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Introduction: Reaction and Reactivity

Photochemical Deracemization
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• The reaction is a photochemical deracemization.

• «Electrophile»: ketone of the benzophenone (-)-2 in the triplet (n → π*) state

• «Nucleophile»: Hydrogen atom on the C5 carbon of the hydantoin

• Bond formation: Hydrogen abstraction by the catalyst, followed by Hydrogen Atom

Transfer (HAT) to the substrate

• Catalyst: benzophenone (-)-2
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Principle of Activation

3

• Conformational activation by double hydrogen bonding

• Activation of catalyst by photoexcitation with 366 nm light to the triplet state (n → π*)

• Stereoinduction by hydrogen bonding of the substrate and the catalyst →

selective hydrogen abstraction by the catalyst
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Stereoinduction and Selective H Abstraction
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• (-)-2 ⋅ (R)-1 complex has good superpositioning → hydrogen abstraction

• (-)-2 ⋅ (S)-1 complex is not superpositioned well → inactive
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Catalytic Cycle
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Catalytic Cycle
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• The substrate and the catalyst associate

by hydrogen bonding

• Note: only the R enantiomer is drawn

because it is the active enantiomer in the

catalytic cycle



Catalytic Cycle
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• The benzophenone catalyst is activated by

photoexcitation (n → π*) with 366 nm light



Catalytic Cycle
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• The catalyst does a hydrogen abstraction with the

hydrogen on the C5 atom of the hydantoin

• The carbon with the R group becomes sp2 hybridized
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Catalytic Cycle
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• The catalyst does a Hydrogen Atom Transfer back to the

substrate

• An imide enolate is formed
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Catalytic Cycle
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• The catalyst and the substrate dissociate



Catalytic Cycle
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• The substrate tautomerizes to both the S and the R enantiomers

• The R enantiomer goes back into the catalytic cycle

• The S enantiomer is inactive → enrichment of the S enantiomer

by the catalytic cycle
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Control experiments and side products
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• The other catalyst enantiomer leads to the opposite configuration

• Radical-radical recombination products observed with BP. The reaction

goes through hydantoin radical intermediates.

Control experiment Side products

(+)-2: (R)-1a in 87% yield 94% ee
(-)-2: (S)-1a in 86% yield 94% ee

Observed using BP as catalyst



Formation of Complexes by NMR Titration
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Ka = 89 ± 11 L.mol-1 Ka = 56 ± 10 L.mol-1

• Association via 2 hydrogen bonds

• The (-)-2⋅(S)-1a less favored due to sterics (benzoyl group and bulky

hydantoin substituent)

• H atom at sterogenic center of (-)-2⋅(R)-1a close to carbonyl of

benzophenone → good for intramolecular HAT



KIE effect and H/D crossover
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• Light KIE observed and confirmed by QCC: HAT is rate-determining step

• KIE allowed the identification of the transition state's conformation

• H/D crossover is observed to be 50% of the converted starting material →

Proton exchange occurs in a bimolecular fashion through tautomerization.

KIE effect

Separate kinetics: kH/kD = 1.4

Competition kinetics: kH/kD = 1.8

QCC calculation:          kH/kD = 1.9

H/D​ crossover

(+)-2 cat.:

(S)-1:         50% of H/D crossover

Racemic:   25% of H/D crossover

(R)-1:         No H/D crossover



Quantum Chemical Calculations – HAT
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Transient Absorption Spectroscopy – Introduction
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https://juhyeonkim95.github.io/project-pages/transient_absorption_spectroscopy/

Study of excited 
states​

https://juhyeonkim95.github.io/project-pages/transient_absorption_spectroscopy/


Transient Absorption Spectroscopy – Benzophenone
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• Acceleration of decay and observation of the BP ketyl radical with cyclohexane



Transient Absorption Spectroscopy – Intermediates
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Observed

:

Only cat. 

(-)-2

(-)-2+(S)-

1

(-)-2+(R)-

1

• Only enantiomer R undergoes HAT with the catalyst, with a quantum yield of 12%

• Formation of 3 is then followed by quick ISC and back-HAT to form enol 7



Critical Analysis: Novelty
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Strong points

• Extensive analysis and study of the reaction mechanism

• Use of Transient Absorption Spectroscopy to observe excited state species.

• Use of Quantum Chemical Calculations for HAT mechanism studies

• The reaction only needs the chiral photocatalyst

Weak points

• Deracemization is a well known concept

• Catalytic system already discovered (Nature 564, 240–243 (2018))



Critical Analysis: Practicability
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Strong points

• Mild conditions (room temperature, only light)

• Organocatalyst

• No strong UV light needed

Weak points

• Need specific wavelength of light (366 nm)

• Applicable specifically on hyndatoin moieties

• Complex catalytic scaffold



Critical Analysis: Sustainability
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Strong points

• Metal-free catalyst

• Mild conditions (room temp)

• Atom economy (absence of side products)

• Reuse of unwanted enantiomers (waste recycling)

Weak points

• Irradiation for 13 hours

• Undesirable solvent (trifluorotoluene classified «yellow»)

• 5 mol% catalytic loading



Questions
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Question 1

Why are deracemization reactions inherently challenging?

Question 2

Why is one of the two enantiomers not able to under Hydrogen Atom Transfer?

Question 3

When using benzophenone as catalyst, radical-radical C-C coupling side products

are observed, but not with the chiral catalyst: why?


