

Photomedicine

CH-448: 3 credits

**Molecular & Biological Chemistry; Master
Chemistry and Chemical Engineering; Master
Microengineering; Master
EDOC + Minor in Photonics**

Instructor: **Georges Wagnières**, PhD, MER; IPHYS, SB, EPFL
<https://lifmet.epfl.ch/wagnieres/>
<http://people.epfl.ch/georges.wagnieres>

Office hours: Thursday, 10:00 - 12:00 a.m.
(please make an appointment)

Location: CH L1 490

Phone: (021) 693 31 20

E-mail: georges.wagnieres@epfl.ch

Photomedicine

- CLASS LOCATION AND MEETING TIMES

Monday from 12:15 - 14:00 in room GC D0 386.

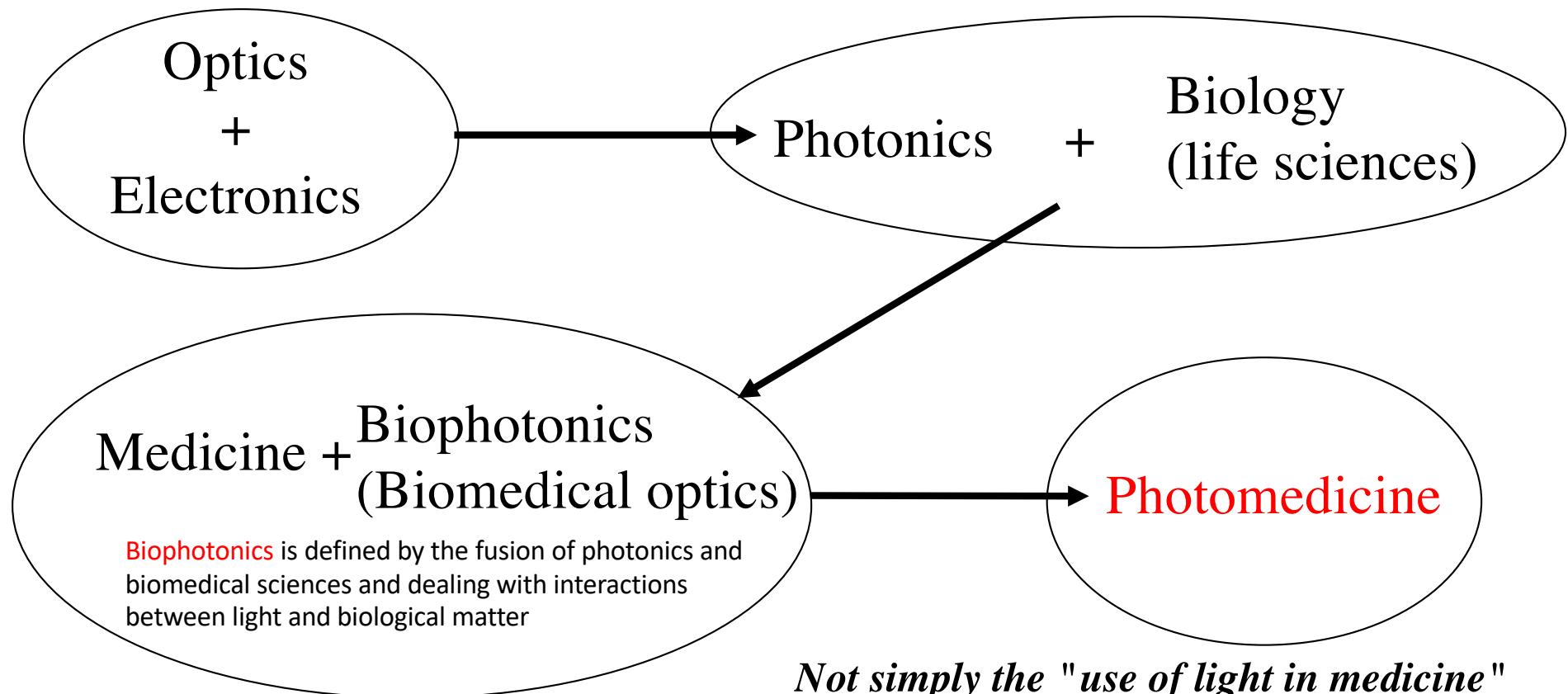
- MOODLE ACCESS FOR STUDENTS

<https://moodle.epfl.ch/course/view.php?id=15073>

Photomedicine

Students list from IS-Academia

Balea Christian	325954	Masculin	CGC_CHIM	Lauwers Alicia Marie Amélie	327068	Féminin	CGC_CHIM
Bergonzi Clara Lisa	389535	Féminin	CGC_CHIM	Malherbe Guillaume Romain Galaad	285066	Masculin	CGC_CHIM
Collignon Sybille	324383	Féminin	CGC_CHIM	Meuwly Nathalie Laure	327507	Féminin	CGC_CHIM
Déruaz Carole Emilie	325695	Féminin	CGC_CHIM	Micaleff Arthur Baptiste	378105	Masculin	MX
Desbiolles Laurine Cécile	346766	Féminin	CGC_CHIM	Raboud Loïc Emile	324310	Masculin	CGC_CHIM
Ducruet Lou-Anne Juliette	330238	Féminin	CGC_CHIM	Tancredi Lisa	346899	Féminin	CGC_CHIM
Guillosson Coline	325754	Féminin	CGC_CHIM	Tang Vidale Marc	389495	Masculin	CGC_CHIM
