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7.2 Fluorescence Spectroscopy

I. Luminescence

II. Principles of Fluorescence

III. Quantum yield and lifetime

IV. Fluorescence Intensity / Spectroscopy

V. Biological Fluorophores
VI. Fluorochromes used in vivo for

oncologic Applications
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I. Luminescence

Luminescence

• Emission of photons from electronically excited states

• Two types of luminescence:

Relaxation from singlet excited state

Relaxation from triplet excited state
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I. Luminescence
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Singlet and triplet states

Ground state – two electrons per orbital; 

electrons have opposite spin and are paired

Singlet excited state

Electron in higher energy orbital has the 

opposite spin orientation relative to electron 

in the lower orbital

Triplet excited state 

Electrons in both orbitals have same spin 

orientation; spin flip may occurs when there 

is interaction of spin with a magnetic field

LUMO

HOMO

LUMO

HOMO
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I. Luminescence

Types of emission
• Fluorescence – return from excited singlet state to ground 

state; does not require change in spin orientation

• Phosphorescence – return from a triplet excited state to a 
ground state; electron requires change in spin orientation

• Emissive rates of fluorescence are several orders of 
magnitude faster than that of phosphorescence
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I. Luminescence

Energy level diagram (Jablonski diagram)

Alexander Jablonski, who would one day 

come to be known as the father of 

fluorescence spectroscopy, was born in 

Ukraine and educated in the University of 

Warsaw, Poland. His doctoral dissertation, 

entitled "On the influence of the change of 

wavelengths of excitation light on the 

fluorescence spectra", concerned what would 

become the primary focus of his professional 

career. His work resulted in his introduction 

of what is now known as a  Jablonski 

Energy Diagram, a tool that can be used 

to explain the kinetics and spectra of fluorescence, phosphorescence, 
and delayed fluorescence.

Jablonski diagrams (see Figure 1) are often used as a starting point 
for discussions regarding the absorption and emission of light. 
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II. Principles of Fluorescence

II. Principles of fluorescence

1. Absorption

2. Fluorescence

3. Stokes shift

4. Invariance of emission wavelength 

5. Mirror image rule
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II. Principles of Fluorescence

1a. Absorption

• At room temperature (300 K), and for typical electronic and 
vibration energy levels, one can calculate the ratio of molecules 
in upper and lower states

• At room temperature, everything starts out at the lowest 
vibrational energy levels of the ground state

• When a molecule is illuminated with light at a resonance 
frequency, it is promoted to a vibrational energy level of the 
excited state
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1b. Absorption

II. Principles of Fluorescence
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II. Principles of Fluorescence

2a. Fluorescence

• Excitation - following light absorption, a fluorophore is 
excited to some higher vibrational energy level of S1 or S2

(10-15 s).

• Internal convertion + Vibrational relaxation - molecule 
relaxes back to lowest vibrational energy level of S1 (10-12 s)

• Emission – relaxation back to a vibrational energy level of 
the ground electronic state
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Vibrational

relaxation

II. Principles of Fluorescence

2b. Fluorescence
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II. Principles of Fluorescence

3a. Stokes shift

• The fluorescence light is red-shifted (longer wavelength than the 
excitation light) relative to the absorbed light ("Stokes shift”).

• Internal conversion + vibrational relaxation can cause Stokes shift

• Solvent effects (charge redistribution in the molecule environment 
induced by the change of dipole moment between the ground and 
excited states) and excited state reactions (due to a change of 
reactivity) can also cause a Stokes shift
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II. Principles of Fluorescence
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II. Principles of Fluorescence

4a. Invariance of emission spectrum with 
excitation wavelength

• For a molecule, the same fluorescence emission 
wavelength is observed irrespective of the 
excitation wavelength

• Emission is only due to relaxations from the 
lowest vibrational level of S1
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II. Principles of Fluorescence
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4b. Invariance of emission spectrum with excitation wavelength
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II. Principles of Fluorescence

5a. Mirror image rule

• An absorption spectrum reflects the vibrational levels of the 
electronically excited state

• An emission spectrum reflects the vibrational levels of the 
electronic ground state

• Vibrational levels in absorption and emission are frequently 
similar !

• Fluorescence emission spectrum is a mirror image of the 
absorption spectrum (So to S1 transition)
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II. Principles of Fluorescence

5b. Mirror image rule
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II. Principles of Fluorescence

Franck Condon principle

• The time for an electronic transition is:                 
f = E/h; ~ 10-15 s (at 420 nm)

• Franck Condon principle: electronic transitions 
occur so rapidly that during the transition the 
nuclei are static

• Thus, all electronic transitions are vertical
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II. Principles of Fluorescence

Franck Condon principle

E

All electronic transitions are vertical !

