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Introduction: Reaction and Reactivity

Desilylative Asymmetric [2+2] Cycloaddition via C(1)-Ammonium Enolates
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« This reaction is : Desilylation + Tandem Aldol-Lactonization
* Nucleophile: C(1)-Ammonium enolate

» Electrophile: Perfluoroalkyl ketone

» Catalyst: Isothiourea (2S,3R)-HyperBTM

« Bond formation: C-C and C-O bonds in a [2+2] formal cycloaddition to form B-lactones




Principle of activation
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HOMO activation involves the formation of a mixed anhydride, followed by isothiourea-catalyzed
enolate generation via desilylation.

C(1)-ammonium enolate formation is favoured by the O-S interaction and stabilize the structure of the
active species

Asymmetric induction arises from the planar symmetry imposed by the O-S interaction, which
restricts C-N bond rotation, combined with the steric hindrance of the aryl group.




Catalytic Cycle and Enantioselectivity

0) In situ formation of silylated anhydride.
1) HOMO activation in two steps

1.1) Preferencial N-acylation with (R)-
enantiomer.

1.2) Desilylation to form (Z)-enolate via
substitution or Brook rearrangement.

2) Bond formation by intramolecular formal
[2+2] tandem aldol-lactonization.

Asymmetric induction at this step.

3) Catalyst turnover promoted via B-lactone
formation.

Speculative Stereochemical Rationale
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Scope and limitations
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(i). -BuCOCI (3 equiv.)
(0] o i-ProNEt (3 equiv.)

R! + MTBE (0.1 M) i-Pr.,
o RIS Re 0°C, 10 minutes (\ /‘\
Si(R?), L 2

(ii). i-ProNEt (1 equiv.)
(2S,3R)-HyperBTM 4
(5 mol%), r.t., 16 h

(#)-(2 equiv.) (1 equiv.) 7-3 (23 3R)-HyperBTM 4
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A: Variation of R substituent [S:(Rz)_—, SiMes]
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24, 91%
7 81%, 8, 87% 9, 74% 10, 68% 1, 68% 86:14 er
>95:5 dr, 97:3 er >95:5 dr, 96:4 er 86:14 dr, >99:1 er 75:25dr, 96:4 er 80:20 dr, 98:2 er R}

12, 72% Ar=p-Me-Ph, 13, 70% Ar=p-F-Ph, 14, 68% 15, 65% 16, 53% @ O
85:15dr, >99:1 er 80:20 dr, 97:3 er 80:20 dr, 98:2 er 80:20 dr, 99:1 er 84:16 dr, 96:4 er CeFs
i - 23, 78%
| B: R = H, Si(R?)3 = SiMej3; variation within perﬂuoroalkylketone 89:11 er
O MeO CF;
17, 79% 18, 54% 19, 77% 20, 96% 21, 82% 22, 92%
93:7 er 87:13er 92:8er 88:12 er 88:12 er 88:12 er

Scope: Broad a-silyl-a-alkyl acid compatibility
Moderate to excellent yields (53—96%)

High diastereo- and enantioselectivity across scope
Benchmark substrate (compound 7): 81%, >97:3 er

Bulky group tolerated (compound 15): 65%, >99:1 er




Scope and limitations

(i). +-BuCOCI (3 equiv.)

o] o] i-ProNEt (3 equiv.)
R! + MTBE (0.1 M) i-Pr,,
OH afl S Re 0°C, 10 minutes
- R3S ,L
Si(R<)s ~ T ——
(ii). i-PrzNEt (1 equiv.)
y : : (25,3R)-HyperBTM 4 (23 SR)-Hy perBTM 4
(£)-(2 equiv.) (1 equiv.) (5 mol%). rt., 16 h 7-3 6
C: R' = alkyl, Si(R?); = SiMes; variation within perfluoroalkylketone
0O MeO
v O e wOF OF O ~OF
CoFg
25, 65% 26, 74% 27, 59% 28, 78% 29, 58% 30, 53%
85:15dr, >99:1 er 85:15dr, >99:1 er 85:15dr, >99:1 er 85:15dr, >99:1 er >95:5 dr, >99:1 er >05:5 dr, 98:2 er
MeO  Me, O Me, Me, O 2-Np—
SF O Of ~Of -0F ~OF
C,F; C,Fs C4Fyq
31,82% 32, 48% 33, 53% 34,95% (1.2 g) 35, 62% 36, B?%

>05:5 dr, >99:1 er

———  D: Variation of Si(R?); substit

>85:5 dr, >99:1 er

>95:5dr, 98:2 er

>85:5 dr, >99:1 er

90:10 dr, >99:1 er

85:15dr, 99:1 er

t E: Product derivatisation
O Me, o) 37, 83%, _
g \© >95:5 dr, i
Br@"-'ljg Br@....Fg "Bn =99:1 er ;ﬁr e ! ‘.’U
CZFs - 1* o >
CF; CF4 OH O "S' » p§

3 7 d Me o . (25.38)37
RI=HSiMe, Y= mMersite, @ F( @ 3;552;;: =
96%,94:6er 819, >95:5dr, 97:3 er = F ~00-1 ar . g

9 04 OH ’ - -
= HiSiMe Ph R = Me/SiMe,Ph gi EF - g2:5 Br _---\,.-"'*“p‘r‘:
94%, 92:8er  76%, >95:5 dr, 99:1 er T \© e 39, 86% L
. € OMe 2 g5-5 gr. e
R' = HISiMePh, R' = Me/SiMePh; C4Fg =091 er -
70%, 82:18 er ?0%, >95:5 dr, 96:4 er OH O (25,33)—39

* Limitations:
Compound 30 (Br-substituted ketone): 53% vyield
Possibly due to steric/electronic effects
» Silyl group impact:
SiMe3 enhances er
Bulkier SiMePhz2 lowers selectivity (compound 7)
« Stereocontrol maintained across examples




Critical analysis: Novelty

Strong points

* Innovative desilylative access to a-alkyl C(1)-ammonium enolates.
« Avoids limitations of deprotonation methods.

» High stereoselectivity and scalability demonstrated.

Weaker points
* Requires synthesis of a-silyl acids.

* Limited to fluorinated ketones/enones.




Critical analysis: Practicability

Strong points

» Mild conditions (room temperature).
* High selectivity and reproducibility.
* Works on gram scale.

* One-pot reaction

Weaker points
« Substrate synthesis needed (a-silyl acids).
« Limited scope of ketones.

* Use of MTBE, red solvent — bad for people




Critical analysis: Sustainability

Strong points

« Mild temperatures, scalable reaction.

» Low catalyst loading, organocatalysis instead of transition metals.
- Efficient and selective.

» Formation of valuable medchem fluorinated products without excess

fluorinated substrate — better environmental compatibility

Weaker points
« MTBE solvent is red — bad for environment
» Loss of the silyl group affects atom economy.

« Extra synthetic steps for substrates.
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Questions

Question 1

What is the role of the Si substituent in the starting material? Why was it needed?

Question 2

What is the advantage of this class of isothiourea catalyst whencompare to
imidazole or pyridine-based catalysts?

Question 3

Why was a fluorinated group needed on the ketone?
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