Hamers Maxim Dominic	343675	Masculin	CGC_CHIM	Von Doderer Edward Richard	313250	Masculin	CGC_CHIM
Jamolli Tristan	328323	Masculin	CGC_CHIM	Wicki Emmenegger Daniela	396274	Féminin	CGC_CHIM
Jankulovski Jennifer	327638	Féminin	CGC_CHIM	Wiprächtiger Liam	339370	Masculin	CGC_CHIM
Kundert Melissa Laure	341622	Féminin	MT	Zhang Michael	395179	Masculin	CGC_CHIM


What is Photomedicine ?

Photomedicine includes:

- *The study and treatment of diseases caused by exposure to (sun)light.*
- *The diagnostic and therapeutic applications of light for detecting, characterizing and treating diseases.*

Scientific fields and technologies

supporting photomedicine ?

!! Near infrared and near UV are also considered in photomedicine!!

Main applications in the field of photomedicine

- Optical **diagnosis** (non-invasive/minimally invasive, high resolution)
- Light-based **therapies** (minimally invasive, novel treatments possible; e.g. photodynamic therapy, plastic surgery with lasers)
- Bioimaging / **biosensing** (non-invasive, highly sensitive/selective, remote sensing)
- ...

Course Description and Objectives

- This course will provide students with an overview of current status and research in photomedicine.
- We will also briefly address the study and treatment of diseases caused by the exposure of tissues to light.

