (sinx)/x of smallest absolute value. The transition probability decays to zero at the
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corresponding values of energy, which are

Ek = Em ±
2π~
T
.

Let us take as the width of the main peak one half of the difference between the two energies Ek

at which Pm→k = 0, i.e.,

∆E = 2π~/T.

As the time T increases, the central peak becomes sharper. The uncertainty in energy thus satisfies

the time-energy uncertainty relation

T ∆E = 2π~ > ~/2.

(3) The height of the central, highest peak is

max
k

Pm→k = lim
x→0

(
|Vkm|T
~

sinx

x

)2

=
|Vkm|2 T 2

~2

because limx→0[(sinx)/x] = 1.

(4) The total probability Pmain peak (T ) of transition to levels within the main peak is propor-

tional (not equal!) to the area of this peak. If Vkm does not change much for energy levels within

the first peak, we can estimate Pmain peak (T ) by the area of the main peak, which, in turn, can be

estimated by an area of a triangle with base 2∆E and height maxk Pm→k:

A = ∆E max
k

Pm→k =
2π~
T

|Vkm|2 T 2

~2
=

2π |Vkm|2 T
~

.

Note that this area, and therefore, transition probability increases linearly with time T . The TDPT,

therefore, must break down for very long times T when the transition probability predicted by the

TDPT would become larger than 1.

4. Fermi’s Golden Rule

!!! See Schatz & Ratner:

∑
k

Pm→k ≈
∆x

∆E

∫ ∞
−∞

Pm→k(x)dx =

(
|Vkm|T
~

)2 ∫ ∞
−∞

sin2 x

x2
dx = · · ·

wT =
PT
T

=
2π

~
ρ(Em)〈|Vkm|2〉
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5. TDPT for a periodic potential V (t) = U cosωt

!!! See Schatz & Ratner:

electric dipole approximation

FGR for a periodic potential

wT =
PT
T

=
2π

~
ρ(Em ∓ ~ω)〈|Ukm|2〉

absorption, stimulated emission, spontaneous emission

6. *Collision induced excitation of a diatomic molecule [See Schatz & Ratner]

collision cross section σm→k, microcanonical rate constant km→k(E0), thermal rate constant

km→k(T )

VII. CORRELATION FUNCTIONS AND SPECTRA

Recommended reading: Schatz & Ratner 5.4.1., 5.4.2, 5.4.9; Tannor 6.1.1, 6.1.2, 6.2.1, from

sections 6.2.2, 11.6.5, and 11.7.1 only parts that I teach in the lecture are required.

A. Molecular transitions: Franck-Condon factors

electric dipole moment

Franck-Condon overlap

B. Spectrum as a Fourier transform of the autocorrelation function

As we shall see later, within the first-order perturbation theory for the molecule-light interaction,

the molecular absorption cross section is exclusively a molecular property and– remarkably– does

not depend on the precise properties of the light. We can, therefore, forget the electromagnetic

field for the moment and study the “wavepacket spectrum.”Let us start with two definitions:

Definition 28 The wavepacket autocorrelation function is a complex-valued function of time,

defined as the overlap

C(t) := 〈ψ(0)|ψ (t)〉 (7.1)
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of the initial wavepacket with the wavepacket at time t. The wavepacket spectrum is the sum of the

squares of the energy components of the wavepacket. More precisely, if

|ψ (t)〉 =
∑
n

cn|n〉e−iEnt/~ (7.2)

is the wavepacket at time t, then the wavepacket spectrum is defined to be the generalized real

function of angular frequency ω, given by

σ (ω) :=
∑
n

|cn|2δ (ω − ωn) , (7.3)

where ωn := En/~.

The wavepacket spectrum is a sequence of sharp Dirac delta peaks at frequencies ω = ωn whose

intensities are proportional to |cn|2.

Claim 29 The wavepacket spectrum is given by the inverse Fourier transform of the wavepacket

autocorrelation function:

σ (ω) =
1

2π

∫ ∞
−∞

C(t) eiωtdt. (7.4)

Proof. First note that for the wavepacket (7.2), the autocorrelation becomes

C(t) =

(∑
n

c∗n〈n|
)(∑

m

cm|m〉e−iωmt
)

=
∑
n

c∗n
∑
m

cmδnme
−iωmt =

∑
n

|cn|2e−iωnt.

The right-hand side of Eq. (7.4) then becomes

1

2π

∫
C(t)eiωtdt =

1

2π

∑
n

|cn|2
∫
ei(ω−ωn)tdt =

1

2π

∑
n

|cn|22πδ (ω − ωn) .�

!!! For features of spectra and autocorrelation functions: recurrences, decays, peak spacings,

peak widths, see Tannor’s book.

Let us consider two representative examples of molecular electronic spectra, which demonstrate

the relationship between C(t) and σ(ω):

Figure 25 shows the autocorrelation function and spectrum resulting from direct photodis-

sociation, a process in which the electronic excitation promotes the nuclear wavefunction onto an

unbound excited potential energy surface, and the wavepacket leaves the Franck-Condon region

without ever returning back.

In contrast, Fig. 26 depicts the autocorrelation function and spectrum for a photoabsorption

to a bound excited state, in which the wavepacket moves forever back and forth between the

two turning points. In a one-dimensional harmonic potential, the recurrences are perfect and the

spectrum will exhibit a single progression of infinitely sharp peaks.
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FIG. 25. Direct dissociation and corresponding autocorrelation function and spectrum.

FIG. 26. Electronic absorption into a harmonic bound excited state. Autocorrelation function exhibits a

series of perfect recurrences, while the spectrum consists of a single progression of infinitely sharp peaks.

C. Fourier transform

Let us spend a moment discussing the Fourier transform in general.

Definition 30 Fourier transform of an integrable function f(x) is a function f̃(k) defined as

f̃(k) :=
1√
2π

∫ ∞
−∞

f(x)e−ikxdx. (7.5)

Theorem 31 (Fourier inversion theorem) If f̃ is the Fourier transform of f , then

f(x) =
1√
2π

∫ ∞
−∞

f̃(k)e+ikxdk. (7.6)
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“Proof”. Substitution of the definition (7.5) of the Fourier transform into the right-hand side

of Eq. (7.6) gives

1

2π

∫ ∞
−∞

dke+ikx

∫ ∞
−∞

dx′f(x′)e−ikx
′

=
1

2π

∫ ∞
−∞

dx′f(x′)

∫ ∞
−∞

dke+ik(x−x′)

=
1

2π

∫ ∞
−∞

dx′f(x′)2πδ
(
x− x′

)
= f(x).�

Warning: There are other common conventions for the Fourier transform: the prefactor may

not be (2π)−1/2 but 1 for the forward and (2π)−1 for the inverse Fourier transform. Also the signs

in the exponents of the forward and inverse Fourier transforms are sometimes switched. Finally,

some texts include a prefactor 2π in the exponent, which requires a modification of the prefactor

of the integral as well.

We will also say that f(x) and f̃(k) are Fourier transform pairs and write

f(x)↔ f̃(k).

An example of a Fourier transform pair is the pair (ψ(q), a(k)) of the wavefunction ψ (q) in position

representation and wavefunction a(k) in k-representation. Likewise, in the pair (σ (ω) , C(t)) the

wavepacket spectrum σ(ω) and autocorrelation function C(t) are related by the forward and inverse

Fourier transforms, albeit using the convention with prefactors 1 and (2π)−1:∫ ∞
−∞

σ(ω)e−iωtdω =

∫ ∞
−∞

∑
n

|cn|2 δ (ω − ωn) e−iωtdω =
∑
n

|cn|2 e−iωnt = C(t)

σ(ω) =
1

2π

∫ ∞
−∞

C(t)eiωtdt.

In what follows, we shall use the convention from the definition and theorem.

