7. Applications of optical spectroscopy in photomedicine 7.2 Fluorescence spectroscopy

7.2 Fluorescence Spectroscopy
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Absorption and Fluorescence Spectroscopy
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I. Luminescence

Luminescence

* Emission of photons from electronically excited states

* Two types of luminescence:
Relaxation from singlet excited state

Relaxation from triplet excited state
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I. Luminescence

Singlet and triplet states

Ground state — two electrons per orbital;
electrons have opposite spin and are paired

Singlet excited state
Electron in higher energy orbital has the LUMO
opposite spin orientation relative to electron
in the lower orbital
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Triplet excited state
Electrons in both orbitals have same spin LIMAES
orientation; spin flip may occurs when there nomo
1s interaction of spin with a magnetic field
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I. Luminescence

Types of emission

* Fluorescence — return from excited singlet state to ground
state; does not require change in spin orientation

* Phosphorescence — return from a triplet excited state to a
ground state; electron requires change in spin orientation

 Emissive rates of fluorescence are several orders of
magnitude faster than that of phosphorescence

e S IS ———————
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7. Applications of optical spectroscopy in photomedicine

I. Luminescence

7.2 Fluorescence spectroscopy

Energy level diagram (Jablonski diagram)

Jablonski Energy Diagram
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Ground State

Alexander Jablonski, who would one day

come to be known as the father of
fluorescence spectroscopy, was born in

Ukraine and educated in the University of
Warsaw, Poland. His doctoral dissertation,
entitled "On the influence of the change of

wavelengths of excitation light on the

fluorescence spectra”, concerned what would
become the primary focus of his professional
career. His work resulted in his introduction

of what is now known as a Jablonski

Energy Diagram, a tool that can be used

Alexander Jablonski
(1898-1980)

to explain the kinetics and spectra of fluorescence, phosphorescence,

and delayed fluorescence.

Jablonski diagrams (see Figure 1) are often used as a starting point
for discussions regarding the absorption and emission of light.
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11. Principles of Fluorescence

I1. Principles of fluorescence

1. Absorption

2. Fluorescence

3. Stokes shift

4. Invariance of emission wavelength
5. Mirror 1image rule
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11. Principles of Fluorescence

la. Absorption

e At room temperature (300 K), and for typical electronic and
vibration energy levels, one can calculate the ratio of molecules
in upper and lower states

e At room temperature, everything starts out at the lowest
vibrational energy levels of the ground state

 When a molecule is illuminated with light at a resonance
frequency, it 1s promoted to a vibrational energy level of the
excited state
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11. Principles of Fluorescence

1b. Absorption
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I11. Principles of Fluorescence

2a. Fluorescence

« Excitation - following light absorption, a fluorophore is
excited to some higher vibrational energy level of S, or S,

(10-155).

 Internal convertion + Vibrational relaxation - molecule
relaxes back to lowest vibrational energy level of S, (10-12 s)

« Emission — relaxation back to a vibrational energy level of
the ground electronic state
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I11. Principles of Fluorescence

2b. Fluorescence ;
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11. Principles of Fluorescence

3a. Stokes shift

» The fluorescence light 1s red-shifted (longer wavelength than the
excitation light) relative to the absorbed light ("Stokes shift”).

» Internal conversion + vibrational relaxation can cause Stokes shift

» Solvent effects (charge redistribution in the molecule environment
induced by the change of dipole moment between the ground and
excited states) and excited state reactions (due to a change of
reactivity) can also cause a Stokes shift
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I1. Principles of Fluorescence
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11. Principles of Fluorescence

4a. Invariance of emission spectrum with
excitation wavelength

 For a molecule, the same fluorescence emission
wavelength 1s observed 1rrespective of the
excitation wavelength

* Emission 1s only due to relaxations from the
lowest vibrational level of S,
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I11. Principles of Fluorescence

4b. Invariance of emission spectrum with excitation wavelength
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11. Principles of Fluorescence

Sa. Mirror image rule

* An absorption spectrum reflects the vibrational levels of the
electronically excited state

* An emission spectrum reflects the vibrational levels of the
electronic ground state

» Vibrational levels in absorption and emission are frequently
similar !

