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Introduction: Reaction and Reactivity

Spirocyclization
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» The reaction is a spirocyclization.
» Nucleophile: sulfonamide attached to the C3 position of the indole
» Electrophile: C3 atom of indole (umpolung)

e Bond formation: Attack of sulfonamide on electron-deficient C3 atom
of the indole

« Catalyst: bis(binaphthyl)-based chiral quaternary ammonium iodide




Principle of Activation
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« Activation of catalyst by generation of hypoiodite ion from “Ns
oxidation of ammonium iodide with cumene hydroperoxide N
z
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« LUMO activation by N-iodo intermediate formation Rig N R *RuN
followed by oxidation of iodine to generate an N-iodine 0

intermediate

« Asymmetric induction from the binaphthol ligand and
methyl groups




Asymmetric Induction
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« Exact transition state is still unknown
« Potential interactions: 1r-11 stacking, ion-pair

+ Cation-induced asymmetry from the binaphthol ligand and
methyl groups




Catalytic Cycle
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Catalytic Cycle |2
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15t LUMO activation by N-iodo intermediate formation




Catalytic Cycle |3
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2"d LUMO activation by oxidation of iodine to generate an
N-iodine(lll) intermediate




Catalytic Cycle |4
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Bond formation and catalyst turnover by simultaneous
reductive elimination of ammonium hypoiodite and
spirocyclization




Catalytic Cycle |5
4Ns—N/ﬁ
racemic 7 o
____________________________________________________________ ——> R=- || )—R?
E 1.1 \ N
p=+0.72 B e8) N
' 2 _
.ol R2=098
K , Cl (2b) Juc
'@ unproquctive
% ; (2d)‘ *F (2¢) *RyN* 107 cycle
<2 07 L
: & Me (2e)
"
OMe (2f)
0.5 : . *R4N*
0.3 0.1 0.1 0.3
Opara

____________________________________________________________

Prevention of this pathway by installing:

Side reaction: dissociation of ammonium hypoiodite prior to spirocyclization

Electron-withdrawing substitutents on C5 of the indole (R* group)

Pyrazole as electron-deficient auxiliary at the C2 position (R? group)




Scope
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* Very high yields and good ees observed.

 b: after single recrystallization
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Synthetic Limitations
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* Poor diastereoselectivity
» Replacing N by O for spirocyclization

* Reducing the ring size of the spiro moiety

Tanaka, H.; Ukegawa, N.; Uyanik, M.; Ishihara, K. Supporting Information, 2022. ja2c01852_si_001.pdf. 11



Critical Analysis: Novelty

Strong points
* Enantioselective dearomatization reaction
» Design of new catalyst

» Synthetic utility, relatively easy transformations from the product

Weaker points
* No testing of substituents on spiro ring

» No investigation of stereoconvergence
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Critical Analysis: Practicability

Strong points
« Mild conditions
« Good enantioselectivities and high yields

» Broad scope (various substitutions on indole, ring sizes for spiro moiety)

Weaker points

« Complex synthesis of catalyst (12 steps, 44%)
» High catalyst loading (10 mol%)

» Poor diastereoselectivity

* Racemic pathway in catalytic cycle
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Critical Analysis: Sustainability

Strong points

» Metal-free catalyst

» Mild conditions (room temperature)

» Solvents are OK (toluene and MTBE classified as «yellow» solvents)

« Good atom economy (intramolecular reaction)

Weaker points
« Harsher conditions for synthesis of substrates (48 hours, 80°C)
» «Red» solvents (DCM) for substrate synthesis

« Many synthetic steps required to access catalyst (involving Suzuki cross-coupling)
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Questions

Question 1

How is it possible for the reaction to be Ot order in the substrate?

Question 2

This reaction proceeds via Umpolung of the reactivity of Indole. What are the two
possible structures of the intermediate with inverted reactivity? Which results are
supporting this structure?

Question 3

Electron-donating substituents on the indole gave lower er. What could be an
explanation? How was the issue solved?
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