Course Description and Objectives *cont.*

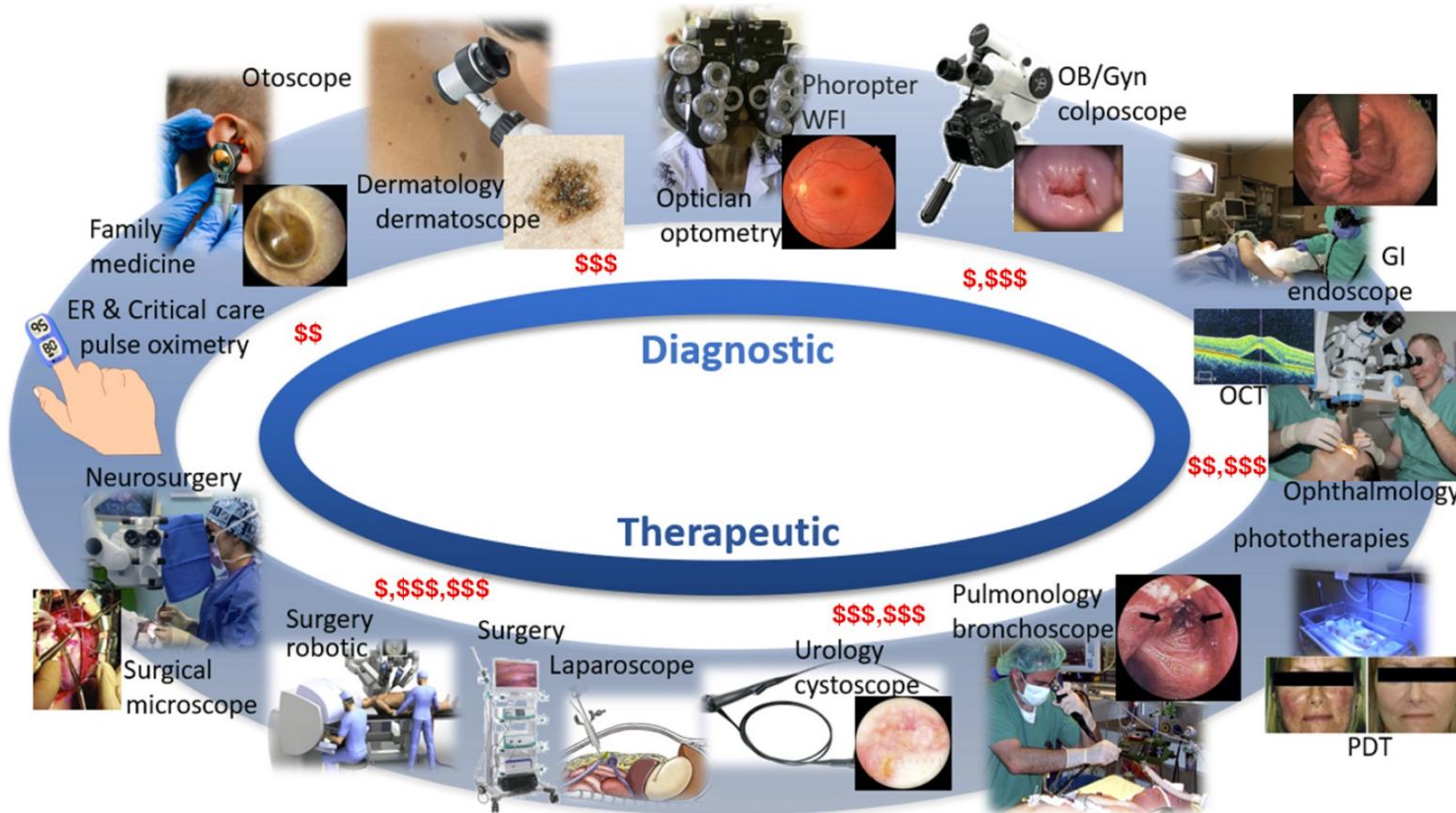
Through ***lectures, exercises***, recent ***literature*** review papers, classroom ***discussion + oral presentations***, students should gain an understanding of the present status and major research directions in photomedicine and develop the ability to critically evaluate works and technologies in this field.

This course will briefly review selected basic principles of radiometry, optics, tissue optical spectroscopy as well as the most important applications of these techniques in photomedicine.