» Fluorescence emission spectrum is a mirror image of the
absorption spectrum (S, to S, transition)

Georges Wagnieres, IPHYS, EPFL Photomedicine 16



7. Applications of optical spectroscopy in photomedicine 7.2 Fluorescence spectroscopy

11. Principles of Fluorescence

5b. Mirror image rule
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I11. Principles of Fluorescence

Franck Condon principle

. The time for an electronic transition is:
f=FE/h; ~ 101> s (at 420 nm)

. Franck Condon principle: electronic transitions
occur so rapidly that during the transition the
nuclei are static

. Thus, all electronic transitions are vertical
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11. Principles of Fluorescence

Franck Condon principle

All electronic transitions are vertical !
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I1. Principles of Fluorescence

5b. Mirror image rule and Franck-Condon principle

(If a particular transition probability is large in absorption,
the reciprocal transition is also the most probable emission)

Mirror Image Rule
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I11. Quantum Yield and Lifetime

III. Quantum yield and lifetime

1. Modified Jablonski diagram
2. Lifetime
3. Quantum yield
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7. Applications of optical spectroscopy in photomedicine

7.2 Fluorescence spectroscopy

I11. Quantum Yield and Lifetime

1. Modified Jablonski diagram

k - rate of radiationless decay [s™!]
I" - rate of radiative decay (fluorescence) [s]
Both depopulate the excited state
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I1I. Quantum Yield and Lifetime

2. Lifetime

Lifetime of the excited state 1s the average time a molecule spends
in the excited state before returning to ground state (~10 ns)

1
G+K

Note: 1 1s the average time spent in the excited state

[ =
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I11. Quantum Yield and Lifetime

2b. Characteristics of life time

* Looks at how excited states depopulate over time

* Can reflect properties of environment

 (Can reflect molecular dynamics of molecule

* Concentration independent
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I11. Quantum Yield and Lifetime

3a. Fluorescence quantum yield

Fluorescence quantum yield: ratio of the number of photons

emitted as fluorescence to the total number of de-excitations:

G
Q_G+K
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I11. Quantum Yield and Lifetime

3b. Characteristics of quantum yield

* A molecule may be non-fluorescent if it has a large rate
of radiationless decay or a slow rate of emission

» Rate constants sensitive to the fluorophore environment

* Quantum yield 1s difficult to measure; generally
compared with standard sample quantum yield

Concentration dependent!
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IV. Fluorescence Spectroscopy

IV. Fluorescence intensity

1. Fluorescence intensity expression

2. Fluorescence spectra
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Schematic of a spectrofluorometer
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Bragg's Law

Incident
plane wave 4

2d sin B

Constructive interference
when

e © o o o » nAh=2dsin 8
Bragg’s Law
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IV. Fluorescence Intensities

1a. Fluorescence intensity

The fluorescence intensity (F) at a particular excitation (A,) and
emission wavelength (A ) will depend on the absorption and the
quantum yield:

F(1.1,)=1,(1)A(1,)

I, — light absorbed to promote electronic transition
¢ — quantum yield
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IV. Fluorescence Intensities

1b. From the Beer-Lambert law, the absorbed
intensity for a dilute solution (very small
absorbance)

1,(1)=2.3031,eCL

where,
[, — Initial intensity
€ — molar extinction coefficient

C — concentration
L — path length

Georges Wagnieres, IPHYS, EPFL Photomedicine 31



7. Applications of optical spectroscopy in photomedicine 7.2 Fluorescence spectroscopy

IV. Fluorescence Intensities

1c. Fluorescence intensity expression

The fluorescence intensity (F) at a particular excitation (A,) and

emission wavelength (A,,) for a dilute solution containing a
fluorophore 1s:

F(/I,1,)=12303¢1)CLAf(1,

where,
I, — incident light intensity ¢ — quantum yield
C — concentration g — molar extinction coeff.

L — path length
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IV. Fluorescence Intensities

1d. Measured fluorescence intensity
If we include instrument collection angle:

F(/I.,1,)=12303¢1)CLf(1,)Z

where,

7 — instrumental factor

I, — incident light intensity

¢ — molar extinction coefficient
C — concentration

L — path length
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IV. Fluorescence Intensities
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7. Applications of optical spectroscopy in photomedicine 7.2 Fluorescence spectroscopy

IV. Fluorescence Intensities

2a. Fluorescence spectra
 EXxcitation spectrum
— Hold emission wavelength fixed, scan excitation
— Reports on absorption structure
Reflects molar extinction coefficient, (A,)

F(r.,1,)=1230341)CLf(1,)Z
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IV. Fluorescence Intensities

2b. Fluorescence spectra
« Emission spectrum
—Hold excitation wavelength fixed, scan emission
— Reports on the fluorescence spectral profile
Reflects fluorescence quantum yield, ¢(A.)

F(/1.,1,)=1,2303¢1)CLf(1,)Z
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IV. Fluorescence Intensities

(a) (b)

Fixed Emission Wavelength Fixed Excitation Wavelength

Fluorescence Intensity
Fluorescence Intensity

Excitation Wavelength (nm) Emission Wavelength (nm)
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IV. Fluorescence Intensities

2c. Fluorescence spectra

« Composite: Excitation-Emission Matrix

- Good representation of multi-fluorophore
solution
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IV. Fluorescence Intensities

Different fixed excitation Wavelength

Emission Wavelength (nm)

Fluorescence Intensity

Excitation Wavelength (nm)

Emission Wavelength (nm)

Emission spectrum Excitation-emission matrix
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V. Biological Fluorophores

