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Introduction: Reaction and Reactivity

Enantioselective a-Alkylation of Esters with Oxyallenes
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« Reaction type: Pd-H/isothiourea dual-catalysed coupling reaction.
* Nucleophile: activated acyclic esters.

« Electrophile: activated oxyallenes.

* Product type: enantioenriched anti-aldol motifs.

* Principle of activation:

Isothiourea Lewis base activates acyclic esters as ammonium enolates.

In-situ generated Pd—H activates oxyallenes as 1r-allyl Pd complexes.




Reaction Optimisation
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Scope and Selectivity
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Nucleophile Scope
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Nu scope: tolerates (hetero)aryl-, alkenyl-
substituted Pfp esters.

Yield: very high (up to 90%) but lower for
electron-rich arenes and heteroaromatics.




Product Conversion to 1,2-Amino Alcohols
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Pfp ester products react with NH;
to form the corresponding primary
amides.

Subsequent Hofmann rearrange-
ment under oxidative conditions
yields N-carbamoyl-1,2-amino
alcohols.

Highlights synthetic utility and
robustness of the dual-catalytic
system.




Deuterium Tracking Experiment

Observations:

pom
No exogenous base required to generate ammonium enolate. R3N+J\/R

No exogenous Brgnsted acid required to generate Pd-H intermediate. L,Pd—H

Deuterium tracking experiment:
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Reaction with deuterium-enriched substrate 1-D, shows:
« One D atom incorporated at central carbon of oxyallene.

« The other D atom is retained.




Proposed Mechanism
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Proposed Mechanism
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Proposed Mechanism
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Proposed Mechanism
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Proposed Mechanism
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Proposed Mechanism
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Proposed Mechanism
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Critical Analysis: Novelty
e

Strong points

« Direct construction of anti-aldol products, with stereoselectivity regulated at the
catalyst level — complementary to aldol methodologies with reagent-level
asymmetric induction.

* O-substituted aldol products here are otherwise challenging to access due to
competing retro-Aldol fragmentation.

Weaker points

+ (Stereoselecitve) Aldol reactions are well-established, with many (dual-catalytic)
protocols to generate each isomer in a stereodivergent manner.

« Pd/isothiourea relay catalysis also well-known, previous reports (Snaddon, Smith)
have already described stereoselective a-alkylation of esters with Pd Tr-allyl
complexes.

« Though, the generation of O-substituted Pd Tr-allyl complexes from oxyallenes
IS novel.




Critical Analysis: Practicability

Strong points

Convenient reaction set-up (“dump-and-stir”).
Excellent enantioselectivity and good diastereoselectivity.
Both isothiourea and Pd catalysts are commercially-available.

Pfp ester & aryloxy group in product act as handles for subsequent orthogonal
modifications.

Oxyallene substrates typically prepared in one step from respective terminal alkyne.

Weaker points

Pfp-ester required, limiting nucleophile scope s Lo i |
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Electron-poor O-substituent on oxyallene less well-tolerated ©
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Critical Analysis: Sustainability

Strong points

« Mild conditions (r.t.).

» Low Pd catalyst loading (4 mol%).

« Solventis OK (toluene classified as «yellow» solvent).

* 100% atom economy.

Weaker points
« High organocatalyst loading (20 mol%).

« Pdis a precious metal, rare and expensive.
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Questions
e

Question 1

The regioselectivity of Pd allylations is traditionally in favour of linear over branched
products, the latter typically obtained with other metals like Ir. Why this reaction
leads to branched products?

Question 2

Explain the low diastereoselectivity of the reaction in terms of facial selectivity,
which stereocenter of the product is poorly controlled and what is the mechanism of
the enolate addition to the Pd allyl intermediate.

Question 3

What are the peculiarities of the ammonium enolate formed with this isothiourea
Lewis base catalyst compared to the chiral enolates that you have seen previously?
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