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Introduction: Reaction and Reactivity

Spirocyclization
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• The reaction is a spirocyclization.

• Nucleophile: sulfonamide attached to the C3 position of the indole

• Electrophile: C3 atom of indole (umpolung)

• Bond formation: Attack of sulfonamide on electron-deficient C3 atom

of the indole

• Catalyst: bis(binaphthyl)-based chiral quaternary ammonium iodide
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Principle of Activation
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• Activation of catalyst by generation of hypoiodite ion from 

oxidation of ammonium iodide with cumene hydroperoxide

• LUMO activation by N-iodo intermediate formation

followed by oxidation of iodine to generate an N-iodine
intermediate

• Asymmetric induction from the binaphthol ligand and
methyl groups



Asymmetric Induction
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• Exact transition state is still unknown

• Potential interactions: π-π stacking, ion-pair

• Cation-induced asymmetry from the binaphthol ligand and
methyl groups
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Catalytic Cycle
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Catalytic Cycle
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1st LUMO activation by N-iodo intermediate formation
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Catalytic Cycle
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2nd LUMO activation by oxidation of iodine to generate an

N-iodine(III) intermediate
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Catalytic Cycle
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Bond formation and catalyst turnover by simultaneous

reductive elimination of ammonium hypoiodite and
spirocyclization
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Catalytic Cycle
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Side reaction: dissociation of ammonium hypoiodite prior to spirocyclization

Prevention of this pathway by installing:

• Electron-withdrawing substitutents on C5 of the indole (R1 group)

• Pyrazole as electron-deficient auxiliary at the C2 position (R2 group)
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Scope
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• Very high yields and good ees observed.

• b: after single recrystallization
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Synthetic Limitations

11

• Poor diastereoselectivity

• Replacing N by O for spirocyclization

• Reducing the ring size of the spiro moiety
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Critical Analysis: Novelty
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Strong points

• Enantioselective dearomatization reaction

• Design of new catalyst

• Synthetic utility, relatively easy transformations from the product

Weaker points

• No testing of substituents on spiro ring

• No investigation of stereoconvergence



Critical Analysis: Practicability
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Strong points

• Mild conditions

• Good enantioselectivities and high yields

• Broad scope (various substitutions on indole, ring sizes for spiro moiety)

Weaker points

• Complex synthesis of catalyst (12 steps, 44%)

• High catalyst loading (10 mol%)

• Poor diastereoselectivity

• Racemic pathway in catalytic cycle



Critical Analysis: Sustainability
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Strong points

• Metal-free catalyst

• Mild conditions (room temperature)

• Solvents are OK (toluene and MTBE classified as «yellow» solvents)

• Good atom economy (intramolecular reaction)

Weaker points

• Harsher conditions for synthesis of substrates (48 hours, 80°C)

• «Red» solvents (DCM) for substrate synthesis

• Many synthetic steps required to access catalyst (involving Suzuki cross-coupling)



Questions
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Question 1

How is it possible for the reaction to be 0th order in the substrate?

Question 2

This reaction proceeds via Umpolung of the reactivity of Indole. What are the two

possible structures of the intermediate with inverted reactivity? Which results are

supporting this structure?

Question 3

Electron-donating substituents on the indole gave lower er. What could be an

explanation? How was the issue solved?
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