V. Biological fluorophores

1. Tables + spectra
2. EEM map
3. Epithelial cell suspension

4. Collagen
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7.2 Fluorescence spectroscopy

V. Biological Fluorophores

—Endogenous Fluorophores
amino acids
structural proteins
enzymes and co-enzymes
vitamins
lipids
porphyrins
—Exogenous Fluorophores
Fluorescein
Cyanine dyes
Photosensitizers
Molecular markers — GFP, etc.
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Speciroscopy of Endogenous Fluorophores

Tryptophan Porphyrins Yield of the tissue
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V. Biological Fluorophores: Ecitation — Emission Matrix (EEM)
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NADH: Nicotinamide-Adenine Dinucleotide

Epithelial C ell Suspension FAD: Flavin adenine dinucleotide

Tryp.: Tryptofan
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Mitochondrial Energy Generation

ELECTRON _ Carbohydrates
TRANSPORT e Fatty Acids and Glycerol
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Metabolic Indicators

Metabolism

Redox Ratio: FAD / NADH

l Redox ratio ~ Metabolic Rate [
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V. Biological Fluorophores

Collagen

[t 1s the major extracellular matrix component, which is present
to some extent in nearly all organs and serves to hold cells
together 1n discrete units

* Collagen fluorescence in load-bearing tissues is associated with
cross-links, hydroxylysyl pyridoline (HP) and lysyl pyridinoline
(LP).

» Collagen crosslinks are altered with age and with invasion of
cancer into the extracellular matrix
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7.2 Fluorescence spectroscopy

V. Biological Fluorophores

Collagen

(a) Collagen
fibers

Copyright @ 2003 Pearson Education, Inc., publishing as Banjamin Cummings.

(b) Collagen
fibrils

(c) Collagen molecules
(triple helices)

(d) a-chains
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Collagen I (gel)
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V1. Fluorochromes used in vivo for
oncologic Applications

Endogenous Endogenously Exogenous
Induced
Synthesized Induced by Synthesized
In the Body exogenous before
- Elastin Precursors Administration
- Flavins - ALA+deriv. -FITC
- NADH induced - 1ICG
- Collagen PP| X
PD in the bronchi PD in the bladder
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Principle of Diagnosis by Endoscopic Fluorescence Imaging

LP Filter Color camera

T
\ Cystoscope
e :
[

//Blaclder

Moniteur

e

DV Recorder

Camera
Driver

Liquid light guide

Xe Light source

with flip -flop filter holder Foot switch
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Advantages of Diagnosis by
Endoscopic Fluorescence Imaging

* « High » resolution (10 - 100 um)
* Localisation of already detected lesions
« Optical contrast agents/factors available
» Cost effective (less than 1000 CHF/procedure)
« High « physical sensitivity » (10 - 100 ng/qg)
 |deal for superficial lesions
=» Well suited for the detection of early cancer !
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Localization of early carcinoma by
fluorescence imaging: Principle

Eye or imaging

Light source detector

Dysplasia \
“ore-cancer’ Risk of Metastases

Fluorescence _ _
Imaging Invasive Carcinoma

\

Genetically
Altered Cell

Probe

In Situ Carcinoma

/ Hyperplasia
W
#o] Cooa

& w7 abo

>/ b.fbﬁmca

S . : Basal Membrane
Adapted from Scientific American, “How Cancer Arises,” Sept. 1996

Stages detectable by conventional methods » L J

Fluorescence imaging — \« ~" J
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Spectral and Spatial Information

. I
Point systems |maging systems
Spectral information in Spatial information in
a small spatial domain selected spectral domain(s)
Applications: Applications:
- Tissue characterization - Detection
- Tissular drug level - Demarcation

- Biopsy guidance
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Optical fiber-based spectrofluorometer for clinical
endoscopic measurements

Xenon Stepper Motor
Lamp .

. Excitation
E Monochromator

| - .
Detect
.. :.O .% Mono hcc;r(ilnator
‘9—60

Motorized Filter Wheels

Folding Mirrors

Peltier Cooled

N CCD Chip

Fiber
Injection
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In vivo Spectrofluorometry of the bronchial wall
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Origin of the T/N autofluorescence
Intensity and spectral contrast

» The contrastis probably due to a thickening of the epithelium combined with an increased
hemoglobin concentration in the submucosa (neo-vascularisation)

» Alterations of the fluorescing molecules and their quenching probably play only a secondary

role, if any.
Epithelium Dysplasia / CIS
(Non fluorescing)
Normal mucosa o o ,— Submucosa

(Fluorescing)
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7. Applications of optical spectroscopy in photomedicine 7.2 Fluorescence spectroscopy

Carcinoma in situ (CIS)

Detection of bronchial carcinoma in situ (CIS) by autofluorescence bronchoscopy

Georges Wagnieres, IPHYS, EPFL Photomedicine >8
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