R
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II. Principles of Fluorescence

5b. Mirror image rule and Franck-Condon principle
(If a particular transition probability is large in absorption,

the reciprocal transition is also the most probable emission)
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III. Quantum Yield and Lifetime

III. Quantum yield and lifetime

1. Modified Jablonski diagram

2. Lifetime

3. Quantum yield
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1. Modified Jablonski diagram
k - rate of radiationless decay [s-1]

 - rate of radiative decay (fluorescence) [s-1]

Both depopulate the excited state

III. Quantum Yield and Lifetime

S2

Absorption

(ha)

k

So

S1

Fluorescence 

(hF )

Internal Conversion


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III. Quantum Yield and Lifetime

2. Lifetime

Lifetime of the excited state is the average time a molecule spends 

in the excited state before returning to ground state (~10 ns)

Note:  is the average time spent in the excited state

   

t =
1

G +K
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III. Quantum Yield and Lifetime

2b. Characteristics of life time

• Looks at how excited states depopulate over time

• Can reflect properties of environment

• Can reflect molecular dynamics of molecule

• Concentration independent
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III. Quantum Yield and Lifetime

3a. Fluorescence quantum yield

Fluorescence quantum yield: ratio of the number of photons 

emitted as fluorescence to the total number of de-excitations:

   

Q =
G

G +K
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III. Quantum Yield and Lifetime

3b. Characteristics of quantum yield

• A molecule may be non-fluorescent if it has a large rate 
of radiationless decay or a slow rate of emission

• Rate constants sensitive to the fluorophore environment

• Quantum yield is difficult to measure; generally 
compared with standard sample quantum yield

• Concentration dependent!
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IV. Fluorescence Spectroscopy

IV. Fluorescence intensity

1. Fluorescence intensity expression

2. Fluorescence spectra
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Detector

Light Source

Excitation

Monochromator

Emission

Monochromator

Sample compartment

Schematic of a spectrofluorometer

Grating EX

Grating EM
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IV. Fluorescence Intensities

1a. Fluorescence intensity

The fluorescence intensity (F) at a particular excitation (x) and 
emission wavelength (m) will depend on the absorption and the 
quantum yield:

where,

IA – light absorbed to promote electronic transition

 – quantum yield

  

F lx,lm( ) = IA lx( )f lm( )
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IV. Fluorescence Intensities

1b. From the Beer-Lambert law, the absorbed 
intensity for a dilute solution (very small 
absorbance)

where,

Io – Initial intensity 

 – molar extinction coefficient
C – concentration
L – path length

  

IA lx( ) = 2.303IoeCL
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IV. Fluorescence Intensities

1c. Fluorescence intensity expression
The fluorescence intensity (F) at a particular excitation (x) and 
emission wavelength (m) for a dilute solution containing a 
fluorophore is:

where,

Io – incident light intensity  – quantum yield

C – concentration  – molar extinction coeff.

L – path length  

F lx,lm( ) = Io2.303e lx( )CLf lm( )
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IV. Fluorescence Intensities

1d. Measured fluorescence intensity
If we include instrument collection angle:

where,

Z – instrumental factor

Io – incident light intensity

 – molar extinction coefficient

C – concentration

L – path length

  

F lx,lm( ) = Io2.303e lx( )CLf lm( )Z
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IV. Fluorescence Intensities
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IV. Fluorescence Intensities

2a. Fluorescence spectra

• Excitation spectrum

– Hold emission wavelength fixed, scan excitation

– Reports on absorption structure 

Reflects molar extinction coefficient, (x)

  

F lx,lm( ) = Io2.303e lx( )CLf lm( )Z
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IV. Fluorescence Intensities

2b. Fluorescence spectra

• Emission spectrum

–Hold excitation wavelength fixed, scan emission

– Reports on the fluorescence spectral profile

Reflects fluorescence quantum yield, (m)

  

F lx,lm( ) = Io2.303e lx( )CLf lm( )Z
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IV. Fluorescence Intensities

2c. Fluorescence spectra

• Composite: Excitation-Emission Matrix

- Good representation of multi-fluorophore 

solution
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V. Biological Fluorophores

V. Biological fluorophores

1. Tables + spectra

2. EEM map

3. Epithelial cell suspension

4. Collagen
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V. Biological Fluorophores

–Endogenous Fluorophores

amino acids

structural proteins

enzymes and co-enzymes

vitamins

lipids

porphyrins

–Exogenous Fluorophores

Fluorescein

Cyanine dyes

Photosensitizers

Molecular markers – GFP, etc.
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V. Biological Fluorophores: Ecitation – Emission Matrix (EEM)
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2.923e+006
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FAD

NADH

Tryp.