Among the most important Fourier transform pairs are Gaussian ↔ Gaussian, real exponential

↔ Lorentzian, and complex exponential ↔ delta function:

e−αx
2 ↔ 1√

2α
e−k

2/4α, α > 0,

e−Γ|x| ↔ 1√
2π

2Γ

k2 + Γ2
, Γ > 0,

1√
2π
eik0x ↔ δ (k − k0) , k0 ∈ R.

The first two pairs are very important in spectroscopy because they provide a relationship between

the damping of autocorrelation and the broadening of peaks in the spectra. The Doppler broad-

ening of spectral lines due to the Doppler effect (change in frequency due to the relative motion

between the source and detector) is an example of a Gaussian line shape because of the Maxwell
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distribution of velocities in thermal equilibrium. The natural broadening (or lifetime broad-

ening), due to a finite lifetime of an excited state (which decays by spontaneous emission), gives

rise to exponential decay of the autocorrelation function and to the Lorentzian shape of spectral

lines.

D. Properties of the Fourier transform

The Fourier transform has many interesting properties. If f̃ and g̃ are Fourier transforms of f

and g, i.e., f ↔ f̃ and g ↔ g̃, then the following relationships hold.

1) Linearity (a, b ∈ C):

af(x) + bg(x)↔ af̃(k) + bg̃(k)

2) Scaling (a ∈ R, a 6= 0):

f (ax)↔ 1

|a| f̃
(
k

a

)
3) Even functions of x are transformed into even functions of k, while odd functions are trans-

formed to odd functions:

f (−x) = f(x)⇔ f̃(−k) = f̃(k),

f (−x) = −f(x)⇔ f̃(−k) = −f̃(k).

4) Fourier transform conserves the inner product (Parseval’s theorem), and therefore also

the norm (Plancherel’s theorem):

〈f, g〉 = 〈f̃ , g̃〉 and ‖f‖ = ‖f̃‖.

5) Fourier transform converts differentiation into multiplication and vice versa:

d

dx
f (x)↔ ikf̃(k) and xf(x)↔ i

df̃(k)

dk

6) (Convolution theorem) Fourier transform converts multiplication into convolution and

vice versa:

f̃ · g =
1√
2π
f̃ ∗ g̃ and f̃ ∗ g =

√
2πf̃ · g̃,

where the convolution of functions f and g is a function f ∗ g defined by

f ∗ g(x) :=

∫ ∞
−∞

f(y) g(x− y) dy.
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“Proof”. Let us prove only the properties 4, 5, and 6. To prove Parseval’s theorem, we use

the definition of the inner product and the Fourier transforms of f and g:

〈f̃ , g̃〉 =

∫
dkf̃(k)∗g̃(k) =

1

2π

∫
dk

∫
dx′f(x′)∗eikx

′
∫
dx′′g(x′′)e−ikx

′′

=
1

2π

∫
dx′f(x′)∗

∫
dx′′g(x′′)2πδ(x′ − x′′) =

∫
dx′f(x′)∗g(x′) = 〈f, g〉 .

Plancherel’s theorem follows immediately by setting g = f . Assuming that f decays to zero at

±∞, the Fourier transform of a derivative df(x)/dx can be simplified using an integration by parts:∫
e−ikx

d

dx
f (x) dx = −

∫
f (x)

d

dx
e−ikxdx = ik

∫
f (x) e−ikxdx,

while the Fourier transform of xf(x) is obtained by noticing that d
dke
−ikx = −ixe−ikx:∫

e−ikxxf (x) dx = i

∫
f (x)

d

dk
e−ikxdx = i

d

dk

∫
f (x) e−ikxdx.

As for the convolution theorem, we have

f̃g(k) =
1√
2π

∫
f(x)g(x)e−ikxdx = (2π)−3/2

∫
dxe−ikx

∫
dk′eik

′xf̃(k′)

∫
dk′′eik

′′xg̃(k′′)

=
1√
2π

∫
dk′f̃(k′)

∫
dk′′g̃(k′′)δ(k′ + k′′ − k) =

1√
2π

∫
dk′f̃(k′)g̃(k − k′) =

1√
2π
f̃ ∗ g̃.

The proof of the inverse convolution theorem is left as an exercise.

E. Convolution theorem and molecular spectra

Both versions of the convolution theorem are very useful for interpreting molecular spectra. On

one hand, if the autocorrelation function C(t) = C1(t)C2(t) is a product, then the corresponding

spectrum σ(ω) ∝ σ1 ∗ σ2(ω) is proportional to the convolution of the spectra corresponding to the

two elementary autocorrelation functions. This is because

σ ∝ F−1C = F−1(C1C2) ∝ F−1(C1) ∗ F−1(C2) ∝ σ1 ∗ σ2.

On the other had, if the autocorrelation function C(t) = C1 ∗ C2(t) is a convolution, then the

spectrum σ(ω) ∝ σ1(ω)σ2(ω) is proportional to the product of spectra corresponding to the two

elementary correlation functions. Figure 27 shows how damping of the recurrences in correlation

function C1 with a damping function C2 gives rise to the broadening of the spectral peaks. Fig-

ure 28, in turn, demonstrates the origin of the spectral envelope (!!! note that the relation between

C2 and σ2 follows from the Poisson summation formula).
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FIG. 27. Convolution theorem and peak broadening. C1 consists of an infinite series of perfect recurrences

giving rise to a spectrum σ1 with infinitely sharp peaks. C2 describes the damping of the recurrences and

determines the peak broadening.

VIII. NUMERICALMETHODS FOR SOLVING THE TIME-DEPENDENT SCHRÖDINGER

EQUATION

!!! discretization of the wave function

discrete Fourier transform (DFT)

fast Fourier transform (FFT)

A. Fourier method

algorithm?

B. Split operator method

algorithm?
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FIG. 28. Convolution theorem and spectral envelope. C1 is a correlation function of direct dissociation,

resulting in a broad spectrum σ1. C2 describes an infinite series of very sharp recurrences, which corresponds

to an infinite series of equally intense sharp peaks in the spectrum σ2.

C. *Second-order methods

IX. INTERACTIONS OF MOLECULES WITH ELECTROMAGNETIC FIELD

As mentioned before, interaction of molecules with electromagnetic fields can often be described

by the electric dipole approximation. Here, we obtain this form of interaction from a few funda-

mental principles. We start by deriving the Lagrangian describing the interaction of a charged

particle with an electromagnetic field. Remarkably, we can do that almost exclusively by consid-

ering only the symmetries of spacetime. We will find that the interaction depends on the scalar

potential ϕ and vector potential A, which we shall relate to the electric and magnetic fields E and

B. From the Lagrangian, we will obtain the well-known expression for the Lorentz force. As an

exercise, you will also derive the canonical momentum and Hamiltonian, which is important in the

quantum mechanical treatment of the interaction of molecules with light. Finally, by assuming

that the wavelength of the electromagnetic field is longer than the size of the molecule, we will

obtain the electric dipole approximation.

80



A. Lagrangian for a particle interacting with electromagnetic field

Our first goal is to obtain the Lagrangian

L(x,v, t) =
1

2
mv2 − eϕ(x, t) + ev ·A(x, t) (9.1)

describing the interaction of a charged particle with the electromagnetic field. Here x and v are

the position and velocity of the particle, e is its charge, while ϕ and A are the scalar and vector

potentials characterizing the electromagnetic field.

1. Gauge invariance of the Lagrangian

A useful fact from Lagrangian mechanics is that if L and

L′ = L+
df(q, t)

dt
, (9.2)

are two Lagrangians differing by a total time derivative of a function of coordinates and time, then

the two Lagrangians lead to exactly the same equations of motion. In this case, we say that the

Lagrangian is invariant up the gauge term df/dt.

Proof. The variation of the action corresponding to L′,

δS′ = δS + δ

∫ t

0

df(q(τ), τ)

dτ
dτ = δS + δf(q(τ), τ)|t0 = δS +

∂f(q(τ), τ)

∂q
· δq(τ)

∣∣∣∣t
0

= δS, (9.3)

is the same as the variation of the action corresponding to L, and hence yields the same equations of

motion. [The last step follows because the endpoints of the trajectory are fixed: δq(t) = δq(0) = 0.]

