

Molecular quantum dynamics: Exercise series 1

Problem 1: Two-level quantum dynamics

In a quantum control experiment, a diatomic molecule was prepared in a superposition of its ground and first excited vibrational states, $\psi(t = 0) = \frac{1}{2}\psi_0 + \frac{\sqrt{3}}{2}\psi_1$. Assume that the corresponding energies are E_0 and E_1 .

- (a) What is the wave function $\psi(t)$ at time t ?
- (b) What is the probability $P_g(t)$ that the molecule will be in the ground state at time t ?
- (c) What is the expectation value for the measurement of energy at time t ?
- (d) In general, will the expectation value for the measurement of the bond length (q) and therefore of the electric dipole d depend on time? Recall that $d = Qq$ where $+Q$ and $-Q$ are the partial charges on the two atoms and assume, for simplicity, that Q does not depend on q .

Problem 2: Commutator

The **commutator** $[A, B] := AB - BA$ of two quantum-mechanical operators is an important concept in quantum mechanics. In this exercise, you will prove several identities that will be useful throughout the course. Below A, B, C are operators, λ a complex number. (Hats are not indicated on the operators, especially because it will save you time writing the solution, but if you prefer, add the hats to operators—consistently!)

- (a) Prove that the commutator is skew-symmetric,

$$[B, A] = -[A, B],$$

bilinear,

$$\begin{aligned} [\lambda A, B] &= \lambda [A, B], \\ [A, B + C] &= [A, B] + [A, C], \end{aligned}$$

and satisfies the **Jacobi identity**:

$$[A, [B, C]] + [B, [C, A]] + [C, [A, B]] = 0.$$

Remark: These three conditions express that the set of operators together with addition and commutator form a **Lie algebra**.

- (b) Show that a commutator $[A, \cdot]$ with a fixed operator A satisfies the **Leibniz rule**

$$[A, BC] = B [A, C] + [A, B] C.$$

The name comes from the analogy with the Leibniz rule for a derivative of a product of functions.

Remark: Mathematicians, therefore, call a linear mapping that satisfies the Leibniz rule a **derivation** on the associative algebra of operators with the usual multiplication of operators, AB . (In an **associative algebra**, the product AB must be again bilinear, but the associative law

replaces the Jacobi identity. The product does not have to be symmetric or skew-symmetric.) A set that is both an associative algebra (with respect to \cdot operation) and Lie algebra (with respect to $[\cdot, \cdot]$), and, in addition, satisfies the Leibniz rule, is called a **Poisson algebra**.
 (c) One of the pillars of quantum mechanics is the expression for the commutator of the position and momentum operators:

$$[q, p] = i\hbar.$$

Using the Leibniz rule (b), show that if functions f and g can be expanded in convergent power series of their arguments, then

$$[p, f(q)] = -i\hbar \frac{df}{dq} \quad \text{and} \quad [q, g(p)] = i\hbar \frac{dg}{dp}.$$

Read Chapters 1 and 2 of Tannor.