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Introduction: Reaction and Reactivity

Asymmetric Propargylic Functionalization

[Ir(cod)Cl]5 (1.5 mol%, 3 mol% Ir)

/\Me . OMe (S)-L4 (6 mol%)
oh = ph)\/ BF4-OEt, (3.5 equiv.), TMPH (4.0 equw)
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e The reaction is an Alkyne-Allyl Coupling Reaction.

e Nucleophile: Carbon in propargylic position

e Electrophile: Carbon in benzylic position

e Bond formation: Attack of allenylmetal species on mr-allyl electrophile

e Catalyst: Phosphoramidite-alkene ligands (S)-L, coordinated to -
allyliridium complex!

1J. Am. Chem. Soc. 2017, 139, 3603-3606.



Principle of activation

Dual Activation
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e Activation of catalyst by addition of methoxy boron trifluoride and MeOBFE
loss of chloride 3
e HOMO Activation: Alkyne activated by Ir(l) catalyst to deprotonate /, Me
propargylic proton forming the allenylmetal nucleophile ” Ph ;
e LUMO Activation: Regeneration of the m-allyliridium complex using ( -—P % .\
boron trifluoride as a Lewis acid N \Ir/' @




Catalytic Cycle
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Catalytic Cycle |:

Alkyne coordination
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Preactivation of alkyne for propargylic deprotonation




Catalytic Cycle |2

HOMO activation of alkyne

Allenylmetal formation by
propargylic deprotonation
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Catalytic Cycle |3

LUMO activation of allyl ether

LUMO activation by departure of methoxy group and formation of -
allyl system. The generated species is a m-allyliridium complex




Catalytic Cycle | ¢]and|s
Bond formation and Catalyst turnover
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Asymmetric Induction

Diastereodivergence

oM [Ir(cod)Cl], (1.5 mol%, 3 mol% Ir) Me Me
e S)-L4 (6 mol%
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Asymmetric Induction

[Ir(cod)Cl], (2.5 mol%) SiEt;
L4 (10 mol%
/\Me +  Et,SiOTf 1 ), = "Me
Ph TMPH (2.0 equiv.) 7
DCE, rt. Ph

Angew. Chem. Int. Ed. 2024, 63, €202318040

lead to (S)-3a’
AGY=2438

TS2
lead to (R)-3a’
AG*=319
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Alkyne Scope

[Ir(cod)Cl], (1.5 mol%, 3 mol% Ir)
/\ OMe (S)-L4 (6 mol%)
2 +
Ph)\/

-

BF3-OEt; (3.5 equiv.), TMPH (4.0 equiv.)

_ Ph
z H
PhCF;[1 M],35°C,14-20h R A
Ph
Ph \
91% vyield 88% vyield 40% vyield
>20:1 dr, >99% ee 14:1 dr, >94% ee
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77% yield 91% vyield 48% yield 58% yield 11% vyield
>20:1 dr, >99% ee >20:1 dr, >99% ee >20:1 dr, >99% ee >20:1 dr, >99% ee >99% ee
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Allylic Ether Scope

[Ir(cod)Cl], (1.5 mol%, 3 mol% Ir) Me
- 0,
/\Me . OMe (S)-Ly (6 mol%) g o
Ph Ar)\/ BF4-OEt, (3.5 equiv.), TMPH (4.0 equiv.) =z i
PhCF3 [1 M], 35 °C, 14 - 20 h Ph X

Me

87% yield 68% yield
>20:1 dr, >99% ee >20:1 dr, >99% ee

OMe
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>20:1 dr, >98% ee >20:1 dr, >97% ee
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>20:1 dr, >99% ee >20:1 dr, >99% ee

44% yield
>20:1 dr, >99% ee
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Critical analysis: Novelty

Strong points

e Unprecedented dual role of the iridium catalyst

e Complete reverse of diastereoselectivity with a racemic ligand

Weak points
e Both propargylic C-H and allylic ether functionalizations had been reported before

e Known chiral ligands were employed to achieve asymmetric induction
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Critical analysis: Practicability

Strong points

e Commercially available iridium precatalyst, ligand, and reaction additives
e Mild reaction conditions (30 - 40 °C)
e C-H functionalization — no need for prefunctionalized substrates

e Two stereocenters formed with excellent regio, diastereo, and enantioselectivity

Weak points

e Expensive uncommon solvent (PhCF,)

e Glovebox required for the reaction set up
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Critical analysis: Sustainability

Strong points

e Mild heating (30 - 40 °C)
e Concentrated reaction mixture (1 M)
e C-H functionalization — no need for pre-installed handles

e Two stereocenters formed with excellent regio, diastereo, and enantioselectivity

Weak points
e Perfluorinated expensive solvent (PhCFy)
e Superstoichiometric use of additives — poor atom economy

e Relatively high iridium catalyst loading (for large scale)

15



Questions

Question 1

Why is BF;.OEt, needed in this reaction?

Question 2

What is the rate limiting step of the reaction and which experiment supports it?

Question 3

How is it possible that racemic and enantiopure ligand gives different diastereoisomers of the product?
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