2. *Symmetries of nonrelativistic space time

In nonrelativistic physics, both space and time are homogeneous (i.e., invariant under transla-

tions), while space is also isotropic (i.e., invariant under rotation). In addition,Galileo’s principle

of relativity states that the physical laws are the same in all inertial frames moving with constant

velocity with respect to each other. The table below expresses relations between the position x,

velocity v, and time t in an inertial frame K and the corresponding position x′, velocity v′, and

time t′ in an inertial frame K ′ that is related to K by one of the basic symmetries of spacetime.
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Symmetry operation Position Velocities Time

Translation x′ = x+ a v′ = v t′ = t

Time translation x′ = x v′ = v t′ = t+ τ

Rotation x′ = R · x v′ = R · v t′ = t

Galilean transformation x′ = x+wt v′ = v +w t′ = t

Space inversion (parity) x′ = −x v′ = −v t′ = t

Time reversal x′ = x v′ = −v t′ = −t
In order that the equations of motion be invariant under a symmetry, the Lagrangian L(x,v, t)

must transform under the transformation of coordinates, velocities, and time into a new Lagrangian

L′(x,v, t) := L(x′,v′, t′) = L(x,v, t) +
df(x, t)

dt
(9.4)

that differs from the original Lagrangian L at most by a total time derivative of a function of

coordinates and time. By the chain rule, the total derivative satisfies the relation

df(x, t)

dt
= v · ∂f(x, t)

∂x
+
∂f(x, t)

∂t
. (9.5)

3. Lagrangian of the free particle

Have you ever wondered why the kinetic energy of a particle is mv2/2? Let us employ the

symmetry of spacetime to justify this relation.

In Lagrangian mechanics, a free particle is characterized by its position x, velocity v, and

possibly by some other, internal parameters. Since both space and time are homogeneous, the

Lagrangian L cannot depend on either x or t explicitly, and must be a function of v alone. The

isotropy of space implies that L cannot depend on the direction of v but only on its magnitude v,

or equivalently, on its square v2, i.e., L ≡ L(v2). Let us use Galileo’s principle of relativity and

consider another inertial frame K ′, moving with a velocity −w with respect to the original inertial

frame K. For small relative velocities w, the Lagrangian in the frame K ′ becomes

L′ = L(v′2) = L(v2) +
dL(v2)

dv2
2v ·w +O(w2).

A total time derivative of a function f(x, t) is given by (∂f/∂x) ·v+ ∂f/∂t, and is always a linear

function of v. Therefore, in order that the second term in the above equation be a total time

derivative, dL(v2)/dv2 must be independent of v2, and we can write

Lfree p. =
1

2
mv2, (9.6)
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where m is an internal parameter called the mass (or inertial mass) of the particle. Note that

the above Lagrangian satisfies Galileo’s principle of relativity for arbitrary, and not necessarily

infinitesimal, velocities w, because L′ differs from L only by a total derivative of a function of x

and t:

L′ =
1

2
mv′2 =

1

2
mv2 +mv ·w +

1

2
mw2 = L+mv ·w +

1

2
mw2 = L+

d

dt

(
mx ·w +

1

2
mw2t

)
.

Finally, the principle of least action implies that the mass cannot be negative:

m > 0.

If the mass were negative, the action S =
∫ t2
t1

1
2mv

2dt would not be bounded from below for short

times for particles moving very quickly from the initial to final position.

4. Lagrangian for a particle interacting with a scalar and vector fields

This Lagrangian can be written as a sum

L = Lfree p. + Lp.-scalar + Lp.-vector (9.7)

of three terms, the first being the Lagrangian (9.6) of a free particle, while the second and third

terms describe, respectively, the interactions of the particle with a scalar field ϕ and vector field

A. These Lagrangians are given by

Lp.-scalar = −aϕ(x, t), (9.8)

Lp.-vector = bv ·A(x, t), (9.9)

where a and b are properties of the particle and characterize the strength of the coupling to the

scalar and vector fields. Note that the signs were chosen for convenience and that the parameters

a and b themselves can have either sign.

The two Lagrangians can be again obtained simply from the symmetry of spacetime. The

Lagrangian should not depend on the rotation of the coordinate system and so must be a scalar.

The scalar field ϕ is, as the name suggests, already a scalar, and so the simplest interaction is

simply proportional to the field at the position of the particle. The interaction with the vector

field must be a scalar that depends both on the particle and the field. The simplest such scalar is

proportional to the scalar product of the vector field at the position of the particle with the velocity

of the particle. (We cannot take the scalar product with the position of the particle because that

would violate the homogeneity of space.)
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5. Interaction of a particle with an electromagnetic field

In the case of interaction of a particle with an electromagnetic field, the coupling constants to

the scalar and vector fields are

a = e and b = e,

where e is the electric charge of the particle. The Lagrangian is, therefore,

L =
1

2
mv2 − eϕ(x, t) + ev ·A(x, t).

It is an incredible experimental fact that the coupling constants to the scalar and vector fields are

the same: a = b, or, equivalently, in other systems of units, such as Gaussian or Lorentz—Heaviside

systems, a and b are proportional to each other: a = bc = e, where the proportionality constant

c is the same for all particles and is the speed of light c. This suggests that the interaction with

the scalar and vector fields are rather “reflections” of an interaction with a 4-component vector

field in a four-dimensional space. This space turns out to be the Minkowski spacetime of special

relativity. Therefore, the fact that a = b for all particles leads to the unification of electrostatics and

magnetostatics by electrodynamics, to the recognition of the Minkowski space, and to the special

theory of relativity.

Now you may well ask: Where do the scalar and vector potentials come from? How are they

related to the electric and magnetic fields?

B. Maxwell’s equations in terms of the scalar and vector potentials

First, let us recall several vector algebra and vector calculus identities.

1. Useful vector algebra identities

Let A, B, and C be vectors in R3. The scalar and vector products of two vectors, defined,

respectively, as

A ·B := AxBx +AyBy +AzBz,

A×B := det


x̂ ŷ ẑ

Ax Ay Az

Bx By Bz

 ,
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have the following properties:

A ·B = B ·A,

A×B = −(B×A),

A · (B×C) = B · (C×A) = C · (A×B),

A · (B×C) = det


Ax Ay Az

Bx By Bz

Cx Cy Cz

 ,

A× (B×C) = B(A ·C)−C(A ·B),

(A×B) · (C×D) = (A ·C) (B ·D)− (A ·D) (B ·C) .

2. Useful vector calculus identities

Let f(x) be a scalar field and A(x), B(x), C(x) vector fields on R3. First, we denote by symbol

∇, called “nabla”, the vector

∇ :=

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
whose components are partial derivatives with respect to the three Cartesian coordinates. Recall

that the scalar field

divA ≡ ∇ ·A :=
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

is called the divergence of the vector field A, the vector field

grad f ≡ ∇f :=

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
is called the gradient of the scalar field f , and the vector field

curlA ≡ ∇×A :=

(
∂Az
∂y
− ∂Ay

∂z
,
∂Ax
∂z
− ∂Az

∂x
,
∂Ay
∂x
− ∂Ax

∂y

)
is called the curl of the vector field A. Finally, one can define the Laplacian of either scalar or

vector field by

∆f ≡ ∇2f :=
∂2f

∂x2
+
∂2f

∂y2
+
∂2f

∂z2
,

∆A ≡ ∇2A :=
∂2A

∂x2
+
∂2A

∂y2
+
∂2A

∂z2
,
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The first derivative operators div, grad, and curl satisfy the following identities:

∇(fg) = g∇f + f ∇g, (9.10)

∇ (A ·B) = (A · ∇)B+ (B · ∇)A+A× (∇×B) +B× (∇×A) , (9.11)

∇ · (fA) = A · ∇f + f (∇ ·A), (9.12)

∇ · (A×B) = (∇×A) ·B−A · (∇×B), (9.13)

∇× (fA) = (∇f)×A+ f(∇×A), (9.14)

∇× (A×B) = A (∇ ·B)−B · (∇ ·A) + (B · ∇)A− (A · ∇)B. (9.15)

The second-derivative operators obtained by composing the div, grad, and curl operators satisfy

the following identities:

∇ · (∇f) = ∆f or div grad f = ∆f, (9.16)

∇ · (∇×A) = 0 or div curlA = 0, (9.17)

∇× (∇f) = 0 or curl grad f = 0, (9.18)

∇× (∇×A) = ∇(∇ ·A)−∆A or curl curlA = grad divA−∆A. (9.19)

If A is a vector field, then Eqs. (9.17) and (9.18) imply, respectively, that:

(Property 1) If ∇ ·A = 0, then there is a vector field B such that A = ∇×B.

