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Introduction: Reaction and Reactivity

Photochemical Deracemization
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» The reaction is a photochemical deracemization.
» «Electrophile»: ketone of the benzophenone (-)-2 in the triplet (n — 1*) state
» «Nucleophile»: Hydrogen atom on the C5 carbon of the hydantoin

 Bond formation: Hydrogen abstraction by the catalyst, followed by Hydrogen Atom
Transfer (HAT) to the substrate

« Catalyst: benzophenone (-)-2

De Vleeschouwer, F.; Van Speybroeck, V.; Waroquier, M.; Geerlings, P.; De Proft, F.
Electrophilicity and Nucleophilicity Index for Radicals. Org. Lett. 2007, 9 (14), 2721-2724.
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Principle of Activation
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Conformational activation by double hydrogen bonding
Activation of catalyst by photoexcitation with 366 nm light to the triplet state (n — 1T*)

Stereoinduction by hydrogen bonding of the substrate and the catalyst —
selective hydrogen abstraction by the catalyst




Stereoinduction and Selective H Abstraction
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* (-)-2 - (R)-1 complex has good superpositioning — hydrogen abstraction

* (-)-2 - (S)-1 complex is not superpositioned well — inactive




Catalytic Cycle
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Hydrogen abstraction



Catalytic Cycle

2 A
HHN%N—Ph
0
N/H
0
—N Ph
0
o)
1 association
The substrate and the catalyst associate
by hydrogen bonding ph R
: . N-H"-Ox N-
Note: only the R enantiomer is drawn 0 - =T
because it is the active enantiomer in the “--H-N
catalytic cycle N




Catalytic Cycle

The benzophenone catalyst is activated by
photoexcitation (n — 11*) with 366 nm light
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Catalytic Cycle

« The catalyst does a hydrogen abstraction with the
hydrogen on the C5 atom of the hydantoin

» The carbon with the R group becomes sp? hybridized
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Hydrogen abstraction



Catalytic Cycle
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* The catalyst does a Hydrogen Atom Transfer back to the
Substrate

HAT |4  An imide enolate is formed
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Catalytic Cycle
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Catalytic Cycle
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* The substrate tautomerizes to both the S and the R enantiomers
» The R enantiomer goes back into the catalytic cycle

* The S enantiomer is inactive — enrichment of the S enantiomer
by the catalytic cycle
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Control experiments and side products

Control experiment Side products

(+)-2: (R)-1la in 87% yield 94% ee
(-)-2: (S)-1a in 86% vyield 94% ee

1a 4c (R = 'Pr) 5¢ (R = Pr)

Observed using BP as catalyst

The other catalyst enantiomer leads to the opposite configuration

Radical-radical recombination products observed with BP. The reaction
goes through hydantoin radical intermediates.
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Formation of Complexes by NMR Titration
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» Association via 2 hydrogen bonds

hydantoin substituent)

 The (-)-2:(S)-1la less favored due to sterics (benzoyl group and bulky

« H atom at sterogenic center of (-)-2:(R)-la close to carbonyl of
benzophenone — good for intramolecular HAT
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KIE effect and H/D crossover

KIE effect H/D crossover
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Separate kinetics: kp/kp = 1.4 (+)-2 cat.:
Competition kinetics: k,/kp = 1.8 (S)-1: 50% of H/D crossover
QCC calculation: Ky/kp = 1.9 Racemic: 25% of H/D crossover

(R)-1: No H/D crossover

» Light KIE observed and confirmed by QCC: HAT is rate-determining step
» KIE allowed the identification of the transition state's conformation

* H/D crossover is observed to be 50% of the converted starting material —
Proton exchange occurs in a bimolecular fashion through tautomerization.
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Quantum Chemical Calculations — HAT
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Transient Absorption Spectroscopy — Introduction
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(A) Pump-probe spectroscopy (B) Energy state change

https://juhyeonkim95.github.io/project-pages/transient absorption spectroscopy/
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Transient Absorption Spectroscopy — Benzophenone
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« Acceleration of decay and observation of the BP ketyl radical with cyclohexane
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Transient Absorption Spectroscopy — Intermediates
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* Only enantiomer R undergoes HAT with the catalyst, with a quantum yield of 12%

» Formation of 3 is then followed by quick ISC and back-HAT to form enol 7
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Critical Analysis: Novelty

Strong points

« Extensive analysis and study of the reaction mechanism

» Use of Transient Absorption Spectroscopy to observe excited state species.
« Use of Quantum Chemical Calculations for HAT mechanism studies

» The reaction only needs the chiral photocatalyst

Weak points
» Deracemization is a well known concept

« Catalytic system already discovered (Nature 564, 240-243 (2018))
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Critical Analysis: Practicability

Strong points
« Mild conditions (room temperature, only light)
* Organocatalyst

* No strong UV light needed

Weak points
* Need specific wavelength of light (366 nm)
* Applicable specifically on hyndatoin moieties

+ Complex catalytic scaffold
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Critical Analysis: Sustainability

Strong points

» Metal-free catalyst

« Mild conditions (room temp)

« Atom economy (absence of side products)

* Reuse of unwanted enantiomers (waste recycling)

Weak points
* |rradiation for 13 hours

» Undesirable solvent (trifluorotoluene classified «yellow)

* 5 mol% catalytic loading
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Questions

Question 1

Why are deracemization reactions inherently challenging?

Question 2

Why is one of the two enantiomers not able to under Hydrogen Atom Transfer?

Question 3

When using benzophenone as catalyst, radical-radical C-C coupling side products
are observed, but not with the chiral catalyst: why?
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