Medical interest of light

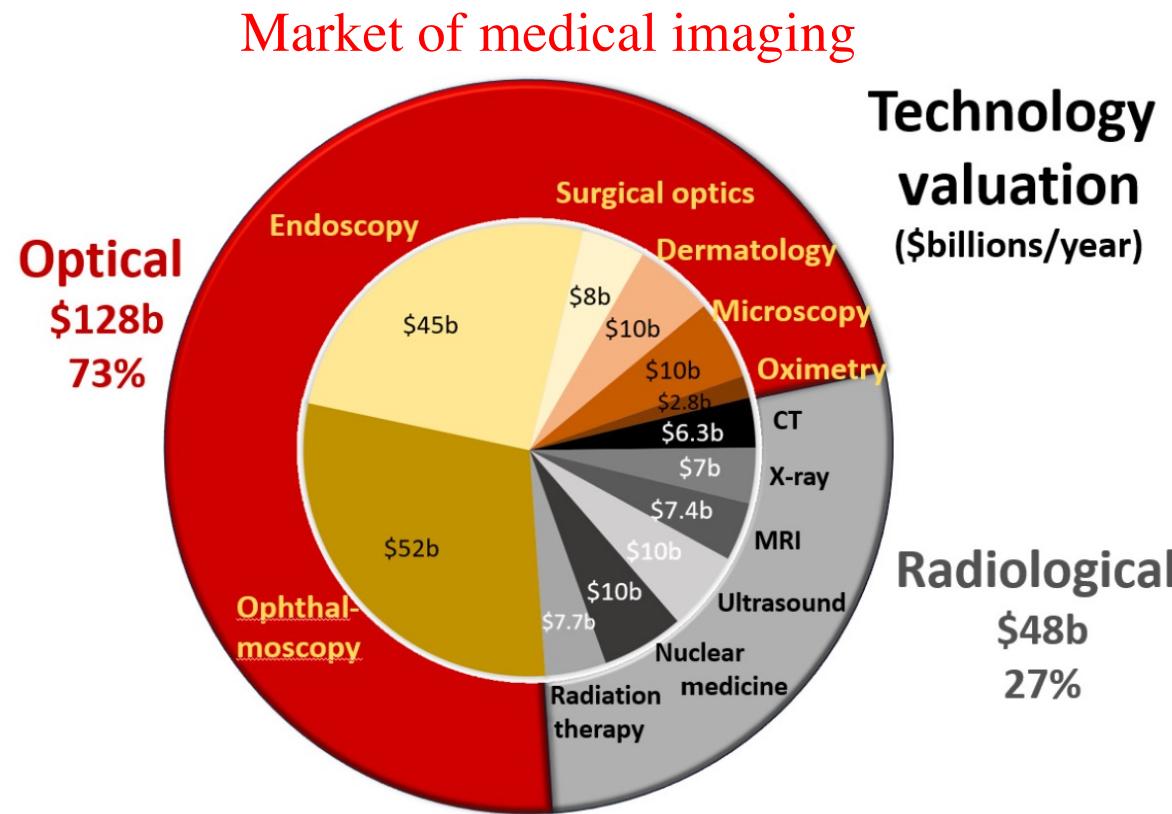
- Non-invasive, real-time detection and measurements of structure and function in living systems *in situ*
- "Novel", minimally- or non-invasive therapeutics
- Enhanced sensing and spatial resolution **in the clinic** (optical resolution, ...)
- Compatibility with other methods/technologies:
 - multi-modal: electrical, chemical, mechanical
 - fiber optics for minimally invasive therapy

Why photomedicine !


Health care costs in 2019 in USA was 3.8 trillion \$US, in Germany 390.6 billion €. Advanced photonic technology enables early detection of diseases and the development of minimal-invasive treatment leading to shorter hospitalization time. Patient specific drugs will be more effective and treat the origin of the diseases. These changes will reduce health care cost considerably. Some estimates expect a reduction of up to 20%. This would result in an overall reduction of up to **1 trillion \$US per annum worldwide**.

The market of photonics in medtech applications is growing fast: From US\$ 5.95 billion in 2005 to US\$ 20,4 billion in 2010 to US\$ 38,3 billion in 2015.

Medical imaging is contributing to a \$ 710 million growth between 2015 and 2020


Source: Statistisches Bundesamt; "Towards a Bright Future for Europe Strategic Research Agenda in Photonics", Published by: European Technology Platform Photonics, www.forbes.com; Photonics Spectra, 09/2017.

Importance of Photomedicine

Source: B. Pogue, JBO, 2023

Importance of Photomedicine

Fig. 3 Global market valuation of six radiological areas (CT, x-ray, MRI, ultrasound, nuclear medicine, and radiotherapy) is summarized above totaling \$48 billion for 27% of the global device market. The optical technology areas that were largest are also summarized (ophthalmology, endoscopy, surgery, dermatology, microscopy, and pulse oximetry) totaling \$128 billion/year for 73% market share.

Source: B. Pogue, JBO, 2023

1. Introduction

SWOT of Photomedicine

Table 3 Strengths, weaknesses, opportunities & threats (SWOT) of the technology sector of medical optical imaging.