(Property 2) If ∇×A = 0, then there is a scalar field f such that A = ∇f .

3. Maxwell’s equations in terms of A and ϕ

Recall that the electric field E and magnetic field B must satisfy their own equations of

motion, called Maxwell’s equations

∇ ·E = ρ/ε0, (9.20)

∇ ·B = 0, (9.21)

∇×E = −∂B
∂t
, (9.22)

∇×B =
1

c2

∂E

∂t
+ µ0j, (9.23)

where ρ is the charge density, j is the current density, c is the speed of light, ε0 and µ0 are,

respectively, the permittivity and permeability of the vacuum, which satisfy the relation ε0µ0 = c−2.

Maxwell’s equations can be derived by generalizing Lagrangian mechanics from point particles to
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continuous fields and this can be again done largely by relying on spacetime symmetries. The

derivation is, unfortunately, beyond the scope of this course.

Using the Property 1 from the preceding section, Eq. (9.21) implies that B can be expressed

as a curl of a vector potential A:

B = ∇×A. (9.24)

Substituting expression (9.24) for B into Maxwell’s equation (9.22) shows that

∇×
(
E+

∂A

∂t

)
= 0.

Now Property 2 from the previous section implies that

E = −∇ϕ− ∂A

∂t
, (9.25)

where ϕ is a scalar potential. A and ϕ are the two fields that showed up earlier when we derived

the Lagrangian of a particle interacting with electromagnetic field.

Using Eq. (9.24) for B and Eq. (9.25) for E, Maxwell’s equations (9.20) and (9.23) become

∇2ϕ+
∂

∂t
(∇ ·A) = −ρ/ε0, (9.26)

∇2A− 1

c2

∂2A

∂t2
−∇ (∇ ·A)− 1

c2
∇∂ϕ
∂t

= −µ0j, (9.27)

where in deriving the last equation relation (9.19) was used.

4. Gauge invariance of electromagnetic fields

The scalar and vector potentials ϕ and A are not defined uniquely. In particular, if one makes

a so-called gauge transformation

A 7→ A′ := A+∇χ(x, t) and ϕ 7→ ϕ′ := ϕ− ∂χ(x, t)

∂t
, (9.28)

where the gauge function χ(x, t) is an arbitrary function of position and time, the observable

fields E and B remain unchanged. The electric field

E′ = −∇ϕ′ − ∂A′

∂t
= −∇ϕ+∇∂χ

∂t
− ∂A

∂t
− ∂

∂t
∇χ = −∇ϕ− ∂A

∂t
= E

is unchanged because of the commutativity of the partial derivatives (∇∂χ
∂t = ∂

∂t∇χ). Likewise, the

magnetic field is unaffected:

B′ = ∇×A′ = ∇×A+∇× (∇χ) = ∇×A = B,

which follows from relation (9.18). In other words, the electric and magnetic fields E and B are

gauge invariant.
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5. Coulomb gauge

Gauge invariance can be used to simplify Maxwell’s equations. In particular, one can impose

various additional conditions on the scalar and vector potentials. This is called gauge fixing.

Among many useful gauges, the one particularly useful for nonrelativistic treatment of molecules

is the Coulomb gauge, which imposes the condition

∇ ·A = 0 (9.29)

on the vector potential. To show that such a gauge is always possible, let us consider a general

vector potential A, which does not necessarily satisfy the Coulomb gauge condition (9.29) and set

A′ = A+∇χ. Then A′ will satisfy the Coulomb gauge condition if

∇ ·A′ = ∇ ·A+∇2χ,

in other words, if χ solves Poisson’s equation

∇2χ = −∇ ·A,

where ∇ ·A is given.

Assuming thatA satisfies the Coulomb gauge condition (9.29), Maxwell’s equations (9.26)-(9.27)

for ϕ and A reduce to Poisson’s equation for ϕ and to an inhomogeneous wave equation for

A:

∇2ϕ = −ρ/ε0, (9.30)

∇2A− 1

c2

∂2A

∂t2
=

1

c2
∇∂ϕ
∂t
− µ0j. (9.31)

C. Derivation of the Lorentz force and gauge invariance of the particle-field interaction

Lagrangian (9.1) for the interaction of a charged particle with electromagnetic field leads to the

following Euler-Lagrange equation of motion:

mẍ = e

(
−∇ϕ− ∂A

∂t
+ v × (∇×A)

)
= e (E+ v ×B) , (9.32)

which is nothing else but the second Newton’s law mẍ = F with the Lorentz force

F = e (E+ v ×B) . (9.33)
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Proof: First, we compute the required derivatives of the Lagrangian:

∂L

∂x
= −e∇ϕ+ e∇ (v ·A) = −e∇ϕ+ e ((v · ∇)A+ v× (∇×A))

∂L

∂v
= mv + eA

d

dt

∂L

∂v
= mẍ+ e

(
(v · ∇)A+

∂A

∂t

)
The first equation follows from the identity (9.11) for the divergence of a scalar product. Equation

(9.32) then follows by setting

d

dt

∂L

∂v
=
∂L

∂x

as usual, subtracting the term e ((v · ∇)A+ ∂A/∂t) from both sides and using the relations (9.25)

and (9.24) for electric and magnetic fields in terms of ϕ and A.�

Note that the Lagrangian (9.1) is invariant up to a gauge term under the gauge transformation

(9.28)

A′ := A+∇χ(x, t) and ϕ′ := ϕ− ∂χ(x, t)

∂t

of the vector and scalar potentials.

Proof:

L′ :=
1

2
mv2 − eϕ′ + ev ·A′ = L+ e

(
∂χ

∂t
+ v · ∇χ

)
= L+

d

dt
(eχ(x, t)) .�

Because L and L′ differ by a total time derivative of a function of position and time, the

equation of motion (9.32) containing the Lorentz force (9.33) is exactly invariant under gauge

transformations. (This, in fact, follows already from the gauge invariance of E and B fields.) In

summary, the equations of motion for both the particle (Newton’s second law with Lorentz force)

and for the electromagnetic fields (Maxwell’s equations) are invariant under gauge transformations.

Exercise 32 Derive an analytical expression for the canonical momentum p := ∂L/∂v associ-

ated to the Lagrangian (9.1) of a particle interacting with electromagnetic field and show that the

Hamiltonian is

H(x,p) =
1

2m
(p− eA)2 + eϕ.

Derive Hamilton’s equations of motion and show that they are equivalent to Newton’s second law

with Lorentz force (9.33).
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D. Long wavelength and electric dipole approximations

Assuming that the sources of the electromagnetic fields are far away, we can take ϕ = 0 in

addition to the Coulomb gauge condition ∇ ·A = 0. (Because it requires a bit of work, I postpone

the justification to the following section.)

Now consider that the wavelength of the electromagnetic field is much longer than the size of the

molecule. This is quite well satisfied for not too large molecules and for visible light (wavelength

∼ 500 nm). Then the fields E, B, A will be almost constant on the scale of the molecule, and, in

particular, we can consider the vector potential A to be a function of time only:

A(x, t) ≈ A(t).

