

Molecular quantum dynamics: Exercise series 4

Problem 1: Energy of a coherent state

Consider the coherent state of the harmonic oscillator

$$\hat{H} = \frac{\hat{p}^2}{2m} + \frac{1}{2}m\omega^2\hat{x}^2,$$

i.e., a Gaussian wavepacket

$$\psi(x, t) = N \exp \left\{ \frac{i}{\hbar} \left[\frac{1}{2} \alpha_t (x - q_t)^2 + p_t(x - q_t) + \gamma_t \right] \right\}$$

with a constant width parameter $\alpha_t = \alpha_0 = im\omega$. Show that the expectation value of energy in the state $\psi(t)$ satisfies

$$E(t) := \langle \psi(t) | \hat{H} | \psi(t) \rangle = H(q_t, p_t) + c\hbar\omega$$

and find the constant c . Note: $H(q_t, p_t)$ is the *classical* energy of the center of the wavepacket!

Problem 2: Lagrangian and Hamiltonian for a diatomic molecule (or the hydrogen atom)

Consider a two-body problem, i.e., two particles of mass m_1 and m_2 interacting via a potential energy depending only on the distance, $V(\mathbf{r}_1, \mathbf{r}_2) = V(|\mathbf{r}_2 - \mathbf{r}_1|)$. An example is a diatomic molecule in the Born-Oppenheimer approximation, where the two particles are two nuclei and V is the Born-Oppenheimer potential energy surface. Another example is the hydrogen atom, where the two particles are the proton and electron, $m_1 = m_p$ and $m_2 = m_e$, and $V = -\frac{e^2}{4\pi\epsilon_0|\mathbf{r}_2 - \mathbf{r}_1|}$ is the Coulomb interaction. Because the potential energy depends only on the distance of the two particles, it is convenient to use new coordinates $\mathbf{r} := \mathbf{r}_2 - \mathbf{r}_1$ (the relative coordinate) and $\mathbf{R} := \frac{m_1\mathbf{r}_1 + m_2\mathbf{r}_2}{m_1 + m_2}$ (the *center-of-mass* coordinate). This is the simplest example of so-called *Jacobi coordinates*.

- Kinetic energy in the original coordinates is $T = \frac{1}{2}m_1\dot{\mathbf{r}}_1^2 + \frac{1}{2}m_2\dot{\mathbf{r}}_2^2$. Express the kinetic energy in coordinates $\dot{\mathbf{r}}$ and $\dot{\mathbf{R}}$. Simplify the result by using the total mass $M := m_1 + m_2$ and the *reduced mass* $\mu := \frac{m_1m_2}{m_1 + m_2}$. Express the Lagrangian L in coordinates $\mathbf{r}, \mathbf{R}, \dot{\mathbf{r}}$, and $\dot{\mathbf{R}}$.
- Write down the Lagrange equations of motion for \mathbf{r} and \mathbf{R} . Solve the equation for the center of mass \mathbf{R} . Does it correspond to your intuition? (Equation for \mathbf{r} will be solved in the lecture.)
- Using the definition from class, what are the momenta \mathbf{p} and \mathbf{P} conjugate to the coordinates \mathbf{r} and \mathbf{R} ? (Express them in terms of $\dot{\mathbf{r}}$ and $\dot{\mathbf{R}}$.)
- Write down the Hamiltonian $H(\mathbf{r}, \mathbf{R}, \mathbf{p}, \mathbf{P})$.
- Write down Hamilton's equations of motion for $\mathbf{r}, \mathbf{R}, \mathbf{p}$, and \mathbf{P} . Solve the equations for \mathbf{R} and \mathbf{P} ; the solution should agree with part b). (Equations for \mathbf{r} and \mathbf{p} will be solved in the lecture.)

Note: In this homework, you have separated the center-of-mass motion from the relative motion. In the next lecture we will study the relative motion. In hydrogen atom, the reduced mass $\mu \approx m_e$ since proton is much heavier than the electron, and in many texts this approximation is used and the center-of-mass motion is forgotten from the beginning. In more accurate calculations, one has to consider μ instead of m_e .