Strengths	Weaknesses
<ul style="list-style-type: none">Highly efficient economical imaging due to invention and advancement of CMOS camerasEnormous economy of scale with consumer optical devices, a \$2.8 trillion industryLarge engineering workforce, largest technology sector in medicinePrimary tool for point-of-care and interventional visionOptical devices are core to many highly sensitive radiation detection systemsSynergy with advances in display technologies	<ul style="list-style-type: none">Largely limited to surface and cavity imaging, vision imaging, or near sub-surface sensing/imagingTissue imaging deeper than a few mm has never been commercially successful due to limited spatial resolutionEach application has specialized system, diffusing the overall view of optical imaging systemsSlow introduction of contrast agents
Opportunities	Threats
<ul style="list-style-type: none">Continuing explosion of consumer technologies that advance optical imaging capabilitiesAdvanced surgical, laparoscopic, endoscopic technologies that augment vision beyond just color imagingMicroscopic to macroscopic imaging in the same instrumentsScattering makes the signal more sensitive to the entire tissue volume, beyond vesselsHighest potential for molecular sensing of all imaging modalities due to numerous optical molecular probesShifting healthcare toward wellness instead of healthcare, requiring monitoring technologiesScreening requires low-cost, low-risk systems	<ul style="list-style-type: none">Dearth of communication between academic and industrial biomedical optics research directionsLimited NIH investment in optical tech despite being widely adopted in point-of-care examsFunding structures limit the ability to work with industry on collaborative developmentLack of technical domain experts within the medical center to assist physician groups when deploying advanced medical optical systemsPhysician work overload minimizing use of advanced instruments

Source: B. Pogue, JBO, 2023

Photomedicine: motivation / interest

- It is multidisciplinary !
(major technology breakthroughs frequently occur at the interfaces of disciplines)
- **Opportunities for engineers:**
 - **Optical engineering** for noninvasive diagnostic technologies (imaging, spectral or "point" measurements).
 - **Device miniaturization** (endoscopy), integration, automation, and robotic control.

