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Introduction: Reaction and Reactivity
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This reaction is an allenylic alkylation with amino-acid derived aldimine esters
Nucleophile: Cu-coordinated deprotonated aldimine ester

Electrophile: Pd-activated n®-butadienyl allenylic ester

Catalyst: bimetallic catalytic system (Pd/Cu) with chiral ligands on both metal centres

Bond formation: C(a-allene)-C(a-aldimine ester)




Principle of Activation
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« Dual activation by the bimetallic system
« Activation of the a-acetoxy allene via the DyKAT process with Pd catalyst
« Activation of the aldimine ester via Cu-coordination-enabled deprotonation

* Individual stereocentre-control with Pd and Cu chiral ligands
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Catalytic Cycle — Pd DyKAT
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Activation of the a-acetoxy allene via
the DyKAT process with a chiral
Pd catalyst.

One enantiomer of the electrophile
reacts with a nucleophile faster than
the other.

Effectively, the racemic substrate is
resolved into a single enantiomer of
the active electrophile.




Catalytic Cycle — Nucleophile Activation
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Catalytic Cycle — Nucleophile Addition
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C-C bond formation.

Stereo-determining step — two stereocentres
formed.

Individual control of each stereocentre by Pd and
Cu ligand choice.

Possible Cu de-coordination from the aldimine
ester before the electrophile capture.
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Catalytic Cycle — Pd Catalyst Regeneration
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Scope and limitations

Protecting group effect of aldimine ester
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Scope and limitations

Aryl-substituted allenylic ester
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Scope and limitations

Alkyl-susbituted allenylic ester
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Scope and limitations

Drug-tethered allenyl acetates
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Scope and limitations

Aldimine esters
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Transformation of the chiral allenylic product
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Critical analysis: Novelty

Strong points

* First method to access all four diastereoisomers of the allene with two adjacent chiral
centres

* Independent control of each stereocenter

* Novel n*-butadienyl Pd intermediate

Weaker points
» Dual catalysis was not a new concept in asymmetric synthesis

« Known ligands were used for asymmetric induction

15



Critical analysis: Practicability

Strong points

Chemicals are all available commercially

Good tolerance for sensitive functional groups (e.g., OH, Sme, NHR)
High stereoselectivity

Gives access to enantioenriched valuable products

Mild conditions

Weaker points

Moderate yields for complex molecules

The Cu(l) catalyst is air- and moisture-sensitive

Inert atmosphere required

Cs,CO; can be problematic for large-scale reactions

Relatively complex ligand syntheses for large-scale applications
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Critical analysis: Sustainability

Strong points
* Reaction performed under mild conditions
« Solvent used: THF, yellow solvent

* Good atom economy (AcOH by-product)

Weaker points
* Use of expensive and precious palladium metal
* Requires inert atmosphere

* Involves stoichiometric base (Cs,CO3;) and excess of allenylic acetate compared to

nucleophile

* Relatively complex ligand syntheses for large-scale applications
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Questions

Question 1

How does the palladium intermediate in this reaction differs from classical pi-allyl
palladium intermediates

Question 2

Is there a kinetic resolution in this process? Why?

Question 3

Aldimine esters are popular starting materials in many asymmetric processes.
Why?
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