In this long wavelength approximation, Lagrangian becomes

L(x, t) =
1

2
mv2 + ev ·A(t).

This form of the Lagrangian is said to be in the velocity gauge.

Let us make a gauge transformation with

χ(x, t) = −x ·A(t),

which yields new fields

A′ = A+∇χ = A−A = 0 and ϕ′ = ϕ− ∂χ

∂t
= 0 + x·∂A(t)

∂t
= −x ·E(t).

As a result, the Lagrangian and Hamiltonian in this so-called length gauge become

L′ =
1

2
mv2 − eϕ′(x, t) =

1

2
mv2 + ex ·E(t) =

1

2
mv2 + µ ·E(t),

H ′ =
p2

2m
+ eϕ′(x, t) =

p2

2m
− µ ·E(t),

where µ = ex is the electric dipole moment of the particle. All together, the approximation is

called the electric dipole approximation.

In a molecule, we need to add the contributions from all electrons and all nuclei and so the

interaction potential will be

Vint = −µtot ·E(t),

where µtot is the sum over electric dipole moments of all electrons and nuclei. For electromagnetic

waves, the field in the region of the molecule has the form

E(t) = E0 cos (ωt+ θ) ,
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and therefore the interaction potential has the form

Vint = V0 cos (ωt+ θ) ,

V0 = −µtot ·E0,

which we used when we discussed the time-dependent perturbation theory with periodic perturba-

tion.

E. *Justification of setting ϕ = 0 in the derivation of electric dipole approximation

1. Weyl gauge

TheWeyl gauge, in which ϕ = 0, is another useful gauge. It is obtained from arbitrary vector

and scalar potentials A and ϕ by a gauge transformation with a gauge function

χ(x, t) :=

∫ t

0
ϕ(x, τ)dτ.

The transformed fields are

A′ = A+∇χ = A+

∫ t

0
∇ϕ(x, τ)dτ,

ϕ′ = ϕ− ∂χ

∂t
= ϕ− ϕ = 0.

As desired, the scalar potential vanishes.

2. Maxwell’s equations for ϕ and A in the absence of sources

In the absence of charges and currents (ρ = j = 0), Maxwell’s equations (9.30) and (9.31) for ϕ

and A in the Coulomb gauge reduce to vacuum Maxwell’s equations

∇2ϕ = 0, (9.34)

∇2A− 1

c2

∂2A

∂t2
=

1

c2
∇∂ϕ
∂t
. (9.35)

When we discuss the interaction of electromagnetic fields with a molecule, of course there are

charges present, but these charges and currents are not sources of the electromagnetic field. As a

result, if the sources of the electromagnetic field are far away from the molecule, we can obtain the

scalar and vector fields as well as the electric and magnetic fields by solving the vacuum equations.
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3. Coulomb-Weyl gauge

In general, Coulomb and Weyl gauges are not compatible. To see that, consider that A and

ϕ are in Coulomb gauge, i.e., ∇ · A = 0 and let us try to find a gauge function χ(x, t) so that

∇ ·A′ = 0 (Coulomb gauge) and, at the same time, ϕ′ = 0 (Weyl gauge). The two conditions will

be satisfied if

0 = ∇ ·A′ = ∇ · (A+∇χ) = ∇ ·A+∇2χ = ∇2χ,

0 = ϕ′ = ϕ− ∂χ/∂t.

In other words χ must satisfy the Laplace equation and also ∂χ/∂t = ϕ. However, these conditions

are incompatible in general because on one hand, Maxwell’s equation (9.30) requires that ∇2ϕ =

−ρ/ε0, and, on the other hand, the two conditions imply that

∇2ϕ = ∇2∂χ

∂t
=

∂

∂t
∇2χ = 0.

Hence, in the presence of charge, Weyl and Coulomb gauges are incompatible. However, in the

absence of sources (ρ = 0), the two gauges are compatible as long as

∇2χ = 0 and ∂χ/∂t = −ϕ.

The resulting gauge, in which both

∇ ·A = 0 and ϕ = 0,

is called the Coulomb-Weyl gauge, but most often people refer to it simply as the Coulomb

gauge. This is the reason why we could start with a Lagrangian, in which ϕ = 0 in the derivation

of the electric dipole approximation.

4. Electromagnetic waves

In the Coulomb-Weyl gauge, Maxwell’s equations for ϕ and A in vacuum simplify further to

ϕ = 0, (9.36)

∇2A− 1

c2

∂2A

∂t2
= 0, (9.37)

where the only interesting equation is the wave equation for the vector potential. Among other

solutions, it is solved by the plane electromagnetic waves

A(x, t) = A0 cos(k · r− ωt+ θ),
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where k is the wave vector determining the direction of propagation of the wave, ω is the angular

frequency, and θ is an arbitrary phase. The wave vector and angular frequency satisfy the linear

dispersion relation

ω(k) = ck.

Because this relation is linear, the phase and group velocities (vp = ω/k = c and vg = dω/dk = c)

are equal to each other and both are equal to the speed of light. Compare this with the nonlinear

dispersion relation

ω(k) =
~k2

2m
.

satisfied by the Schrödinger free-particle wave in quantum mechanics.

X. PATH INTEGRAL FORMALISM

A. Feynman path integral propagator

As we have seen already on multiple occasions, the time-dependent Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ|ψ(t)〉 (10.1)

with a time-independent Hamiltonian Ĥ has a formal solution

|ψ(t)〉 = e−iĤt/~|ψ (0)〉. (10.2)

Another way to express the solution is with the so-called quantum propagator. The quantum

propagator K (q′′, q′; t) from point q′ to point q′′ in time t is defined via the equation

ψ
(
q′′, t

)
=

∫
K
(
q′′, q′; t

)
ψ
(
q′, 0

)
dq′, (10.3)

which expresses the propagator as the integral kernel transforming the initial wavefunction

ψ (q′, 0) to the final wavefunction ψ (q′′, t). The quantum propagator can be evaluated as the

matrix element of the evolution operator in the position representation:

K
(
q′′, q′; t

)
= 〈q′′|e−iĤt/~|q′〉, (10.4)

which is easily proven by expressing Eq. (10.2) in the position representation, inserting the resolu-

tion of identity, and comparing the result with Eq. (10.3):

ψ
(
q′′, t

)
= 〈q′′|ψ (t)〉 = 〈q′′|e−iĤt/~|ψ (0)〉

=

∫
〈q′′|e−iĤt/~|q′〉〈q′|ψ (0)〉dq′ =

∫
〈q′′|e−iĤt/~|q′〉ψ

(
q′, 0

)
dq′. (10.5)

Let us consider several special cases first.
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1. Free-particle propagator

In the absence of potential energy (V = 0), the Hamiltonian Ĥ = p̂2/ (2m) is given by the

kinetic energy and the propagator can be evaluated exactly. The free-particle propagator is

Kf

(
q′′, q′; t

)
= 〈q′′|e−ip̂2t/(2m~)|q′〉 =

∫
〈q′′|p〉〈p|e−ip̂2t/(2m~)|q′〉dp

=

∫
1√
2π~

eiq
′′p/~e−ip

2t/(2m~)〈p|q′〉dp =
1

2π~

∫
exp

{
i

~

[
− t

2m
p2 + (q′′ − q′)p

]}
dp

=
( m

2πi~t

)1/2
exp

[
im (q′′ − q′)2

2t~

]
, (10.6)

where a Fourier transform of a complex Gaussian was used in the last step. This Fourier transform

can be found in tables or derived by “completing the square”in the exponent and using the standard

Gaussian integral.