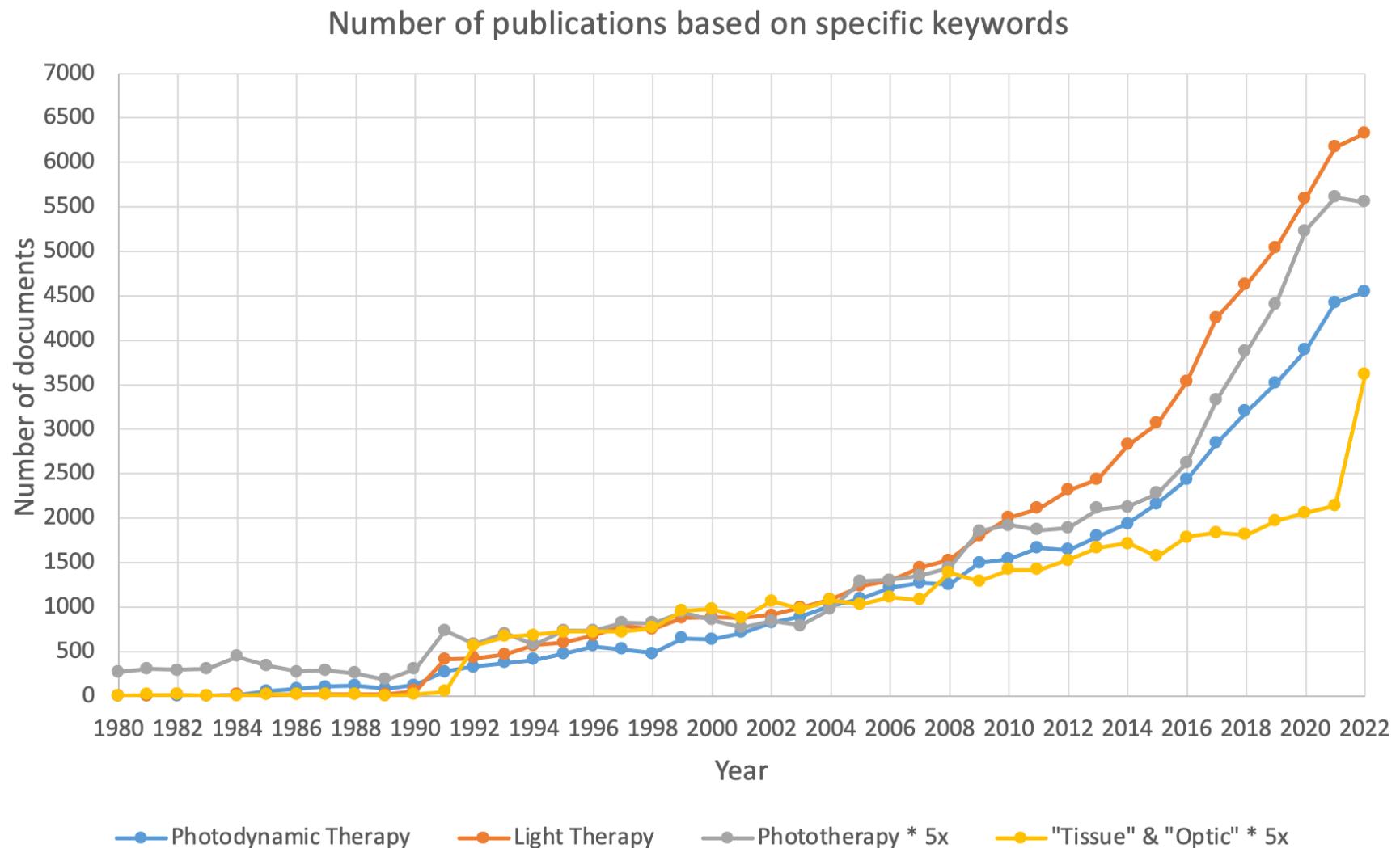
Photomedicine: motivation / interest

- **Opportunities for engineers** (continued):
 - New **chemicals**: photosensitizers or probes for analyte detection, biosensing and treatments.
 - Real time monitoring of **drug** delivery, biodistribution and action (tissue response).

...

Photomedicine: motivation / interest

Developments of enabling technologies in optical science!


- laser sources
- optoelectronic devices (LEDs)
- fiber optics
- physical and chemical sensors
- spectroscopy and imaging
- ...

...are being applied to photomedicine

Many of them are versatile, robust and inexpensive, and are being developed at an increasing rate!

1. Introduction

Web of Science records for specific topics
(1980 to 2022)

Tentative Syllabus

- 1. Introduction**
- 2. History**
- 3. Radiometry / photometry**
- 4. Optics review**

Ray optics

Electromagnetic / wave optics

Quantum description of light

Wave-particle duality

Tentative Syllabus *cont.*

5. Tissue optics

Tissue optical parameters

The radiative transport equation (RTE)

Approximation of the RTE

Measurement methods

6. Light dosimetry in tissues

7. Applications of Absorption, fluorescence and Raman spectroscopies and imaging in photomedicine

8. Dyes, luminophores and photosensitizers

Tentative Syllabus *cont.*

9. Instruments

Light sources

Dispersive devices

Detectors for optical spectroscopy and imaging

10. Selected applications (in part students' presentations)

Oxymetry

Angiography

Laser-tissue interactions

Phototherapy and Photodynamic therapy

Photodetection of early cancers

Optical coherence tomography

...

Class presentations

- On a topic of major interest to you, you will review relevant literature.
- This could be a general review paper, or a critical evaluation/description of a particular phenomenon, study, method, or technology.
- In order to benefit the entire class and provide you with valuable feedback, you will give an oral, in-class presentation (?about 15 + 5 minutes?) on your topic.

Class presentations

Examples of topics

Final selections of the topics must be approved by the instructor.

I encourage you to discuss your ideas with me as soon as possible.

- Molecular probes/markers/contrast agents used in photomedicine.
- Photosensitizers used in photodynamic therapy.
- Optical Instrumentation: light (laser) sources; optical waveguides; detectors; time-domain vs. frequency-domain methods; safety considerations; ...
- Tissue Optics.
- Computational approaches to model the light propagation in tissues.

Class presentations

Examples of topics *cont.*

Final selections of the topics must be approved by the instructor.
I encourage you to discuss your ideas with me as soon as possible.

- Optical Diagnostics: Clinical Spectroscopy and Imaging: elastic scattering; diffuse reflectance; laser-induced fluorescence; Raman; endogenous and exogenous contrast agents; optical coherence tomography; low coherence interferometry; ...
- Biomedical Microscopy: fluorescence wide-field; fluorescence lifetime; confocal sectioning; multi-photon excitation; second-harmonic generation; near-field ...