Epithelial Cell Suspension
NADH: Nicotinamide-Adenine Dinucleotide

FAD: Flavin adenine dinucleotide

Tryp.: Tryptofan
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Mitochondrial Energy Generation

Carbohydrates

Fatty Acids and Glycerol

Amino AcidsAcetyl CoA

CITRIC

ACID 

CYCLE 

CoA

CO2

FADH2

NADH

Oxidation of NADH and FADH2

by O2 drives synthesis of ATP

NADH-Q

Reductase

Cytochrome

Reductase

Cytochrome

Oxidase

Q

Cytochrome C

O2

FAD NAD

ELECTRON 

TRANSPORT

WORKLOAD: ATP

SUBSTRATE:
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Metabolic Indicators

Metabolism

Redox Ratio: FAD / NADH

Redox ratio      ~ Metabolic Rate
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V. Biological Fluorophores

Collagen

• It is the major extracellular matrix component, which is present 
to some extent in nearly all organs and serves to hold cells 
together in discrete units

• Collagen fluorescence in load-bearing tissues is associated with 
cross-links, hydroxylysyl pyridoline (HP) and lysyl pyridinoline 
(LP).

• Collagen crosslinks are altered with age and with invasion of 
cancer into the extracellular matrix 
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V. Biological Fluorophores

Collagen
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Collagen I (gel)
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VI. Fluorochromes used in vivo for

oncologic Applications

Endogenous ExogenousEndogenously

induced

PD in the bladderPD in the bronchi

Synthesized
in the Body
- Elastin
- Flavins
- NADH
- Collagen
- …

Synthesized
before
Administration
- FITC
- ICG

Induced by
exogenous
Precursors

- ALA+deriv.
induced

PPIX
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Principle of Diagnosis by Endoscopic Fluorescence Imaging
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Advantages of Diagnosis by 

Endoscopic Fluorescence Imaging

• « High » resolution (10 - 100 m)

• Localisation of already detected lesions

• Optical contrast agents/factors available

• Cost effective (less than 1000 CHF/procedure)

• High « physical sensitivity » (10 - 100 ng/g)

• Ideal for superficial lesions

 ➔ Well suited for the detection of early cancer !
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Adapted from Scientific American, “How Cancer Arises,” Sept. 1996

Genetically

Altered Cell

Hyperplasia

Dysplasia

“pre-cancer”

In Situ Carcinoma

Invasive Carcinoma

Basal Membrane

Risk of Metastases

Stages detectable by conventional methods

Fluorescence imaging

Fluorescence 

Imaging

Probe
ex

em

Light source
Eye or imaging 

detector

Localization of early carcinoma by 

fluorescence imaging: Principle
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Point systems

Spectral information in

a small spatial domain

Imaging systems

Spatial information in

selected spectral domain(s)

Applications:

- Tissue characterization
- Tissular drug level

Applications:

- Detection
- Demarcation
- Biopsy guidance

Spectral and Spatial Information



Georges Wagnières, IPHYS, EPFL Photomedicine

7. Applications of optical spectroscopy in photomedicine 7.2 Fluorescence spectroscopy

Optical fiber-based spectrofluorometer for clinical 
endoscopic measurements

Excitation

Monochromator

Xenon

Lamp

Folding Mirrors

Fiber

Injection

Motorized Filter Wheels

Peltier Cooled

CCD Chip

Detection

Monochromator

CCD-Controller

Data AcquisitionStepper Motor

Controller
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In vivo Spectrofluorometry of the bronchial wall

M&M 

➢ Endoscopic measurements 

performed on 34 patients

➢ Excitation at 405 nm

➢ Non contact measurements

     (tissue-fiber distance: 3.5 mm) 
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  Increasing Malignancy:

"Green" Intensity  Red/Green Ratio 

Zellweger et al., JBO, 6(1), 41-52, 2001
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➢ The contrast is probably due to a thickening of the epithelium combined with an increased 
hemoglobin concentration in the submucosa (neo-vascularisation)

➢ Alterations of the fluorescing molecules and their quenching probably play only a secondary 
role, if any.

Normal mucosa

Epithelium
(Non fluorescing)

Submucosa
(Fluorescing)

Dysplasia / CIS

Origin of the T/N autofluorescence
intensity and spectral contrast
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Carcinoma in situ (CIS)

White

light
Auto-

fluorescence
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