2. Short-time propagator

If the potential is nonzero, but we are only interested in the propagator for short times ∆t, we

can employ the Trotter factorization

e−iĤ∆t/~ = e−iV̂∆t/~e−iT̂∆t/~ +O(∆t2) (10.7)

used in deriving the split-operator algorithm. For short times ∆t, the quantum propagator can,

therefore, be approximated as

K
(
q′′, q′; ∆t

)
= Kst(q

′′, q′; ∆t) +O(∆t2), (10.8)

where Kst(q
′′, q′; ∆t) is the short-time propagator, given by

Kst(q
′′, q′; ∆t) = 〈q′′|e−iV̂∆t/~e−iT̂∆t/~|q′〉 = e−iV (q′′)∆t/~〈q′′|e−iT̂∆t/~|q′〉

= e−iV (q′′)∆t/~Kf

(
q′′, q′; t

)
=
( m

2πi~∆t

)1/2
exp

{
i

~

[
m (q′′ − q′)2

2∆t
− V (q′′)∆t

]}

≈
( m

2πi~∆t

)1/2
exp

[
i

~
S(q′′, q′; ∆t)

]
. (10.9)

To obtain the last line, we used a short-time approximation for the classical action:

S
(
q′′, q′; ∆t

)
=

∫ ∆t

0
L(q, q̇)dt ≈ ∆tL(q′′, v′′) = ∆t

[
1

2
m
(
v′′
)2 − V (q′′)]

= ∆t

[
1

2
m

(
q′′ − q′

∆t

)2

− V
(
q′′
)]
. (10.10)

Basically, we approximated the integral by a single term of a Riemann sum and in this single term,

employed the value of the integrand at the final endpoint.
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3. Long-time propagator

A propagator for long (i.e., finite and not infinitesimal) times t and with a nonzero potential V

is obtained by composing N times the short-time propagator for time ∆t := t/N :

K
(
q′′, q′; t

)
= 〈q′′|e−iĤt/~|q′〉 = 〈q′′|(e−iĤ∆t/~)N |q′〉

= 〈q′′|e−iĤ∆t/~
∫
dqN−1|qN−1〉〈qN−1|e−iĤ∆t/~ · · · e−iĤ∆t/~

∫
dq1|q1〉〈q1|e−iĤ∆t/~|q′〉

≈
( m

2πi~∆t

)N/2 ∫
dqN−1 · · ·

∫
dq1 exp

 i
~

N∑
j=1

L (tj) ∆t

 , (10.11)

where we insertedN−1 resolutions of identity in the second line and used the short-time propagator

(10.9) in the third line.

Now let us take the limit N → ∞. Because ∆t = t/N → 0, the short-time approximation will

get better and better. Moreover, the sum in the exponent will turn into an integral∫ t

0
Ldt = S.

Still, the question whether the limit of the infinite product of integrals exists in a rigorous math-

ematical sense is very diffi cult and has not been answered fully (to the best of my knowledge).

However, Richard Feynman ignored this issue and, by taking the limit, obtained the celebrated

Feynman path integral propagator

KPI
(
q′′, q′; t

)
= lim

N→∞

(
mN

2πit~

)N/2 ∫
dq1 · · ·

∫
dqN−1e

iS[q(τ)]/~ =:

∫
Dq (τ) eiS[q(τ)]/~, (10.12)

in which the third expression defines a short-hand notation for the complicated limit in the second

expression.

This integral is complicated for two reasons: first, it is infinite-dimensional and second, it is

highly oscillatory. The integral is infinite-dimensional because it integrates over all, classical or

nonclassical trajectories leading from q′ to q′′ in time t. At any time τ such that 0 < τ < t, the

trajectory can pass through an arbitrary point q(τ) in space. If this were not complicated enough,

each trajectory contributes a complex exponential, the phase of which can change fast when the

trajectory changes little.

Despite these complications, the integral is believed to be an exact representation of the quantum

propagator, even though this statement has not been proven mathematically. The beauty of the

integral lies in the “democracy of trajectories”: each trajectory has the same weight and only differs

from the other trajectories in the phase. Because of the wildly oscillatory behavior of the phase, this
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integral is rarely used for numerical applications (there are notable exceptions, such as the work of

Nancy Makri); the path integral is mostly used for formal derivations of modern theories of particle

physics. It is also an excellent starting point for deriving the semiclassical approximation to

the quantum propagator: Note that the trajectories that contribute the most to the integral are

the trajectories whose phase does not change under infinitesimal perturbations. This happens if

the phase and, therefore, the action is stationary, which shows that such trajectories are exactly

the classical trajectories derived from the principle of stationary action. This is also one way to

derive classical mechanics from quantum mechanics.

Despite its diffi culties in numerical applications to quantum dynamics, the Feynman path in-

tegral turns out to be remarkably useful for molecular simulations. However, one must simulate

quantum thermodynamics instead of the real-time quantum dynamics.

B. Quantum thermodynamics

There is a beautiful analogy between thermodynamics and quantum dynamics expressed in the

duality

e−βE ↔ e−itĤ/~.

In thermodynamics, the central quantity is the Boltzmann factor exp (−βE), which is propor-

tional to the probability at temperature T to be in a state with energy E. [Recall that β := 1/ (kBT )

denotes the inverse temperature.] In quantum dynamics, the evolution of a quantum state is gov-

erned by the evolution operator exp(−itĤ/~). Remembering that the Hamiltonian operator Ĥ

is the quantum-mechanical representation of energy E, we can complete the analogy by identifying

β with it/~. In other words,

e−βĤ = e−iτĤ/~,

where we defined the imaginary time

τ := −iβ~.

This time is imaginary because both β and ~ are, of course, real. In conclusion, one can view

quantum thermodynamics as quantum dynamics in imaginary time.

To see how the Feynman path integral can be useful for computing quantum thermodynamic

quantities, we will consider a specific example: the calculation of thermal energy E(β).
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1. Thermal energy from the partition function

First, let us recall a general thermodynamic relation between the thermal energy E(β) and

partition function Q(β), namely

E (β) = −∂ lnQ(β)

∂β
. (10.13)

This identity is proven as follows:

E(β) := 〈E〉 =

∑
nEne

−βEn∑
n e
−βEn =

1

Q

∑
n

Ene
−βEn = − 1

Q

∑
n

∂

∂β
e−βEn

= − 1

Q

∂

∂β

∑
n

e−βEn = − 1

Q

∂Q

∂β
= −∂ lnQ(β)

∂β
, (10.14)

where we defined the partition function

Q (β) =
∑
n

e−βEn (10.15)

as the sum of Boltzmann factors for all energy eigenstates of the system. In the derivation, we

used the definition of the thermal energy as the average energy over the Boltzmann distribution.

2. Partition function as the trace of the Boltzmann operator

The partition function (10.15) can be rewritten as the trace of the Boltzmann operator e−βĤ :

Q (β) =
∑
n

〈n|e−βĤ |n〉 = Tr(e−βĤ). (10.16)

This trace, which is a generalization of a matrix trace to operators, can be also expressed in the

position representation:

Q (β) =
∑
n

〈n|e−βĤ
∫
dq|q〉〈q|n〉 =

∫
dq〈q|

∑
n

|n〉〈n|e−βĤ |q〉 =

∫
dq〈q|e−βĤ |q〉. (10.17)

In the derivation, we first inserted a resolution of identity in terms of the position basis and then,

after exchanging the order of integration and sum, removed another resolution of identity in terms

of the energy eigenstates.

3. Partition function as the trace of the imaginary-time quantum propagator

The last expression can be rewritten as

Q (β) =

∫
dqK(q, q;−iβ~), (10.18)

97



which is nothing but the trace of the quantum propagator in imaginary time −iβ~. Because it

is a trace, the initial and final positions coincide and, in addition, are integrated over. The last

equation is a rigorous statement of the duality between quantum thermodynamics, reflected in

the partition function on the left-hand side, and imaginary-time quantum dynamics, reflected

in the propagator on the right-hand side.