Class presentations

Examples of topics *cont.*

Final selections of the topics must be approved by the instructor.

I encourage you to discuss your ideas with me as soon as possible.

- Light/laser-based Therapy: photothermal; photomechanical; photochemical; photodynamic therapy; tissue engineering ...
- Biophotonic Technology: optical biosensors; microarray technology; flow cytometry; laser tweezers; laser scissors; laser capture microdissection; bionanophotonics; biomaterials for photonics ...

Class presentations

Examples of topics *cont.*

Final selections of the topics must be approved by the instructor.

I encourage you to discuss your ideas with me as soon as possible.

- Why do sub-dermal blood vessels look blue ?

Tissue optics is complex. One particular observation that is not completely obvious is why sub-dermal blood vessels look blue and not red, as one might have suspected. An understanding of this problem is of interest for laser treatments of hyper-vascularised lesions, such as port wine stains.

Class presentations

- This is a personal work !
(Please read the polylex **Honor Code** and the **Code of Ethics for Citing Information Sources**).

Exams

Grading

Your grade will be determined as follows:

- Oral exam 2/3
- Oral presentation 1/3

Recommended readings

General Reference Texts:

- *Quantitative Biomedical Optics*
 - I. Bigio and S. Fantini (Cambridge Uni. Press, 2016)
- *Fundamentals of Biomedical Optics*
 - C. Boudoux (Pollux, 2016)
- *Handbook of Photomedicine*
 - M. Hamblin, Y-Y. Huang (CRC Press, 2014)
<http://www.crcnetbase.com/doi/book/10.1201/b15582>
- *Optics*
 - E. Hecht (Addison Wesley, 2000)

Recommended readings *cont.*

Specialized Texts:

- *Handbook of Biomedical Fluorescence*
M.-A. Mycek & B.W. Pogue (Dekker, 2003)
<http://www.crcnetbase.com/isbn/9780824709556>
- *Optical-Thermal Response of Laser Irradiated Tissue*
A.J. Welch & M.J.C. van Gemert (Plenum, 1995)
- *Principles of Fluorescence Spectroscopy*
J.R. Lakowicz (Kluwer, 1999)

Recommended readings *cont.*

(Other useful resources)

- ***Biophotonics***
 - free subscription at: <https://www.photonics.com/BioPhotonics/p1>
- ***The Virtual Journal for Biomedical Optics***
 - http://www.opticsinfobase.org/vjbo/virtual_issue.cfm
- **Newport** has very good optics tutorials
 - <https://www.newport.com/resourceListing/tutorials>
- **<http://www.photobiology.info>** is a very good site in the field of photobiological sciences

Glossaries

Optics

<https://www.plasticoptics.com/glossary.pdf>

Optical fibers

<https://focenter.com/foc-glossary>

Medicine

[http://alexabe.pbworks.com/f/Dictionary+of+Medical+Terms+4th+Ed.--\(Malestrom\).pdf](http://alexabe.pbworks.com/f/Dictionary+of+Medical+Terms+4th+Ed.--(Malestrom).pdf)
Available on Moodle !

Photochemistry

GLOSSARY OF TERMS USED IN PHOTOCHEMISTRY

INTERNATIONAL UNION OF PURE

AND APPLIED CHEMISTRY

ORGANIC CHEMISTRY DIVISION

COMMISSION ON PHOTOCHEMISTRY

S.E. Braslavsky Pure and Applied Chemistry Vol. 79, No. 3, pp. 293-465, 2007

Available on Moodle !

Thanks !

I would like to acknowledge and heartily thank the people who helped me to create this course.

In particular, I am deeply indebted to:

- Prof. Jianan Qu, Hong-Kong University
- Prof. Mary-Ann Mycek, Univerty of Michigan
- Prof. Stefan Andersson-Engels, Lund Institute of Technology
- Dr. Geneviève Bourg-Heckly, Université Pierre et Marie Curie, Paris
- Prof. Bruce Tromberg, University of California, Irvine
- Prof. Urs Utzinger, University of Arizona
- Prof. Pavol Miskovsky, J. Safarik University, Kosice, Slovakia
- Prof. Céline Frochot, University of Lorraine, Nancy, France

For sending me their lecture materials