4. Path integral representation of the partition function

Now we replace the quantum propagator in the trace (10.18) with its path integral representation

(10.12), but will not take the limit N →∞. Substituting the finite N version of the path integral

propagator forK(q, q;−iβ~) and renaming the variable q as qN yields the discretized path-integral

representation of the partition function

QN (β) =

(
mN

2π~2β

)N/2 ∫
dq1 · · ·

∫
dqN exp [−βVeff(q)] , (10.19)

where we defined an effective potential

Veff(q) =
mN

2~2β2

N∑
j=1

(qj − qj−1)2 +
1

N

N∑
j=1

V (qj) (10.20)

of the so-called ring polymer consisting of N monomers of the original system. The exact

quantum partition function is obtained in the limit N → ∞ of Eq. (10.19), while the classical

partition function is found by taking N = 1 (check!).

Exercise 33 Show that, for N = 1, partition function QN (β) of Eq. (10.19) reduces to the classical

partition function

Qcl(β) =
1

2π~

∫
dq

∫
dp exp [−βH (q, p)] , (10.21)

H(q, p) =
p2

2m
+ V (q). (10.22)

We have converted a one-dimensional quantum-mechanical problem to an N -dimensional clas-

sical problem because all that remains to do is applying classical thermodynamics to the classical

ring polymer described by the effective potential. The first term in Veff arose from the kinetic en-

ergy, but now becomes a harmonic bond interaction between adjacent “beads”of the ring polymer,

while the second term is an arithmetic average over the beads of the original potential V ; effectively,

each bead feels an N times weaker potential, i.e., V/N . In conclusion, using the discretized path
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integral, quantum thermodynamics can be also interpreted as the classical thermodynamics of

a ring polymer. [!!!] In the lecture, I drew figures of the ring polymer in two cases: (a) an atom

in an external potential and (b) a diatomic molecule with a two-body interaction.

5. Practical implementation

Once we have converted a quantum problem to a classical thermodynamic problem, we can use

all the tools available for classical thermodynamic simulations. If we apply classical molecular

dynamics to the ring polymer, we obtain path integral molecular dynamics (PIMD). If we, in-

stead, sample the ring polymer with classicalMonte Carlo method, we obtain the path integral

Monte Carlo (PIMC) method. Both PIMD and PIMC can use all the machinery of molecular

dynamics and Monte Carlo simulations, and, in addition, many tricks available specifically in the

ring polymer case due the special form of the effective potential (10.20).

How is it possible that the real-time Feynman path integral is rather impractical for numerical

computations while the quantum thermodynamical version is used so successfully in molecular

simulations? The answer lies in the imaginary time! The Boltzmann factor is real and decays

rapidly in regions with high effective potential, whereas the complex factor exp (iS/~) has the

same magnitude for each trajectory and also oscillates rapidly.

Nowadays, imaginary-time path integral simulations are easily performed for 1000 atoms, which

corresponds to 105-dimensional integrals if N = 100. At room temperature, it is typically suffi cient

to take N = 64 to 128 for hydrogen or its isotopes, and N = 8 to 32 for heavier atoms such as

carbon or oxygen.

6. Sampling weight and estimators

To find the thermal average of a quantity in classical or path integral molecular dynamics or

Monte Carlo simulations, you need to explore the configuration space and sample the quantity of

interest using a so-called estimator. More precisely, a thermally averaged quantity A(β) is obtained

as

A (β) ≈ 〈Aest〉ρ, (10.23)

where 〈Aest〉ρ, the average obtained in the simulation, is defined as

〈Aest〉ρ :=

∫
Aest(q)ρ (q) dq∫

ρ (q) dq
. (10.24)
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Here ρ (q) is the sampling weight from which the configurations q are sampled and Aest(q) is

the so-called estimator of the quantity A. In classical Monte Carlo simulations, if the observable

A(q) depends only on positions but not on the momenta, the sampling weight can be taken as

ρ(q) = exp [−βV (q)] (because the kinetic factor can be evaluated analytically and cancels between

the numerator and denominator) and its estimator is simply Aest(q) = A(q), i.e., the quantity itself,

expressed as a function of coordinates. If the sampling of positions is done properly, according to

the weight ρ(q), then the weighted average (10.24) is equal to the arithmetic average

Ā = lim
S→∞

1

S

S∑
s=1

Aest(q
(s)), (10.25)

where S is the number of samples taken and q(s) denotes the coordinates of the sth sample.

In path integral simulations, q = (q1, . . . , qN ) denotes the combined coordinates of all beads and

the sampling weight is given by

ρN (q, β) =

(
mN

2π~2β

)N/2
exp (−βVeff(q)) . (10.26)

7. Thermodynamic estimator for energy

To complete our example, in which we wanted to evaluate the quantum thermal energy of a

system, we need to find the estimator for energy. The most straightforward one is obtained by

expressing the energy from the path integral representation of the partition function, using the

relation (10.13):

EN (β) = −∂QN (β)/∂β

QN (β)
=

∫
Eth-est(q, β)ρN (q, β)dq∫

ρN (q, β)dq
= 〈Eth-est(q, β)〉ρN (q,β) , (10.27)

where the factor Eth-est(q, β) is given by

Eth-est(q, β) =
N

2β
− mN

2~2β2

N∑
j=1

(qj − qj−1)2 +
1

N

N∑
j=1

V (qj) (10.28)

and is called the thermodynamic estimator for energy. If you take a large enough N (so

that you approach the quantum limit), run a long enough simulation, and evaluate the energy at

each ring polymer configuration q using the thermodynamic estimator, then you will eventually

converge to the correct quantum thermal energy. However, the convergence will be very slow,

especially if you need a large N , because the estimator (10.28) contains the difference between two

large positive terms proportional to N , and as you know, the average must be independent of N in

the limit of large N (quantum mechanics does not know that we have discretized the path integral).
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The difference of large numbers leads to large statistical errors. For a given number of samples,

the statistical error of energy will be proportional to N , and therefore, since an error of a Monte

Carlo calculation is proportional to 1/
√
S, you will have to increase the number S of samples N2

times to achieve the same level of convergence as for a classical simulation with N = 1 bead. This

issue is avoided by using the virial estimator or even better centroid virial estimator. You

will derive the virial estimator in an exercise.

XI. INTRODUCTION TO SEMICLASSICAL METHODS

Semiclassical approximation, as its name suggests, provides a bridge between the quantum and

classical mechanics. It many ways, semiclassical approximation makes quantum mechanics easier

to understand. Before thinking that this approximation is inferior to the exact solution of the

Schrödinger equation, one should remember that it was exactly the quantum-classical correspon-

dence that guided Schrödinger in deriving his equation. Moreover, while the wavefunction can be

propagated by the Schrödinger equation, the concept of measurement even in quantum mechanics

relies on a classical apparatus.

We have already encountered several examples of the semiclassical approximation: the Bohr

model of the hydrogen atom, Bohr-Sommerfeld quantization rules∮
p dq = nh,

as well as the thawed and frozen Gaussian approximations. Yet, the most common semiclassical

approximation discussed in quantum-mechanical textbooks is the WKB approximation. While

most text only discuss the time-independent, one-dimensional version, we shall present the D-

dimensional, time-dependent formulation.

A. Time-dependent WKB approximation

Let us start by writing the wavefunction in the polar form, i.e.,

ψ(q, t) = A(q, t) exp

[
i

~
S(q, t)

]
, (11.1)

where both A,S are real functions of position and time. Substituting this ansatz into the time-

dependent Schrödinger equation

i~
∂ψ(q, t)

∂t
= − ~

2

2m
∇2ψ(q, t) + V (q, t)ψ(q, t) (11.2)
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requires derivatives with respect to both q and t, which we will denote ∂ψ/∂q =: ψ′ and ∂ψ/∂t =: ψ̇:

ψ′ =

(
A′ +

i

~
AS′

)
eiS/~ and ψ̇ =

(
Ȧ+

i

~
AṠ

)
eiS/~,

ψ′′ =

[
A′′ +

i

~
(
A′S′ +AS′′

)
+

(
A′ +

i

~
AS′

)
i

~
S′
]
eiS/~.

Although the derivation is valid in arbitrary number of dimensions, for the moment, the reader

may think that there is only one spatial dimension. Inserting the ansatz (11.1) into the Schrödinger

equation (11.2) and dividing both sides by exp (iS/~) yields

i~Ȧ−AṠ = − ~
2

2m

[
A′′ +

i

~
(
2A′S′ +AS′′

)
− 1

~2
A
(
S′
)2]

+ V A. (11.3)

Let us separate the real and imaginary parts of this complex-valued partial differential equation

because both parts provide different pieces of information.

The real part, after dividing by A, reads

−Ṡ =
1

2m

(
S′
)2

+ V − ~2

2m

A′′

A
.

Recalling the definition of the probability density ρ := |ψ|2 = A2 and reverting to the three-

dimensional notation, we can rewrite the last equation as

− ∂S

∂t
=

(∇S)2

2m
+ V + VBohm , (11.4)

where

VBohm = − ~
2

2m

∇2ρ1/2

ρ1/2
(11.5)

is the so-called quantum potential (or Bohm potential). Note that if VBohm were zero, then

the equation satisfied by S would be nothing else but the classical Hamilton-Jacobi equation

(4.43)

−∂S
∂t

= H (q,p) |p=∇S .

With nonzero VBohm , the Hamilton-Jacobi equation is a generalized one, with an effective potential

V + Veff.

Now, multiplying with A the imaginary part of Eq. (11.3),

Ȧ+
1

2m

(
2A′S′ +AS′′

)
= 0,

yields

1

2

∂

∂t

(
A2
)

+
1

2m

(
A2S′

)′
= 0.

102



Reverting to the three-dimensional notation and using the definition of ρ, the last equation becomes

∂

∂t
ρ+∇ ·

(
ρ
∇S
m

)
= 0, (11.6)

which can be recognized as the continuity equation after acknowledging, as in Eq. (4.39), that

∇S = p and interpreting

ρ
∇S
m

= ρ
p

m
= ρv = j

as the probability density current.

In conclusion, the time-dependent Schrödinger equation (11.2) is equivalent to the coupled

partial differential equations (11.4) and (11.6) for the probability density ρ(q, t) and “phase”S(q, t),

or equivalently, for A(q, t) and S(q, t). These equations are the central components of so-called

Bohmian mechanics, in which the generalized Hamilton-Jacobi equation is further solved with

the method of characteristics, i.e., by running “quantum” trajectories– trajectories satisfying

Hamilton’s equations of motion with the potential V + VBohm .

Alternatively, one may neglect the quantum potential (11.5) and obtain semiclassical me-

chanics, in which S becomes the classical action and ρ becomes the classical density. The

semiclassical wavefunction,

ψ(q, t) =
√
ρ (q, t)eiS(q,t)/~,

is composed of purely classical quantities. However, this form only holds for short times. For longer

times, one must generalize it to a sum

ψ(q, t) =
∑
j

Aj (q, t) eiSj(q,t)/~,

where each term corresponds to a different classical trajectory contributing to the wavefunction at

position q at time t.

B. *Van Vleck propagator

Quantum propagator

K(q′′, q′; t) :=
〈
q′′
∣∣∣e−iHt/~∣∣∣ q′〉 ,

ψ(q′′, t) =

∫
K(q′′, q′; t)ψ(q′, 0) dq′.
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Van Vleck-Gutzwiller propagator

KSC(q′′, q′; t) = (2πi~)−D/2
∑
j

Aje
iSj/~−iπνj/2,

Aj =

√∣∣∣∣det
∂2Sj
∂q′′∂q′

∣∣∣∣
Van Vleck determinant

Maslov index νj

Problems with Van Vleck determinant: root search, singularities

C. *Initial value representation

(
e−iĤt/~

)
IVR

= (2πi~)−D/2
∫
dq0

∫
dp0A

−1eiS(q0,p0,t)/~|qt〉〈q0|

Advantages: Initial value problem, no singularities (become zero)

D. Wigner function

E. *Derivation of the Van Vleck propagator from the Feynman path integral

Appendix A: *Basis set methods to solve the TISE

The goal is to find the quantum state |ψ〉 that solves the TISE

Ĥ|ψ〉 = E|ψ〉. (A1)

Because we are solving the time-independent Schrödinger equation, in this section we obviously

assume that both the Hamiltonian and the basis are time-independent. On the other hand, we will

first consider a general basis that may not be orthogonal. Obviously, we cannot assume that our

basis is the eigenbasis of Ĥ, since such an eigenbasis is unknown before we solve the problem– it is

formed exactly by the solutions |ψ〉 that we seek. To simplify various expressions, we shall always

use the Dirac notation.
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1. Nonorthogonal basis set methods to solve the TISE

We seek a solution in the form

|ψ〉 =
N∑
n=1

cn|n〉, (A2)

where |n〉 is a nonorthogonal basis with the overlap matrix

Skn := 〈k|n〉. (A3)

Usually, one assumes that the basis states are normalized, i.e.,

Snn = 1,

but this assumption is not needed for what follows.

Substitution of the ansatz (A2) into the TISE (A1) and taking the inner product with 〈k|

(“multiplying on the left”) gives

∑
n

Hkncn = E
∑
n

Skncn,

where Hkn := 〈k|Ĥ|n〉 are the Hamiltonian matrix elements. The above equation describes a

generalized eigenvalue problem, which, in matrix notation, reads

Hc = E Sc. (A4)

To find the energies E and vectors c, one would have to solve the equation

det(H− ES) = 0.

If S is invertible, we can also write

S−1Hc = E c,

which is the standard eigenvalue problem for the matrix S−1H. In this case, c is an eigenvector of

the matrix S−1H and to find it, one must solve the secular equation

det(S−1H− E1) = 0,

where 1 is an N -dimensional identity matrix.
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2. Orthonormal basis set methods to solve the TISE

In the special case of an orthonormal basis, the overlap matrix is the identity:

Skn = δkn, i.e., S = 1,

and the equation to be solved is the eigenvalue problem∑
n

Hkncn = Ecn.

In matrix notation, this equation reads

Hc = Ec,

so c is an eigenvector of the matrix H. To find the eigenvalues E and eigenvectors c, one must

solve the secular equation

det(H− E1) = 0.
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small, 68
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special theory of relativity, 84

spreads, 22

stable fixed points, 38

standard Hamiltonian, 32

standard Lagrangian, 30

state, 10

statistical mechanics, 7
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sudden approximation, 57, 58

superintegrability, 5

superintegrable, 50

TDSE, 1

thawed Gaussian approximation, 26

the Euler-Lagrange equation of motion, 29

thermal energy, 7, 96

thermodynamic estimator for energy, 100

Time-dependent Hartree approximation, 66

time-dependent perturbation theory, 2, 59, 68

time-dependent Schrödinger equation, 1

time-energy uncertainty relation, 72

time-independent, 58, 104

time-independent basis, 19

time-independent Hamiltonian, 19

time-independent Schrödinger equation, 1

TISE, 1

transition dipole moment, 59

transition probability, 70

translational motion, 37

Trotter factorization, 94
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turned off, 70
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uncertainty, 21

unification, 84

unstable fixed points, 39

vacuum Maxwell’s equations, 91

variational Gaussian approximation, 65

variational principle, 29

variational principle for energy, 29

vector, 10

vector potential, 87

velocity gauge, 90

vibronically allowed, 60

virial estimator, 101

volume element, 40

Warning: , 76

wave equation, 92

wave vector, 93

wavefunction, 10

wavepacket autocorrelation function, 73

wavepacket spectrum, 74

wavepacket splitting, 26

Weyl gauge, 91

Weyl quantization, 56

why, 82
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width, 21

Wigner function, 51

Wigner transform, 55

zero point energy, 7

zero-point vibrational energy, 50

zeroth-order, 70
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